NAG Fortran Library Manual Mark 19

Volume 1

Contents - C06

Contents Foreword

Introduction

Essential Introduction

Mark 19 News

Thread Safety

Library Contents

Withdrawn Routines

Advice on Replacement Calls for Withdrawn/Superseded Routines

Acknowledgements

Indexes

Keywords in Context

GAMS Index

Implementation-specific Information

Users' Note

A02 - Complex Arithmetic

C02 - Zeros of Polynomials

C05 - Roots of One or More Transcendental Equations

C06 - Summation of Series

NAG Fortran Library Manual, Mark 19

©The Numerical Algorithms Group Limited, 1999

All rights reserved. No part of this manual may be reproduced, transcribed, stored in a retrieval system, translated into any language or computer language or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

The copyright owner gives no warranties and makes no representations about the contents of this manual and specifically disclaims any implied warranties or merchantability or fitness for any purpose.

The copyright owner reserves the right to revise this manual and to make changes from time to time in its contents without notifying any person of such revisions or changes.

September 1999

ISBN 1-85206-169-3

NAG is a registered trademark of:

The Numerical Algorithms Group Limited
The Numerical Algorithms Group Inc
The Numerical Algorithms Group (Deutschland) GmbH
Nihon Numerical Algorithms Group KK

All other trademarks are acknowledged.

NAG Ltd

Wilkinson House Jordan Hill Road Oxford OX2 8DR United Kingdom

Tel: +44 (0)1865 511245 Fax: +44 (0)1865 310139

NAG GmbH

Schleißheimerstraße 5 85748 Garching Deutschland

Tel: +49 (0)89 3207395 Fax: +49 (0)89 3207396 Nihon NAG KK

Nagashima Building 2F 2-24-3 Higashi Shibuya-ku Tokyo Japan

Tel: +81 (0)3 5485 2901 Fax: +81 (0)3 5485 2903

NAG Inc

1400 Opus Place, Suite 200 Downers Grove, IL 60515-5702 USA

USA

Tel: +1 630 971 2337 Fax: +1 630 971 2706

NAG also has a number of distributors throughout the world. Please contact NAG for further details.

[NP3390/19]

Introduction

Contents of the NAG Fortran Library Manual, Mark 19

		Volume
Contents		1
Foreword		1 .
Introduction		
Essential Int	troduction	1
Mark 19 Ne		1
Thread Safe		1
Library Con		1
Withdrawn		1
	Replacement Calls for Withdrawn/Superseded Routines	1
Acknowledg		1
Indexes	Ciricino	
Keywords in	n Context	1
GAMS Inde		1
	Specific Information	
Users' Note	_	1
Chapters of the l		
A02	- Complex Arithmetic	1
C02	- Zeros of Polynomials	1
C02	- Roots of One or More Transcendental Equations	1
C06	- Summation of Series	1
D01	- Quadrature	2
D01 D02	- Ordinary Differential Equations	$\frac{1}{2}/3$
D02 D03	- Partial Differential Equations	$\frac{1}{3}$
D03	- Numerical Differentiation	4
D04 D05	- Integral Equations	4
E01	- Integral Equations - Interpolation	4
	- Curve and Surface Fitting	4
E02	- Minimizing or Maximizing a Function	$\frac{1}{4/5}$
E04 F	- Linear Algebra	5
-	- Matrix Operations, Including Inversion	5
F01		6
F02	 Eigenvalue and Eigenvectors Determinants 	6
F03	- Determinants - Simultaneous Linear Equations	6
F04	- Orthogonalisation	6
F05	-	6
F06	Linear Algebra Support RoutinesLinear Equations (LAPACK)	7
F07	- Linear Equations (EATACK) - Least-squares and Eigenvalue Problems (LAPACK)	7/8
F08		8
F11	- Sparse Linear Algebra	9
G01	- Simple Calculations on Statistical Data	9
G02	- Correlation and Regression Analysis	10
G03	- Multivariate Methods	10
G04	- Analysis of Variance	10
G05	- Random Number Generators	10
G07	- Univariate Estimation	11
G08	- Nonparametric Statistics	11
G10	- Smoothing in Statistics	11
G11	- Contingency Table Analysis	
G12	- Survival Analysis	11
G13	- Time Series Analysis	11
H	- Operations Research	12
M01	- Sorting	12
P01	- Error Trapping	12
S	- Approximations of Special Functions	12
X01	- Mathematical Constants	12

[NP3390/19] MANCONTS.1

	Introduction
- Machine Constants	12
	12
- Input/Output Utilities	12
- Date and Time Utilities	12

[NP3390/19]

Foreword to the NAG Fortran Library Manual

The following Foreword was contributed by the late Professor Fox and the late Dr Wilkinson to the NAG Fortran Library Manual which was released in 1975.

Those who have organised computing services are well aware of the two main problems which face the users of computing machines in scientific computation. First, considerable experience is needed before the user can transform a given algorithm into a very efficient program, and there are many examples in which relatively small amendments to a few instructions can transform a modest program into one considerably more economical in time and storage space. Second, our user needs knowledge of the principles and techniques of numerical analysis, however efficient he might be at program construction, before he can reasonably guarantee to have an efficient algorithm which is as free as possible from numerical instability and which gives good results in economic time. Both the cost of computation and the ever-present desire for quick results make obligatory at least a partial solution to these two problems.

Many computing laboratories and computing services have made some attempts at solution by constructing libraries of computer programs, but only in the last few years has it been possible to develop really comprehensive schemes based on two or more decades of research into methods and their error analysis by numerical mathematicians, and on the development of a new breed of expert in 'numerical software'. This NAG Fortran Library was in fact initiated by a small mixed university band of numerical analysts and their software counterparts, but has increasingly received encouragement, support and material from many 'extramural' organisations.

The compilers of this library have used, as main criteria for the selection of their programs, the concepts of (i) usefulness, (ii) robustness, (iii) numerical stability, (iv) accuracy and (v) speed. But within these criteria several rather difficult decisions have to be made. First, how many different routines are needed in each particular subject area, such as linear equations, optimization, ordinary differential equations, partial differential equations and so on? What is relevant here is the number of 'parameters' of the particular subject area. With linear equations, for example, the matrix might be 'dense' or have some particular 'sparse' structure, it might be symmetric and, if so, possibly positive definite, it might be too large for the high-speed store of some particular computer, it might be one for which an iterative method is known to converge, or the problem might involve the same matrix but have many different right-hand sides, and so on. Each of these sub-groups may require quite different routines for best efficiency, but within each sub-group there may also be several computing techniques requiring a further selection decision.

A second question which has to be answered is the nature and amount of material to be provided for the 'answer' to problems. If the data of the problem are exact, and if the problem has a unique solution, then it is meaningful to ask for results accurate to a specified number of figures. Whether one can get them easily, say with single-precision arithmetic, will depend on the sensitivity of the answers to small changes in the data. For even the storage of exact numbers cannot usually be performed exactly, so that from the outset our problem differs slightly from the one we hoped to solve. Moreover inevitable computer rounding errors will produce solutions which are the exact solutions of a perturbation of the original problem, the amount of the perturbation depending on the degree of stability of the numerical method. With so-called 'ill-conditioned' problems small perturbations from any of those sources produce large changes in the answers, so that 'exact' or very accurate solutions can be difficult to obtain even if they are meaningful.

But the data may not be known exactly. Some of them may be measured by physical apparatus or involve physical constants known with certainty only to a few figures. In that case the answers are meaningful only to a few figures and perhaps even to no figures, and whether the precision of the answers is larger or smaller than that of the data again depends on the degree of ill-conditioning of the problem. How much of this sort of information should the routines provide?

A third decision is the amount of explanation to be included with the programs. It is clearly desirable to include elements of 'why' something is done as well as 'what' is done, but the desirable amount of such information is rather delicate. If there is too much the expert may be too bored to read all of it and may therefore miss something important, while the amateur may find the discussion rather involved, appearing to him rather like an introductory text in numerical analysis, and again may skip most of it

[NP3086/18] Foreword.1

but now on the grounds of indigestibility. Too little, on the other hand, may detract from the value of the routines by giving the amateur too little guidance in the choice which he also always has to make.

This NAG Fortran Library deals with these problems about as well as could be expected in the present state of knowledge of numerical analysts, software and library compilers, and the majority of the users. With regard to the number of routines to be provided it usually gives just the best available within each sub-group, and selects the particular sub-groups which at present seem to be the most needed and for which good techniques are available.

With regard to sensitivity and accuracy it achieves rather less, but this is a problem so far not well treated even by numerical analysts. Information is provided in a fairly economical way for the solution of linear equations, in which the so-called 'iterative refinement' involving a little double precision arithmetic gives valuable information on the sensitivity and a more accurate answer when this is meaningful. For many other problems the user can only obtain this sort of information by his own efforts, for example by deliberately introducing small perturbations and observing their effects on his solutions. This whole area is one in which one hopes for continual improvements in the library routines when better ways to implement them are discovered.

With regard to annotation, the routines do include a fair but not prohibitive amount of 'why' as well as 'what', and there is no doubt that a mastery of this material will enable the user not only to increase the value he gets from this library but also to improve his performance in the inevitable writing of his own routines for problems not directly treated here.

Two other topics are worth mentioning. First, the routines which appear in this library are the result of years of detailed study by numerical analysts and software experts, and it is dangerous in varying degrees to tamper with them and to try to modify them for 'local needs'. In the solution of linear equations, for example, one could without great peril omit the iterative refinement and still get useful results. One loses here just the extra but often extremely valuable knowledge about the 'condition' of the problem which iterative refinement gives comparatively economically. A far greater danger would arise from an attempt to 'speed-up' the routine by, for example, omitting the row interchanges. which are essentially unnecessary with exact arithmetic. Computer arithmetic is not exact, and this fact could cause complete rubbish in the solutions obtained by neglecting interchanges, which in this context ruins the stability of the numerical method.

Second, the library cannot help the user in the proper formulation of his problem. Given, for example, the problem of computing

$$I_r = e^{-1} \int_0^1 e^x x^r dx$$
, for $r = 0, 1, 2, \dots, 20$

the library will have routines for evaluating this integral by numerical quadrature, to whatever accuracy is required, for each value of r. But nothing in the library can tell the user that a very much faster method would use the recurrence relation (in the 'backwards direction')

$$I_{r-1} = \frac{1-I_r}{r}, \quad \text{ with } \ I_N = 0, \label{eq:Inverse_state}$$

where N (> 20) depends on the accuracy required but is determinable by simple and very rapid numerical experiment (and even, in this simple case, by elementary analysis). Nor could the library tell him that the perhaps more obvious use of the forward recurrence

$$I_r = 1 - r I_{r-1}, \quad \text{ with } I_0 = 1 - e^{-1},$$

would fail to produce accurate results beyond the first few values of r with only single-precision arithmetic: that this formulation, in fact, gives a very ill-conditioned problem.

In summary, then, this NAG Fortran Library represents a timely and very important aid to the computer user in scientific computation. Here, and in future extensions, it provides the best available routines for a wide variety of numerical subject areas, backed by a non-prohibitive amount of sensible explanation of both what is being done and why it is being done. But the user must realise that the library can provide no more than it claims in its annotation, that it cannot except where explicitly stated determine for him the degree of ill-conditioning of his problem, nor help him in general to cast his problem into a better form. For such information he should study some numerical analysis or ask the advice of a colleague reasonably experienced in this field. It may happen that in future editions of the library it will be possible

to give more assistance of this kind to the general user, and it is our hope, in welcoming warmly this edition, that future productions will have some useful expansions of this kind, in addition to the obvious need for new routines in the subject areas which in this first venture are not touched upon or treated only sparsely. The research involved will be both exciting and fruitful!

Professor L Fox (Oxford University)

Dr J H Wilkinson, FRS (National Physical Laboratory, England)

[NP3086/18] Foreword.3 (last)

Introduction

Essential Introduction

Mark 19 News

Thread Safety

Library Contents

Withdrawn Routines

Advice on Replacement Calls for Withdrawn/Superseded Routines

Acknowledgements

Introduction Essential Introduction

Essential Introduction to the NAG Fortran Library

This document is essential reading for any prospective user of the Library.

Contents

l	The Library and its Documentation	2
,	1.1 Structure of the Library	2
	1.2 Structure of the Documentation	2
	1.3 Alternative Forms of Documentation	2
	1.4 Marks of the Library	3
	1.5 Implementations of the Library	3
	1.6 Precision of the Library	3
	1.7 Library Identification	3
	1.8 Fortran Language Standards	4
2	Using the Library	4
	2.1 General Advice	4
	2.2 Programming Advice	4
	2.3 Error Handling and the Parameter IFAIL	5
	2.4 Input/output in the Library	5
	2.5 Auxiliary Routines	6
	2.6 Thread Safety	6
	2.7 Calling the Library from Other Languages	6
3	Using the Documentation	6
	3.1 Using the Manual	6
	3.2 Structure of Routine Documents	7
	3.3 Specification of Parameters	7
	3.3.1 Classification of parameters	7
	3.3.2 Constraints and suggested values	8
	3.3.3 Array parameters	8
	3.4 Implementation-dependent Information	9
	3.5 Example Programs and Results	10
	3.6 Summary for New Users	10
	3.7 Pre-Mark 14 Routine Documents	11
1	Support from NAG	11
•	Background to NAG	12
i	References	12

[NP3390/19] ESSINT.1

Essential Introduction Introduction

1 The Library and its Documentation

1.1 Structure of the Library

The NAG Fortran Library is a comprehensive collection of Fortran routines for the solution of numerical and statistical problems. The word 'routine' is used to denote 'subroutine' or 'function'.

The Library is divided into chapters, each devoted to a branch of numerical analysis or statistics. Each chapter has a three-character name and a title, e.g.,

D01 - Quadrature

Exceptionally, two chapters (Chapter H and Chapter S) have one-character names. (The chapters and their names are based on the ACM modified SHARE classification index [1].)

All documented routines in the Library have six-character names, beginning with the characters of the chapter name, e.g.,

D01AJF

Note that the second and third characters are digits, not letters; e.g., 0 is the digit zero, not the letter O. The last letter of each routine name always appears as 'F' in the documentation, but may be changed to 'E' in some single precision implementations (see Section 1.6).

Chapter F06 (Linear Algebra Support Routines) contains all the Basic Linear Algebra Subprograms, BLAS, with NAG-style names as well as with the actual BLAS names, e.g., F06AAF (SROTG/DROTG). The names in brackets are the equivalent single and double precision BLAS names respectively. Chapter F07 (Linear Equations (LAPACK)) and Chapter F08 (Least-squares and Eigenvalue Problems (LAPACK)) contain routines derived from the LAPACK project. Like the BLAS, these routines have NAG-style names as well as LAPACK names, e.g., F07ADF (SGETRF/DGETRF). Details regarding these alternate names can be found in the relevant Chapter Introductions.

In order to take full advantage of machine-specific versions of BLAS and LAPACK routines provided by some computer hardware vendors, you are encouraged to use the BLAS and LAPACK names (e.g., SROTG/DROTG and SGETRF/DGETRF) rather than the corresponding NAG-style names (e.g., F06AAF and F07ADF) wherever possible in your programs.

1.2 Structure of the Documentation

The NAG Fortran Library Manual is the principal printed form of documentation for the NAG Fortran Library. It has the same chapter structure as the Library: each chapter of routines in the Library has a corresponding chapter (of the same name) in the Manual. The chapters occur in alphanumeric order. General introductory documents and indexes are placed in Volume 1 of the Manual.

Each chapter consists of the following documents:

Chapter Contents, e.g., Contents - D01;

Chapter Introduction, e.g., Introduction - D01;

Routine Documents, one for each documented routine in the chapter.

A routine document has the same name as the routine which it describes. Within each chapter, routine documents occur in alphanumeric order. Exceptionally, some chapters (Chapter F06, Chapter X01, Chapter X02) do not have individual routine documents; instead, all the routines are described together in the Chapter Introduction. Another exception is Chapter A00, which contains neither a Chapter Introduction nor any routine documents. It does however contain a user-callable support routine that identifies which version of the Library is available at your site (see Section 1.7).

In addition to the full printed Manual, NAG produces a printed Introductory Guide, which contains all the introductory material from the Manual, together with all the Chapter Contents and Chapter Introductions.

1.3 Alternative Forms of Documentation

NAG also provides machine-based documentation. The ability to display mathematics and symbols has now reached a stage whereby it is possible to produce a satisfactory full HTML version of the Library

ESSINT.2 [NP3390/19]

Introduction Essential Introduction

documentation that will provide ready access to users via standard Web browsers. This HTML version will replace the current hypertext version (TextWare), but will retain many of the features of that product. The aim is to have an HTML version of Mark 19 of the Fortran Library documentation available for distribution with the Library software. It will also be accessible via the NAG Web site. Future releases may take advantage of technology that is currently being developed (e.g., MathML).

1.4 Marks of the Library

Periodically a new Mark of the NAG Fortran Library is released: new routines are added, corrections or improvements are made to existing routines; occasionally routines are withdrawn if they have been superseded by improved routines.

At each Mark, the documentation of the Library is updated. You must make sure that your documentation has been updated to the same Mark as the Library software that you are using.

Marks are numbered, e.g., 16, 17, 18. The current Mark is 19.

The Library software may be updated between Marks to an intermediate maintenance level, in order to incorporate corrections. Maintenance levels are indicated by a letter following the Mark number, e.g., 19A, 19B, and so on (Mark 19 documentation supports all these maintenance levels).

1.5 Implementations of the Library

The NAG Fortran Library is available on many different computer systems. For each distinct system, an **implementation** of the Library is prepared by NAG, e.g., the Cray C-90 Unicos implementation. The implementation is distributed to sites as a tested compiled library.

An implementation is usually specific to a range of machines (e.g., the DEC VAX range); it may also be specific to a particular operating system, Fortran compiler, or compiler option (e.g., scalar or vector mode).

Essentially the same facilities are provided in all implementations of the Library, but, because of differences in arithmetic behaviour and in the compilation system, routines cannot be expected to give identical results on different systems, especially for sensitive numerical problems.

The documentation supports all implementations of the Library, with the help of a few simple conventions, and a small amount of implementation-dependent information, which is published in a separate Users' Note for each implementation (see Section 3.4).

1.6 Precision of the Library

The NAG Fortran Library is developed in both single precision and double precision versions. REAL variables and arrays in the single precision version are replaced by DOUBLE PRECISION variables and arrays in the double precision version.

On most systems only one precision of the Library is available; the precision chosen is that which is considered most suitable in general for numerical computation (double precision on most systems).

On some systems both precisions are provided: in this case, the double precision routines have names ending in 'F' (as in the documentation), and the single precision routines have names ending in 'E'. Thus in DEC VAX/VMS implementations:

D01AJF is a routine in the double precision implementation;

D01AJE is the corresponding routine in the single precision implementation.

Whatever the precision, INTEGER variables (and elements of arrays) always occupy one numeric storage unit, that is the Library is not implemented using non-standard [7] integer storage, e.g., INTEGER*2.

1.7 Library Identification

You must know which implementation, which precision and which Mark of the Library you are using or intend to use. To find out which implementation, precision and Mark of the Library is available at your site, you can run a program which calls the NAG Library routine A00AAF (or A00AAE in most single precision implementations). This routine has no parameters; it simply outputs text to the NAG Library advisory message unit (see Section 2.4). An example of the output is:

[NP3390/19] ESSINT.3

Essential Introduction Introduction

```
*** Start of NAG Library implementation details ***
Implementation title: Sun(SPARC) Solaris
```

Precision: double
Product Code: FLSOL19D
Mark: 19

*** End of NAG Library implementation details ***

(The product code can be ignored, except possibly when communicating with NAG; see Section 4.)

1.8 Fortran Language Standards

All routines in the Library conform to the ISO Fortran 90 Standard [8], except for the use of a double precision complex data type (usually COMPLEX*16) in some routines in Fortran 77 compiled double precision implementations of the Library – there is no provision for this data type in the old ANSI Standard Fortran 77 [7].

Many of the routines in the Library were originally written to conform to the earlier Fortran 66 standard [6], and their calling sequences may contain a few parameters which are not strictly necessary in Fortran 77.

2 Using the Library

2.1 General Advice

A NAG Fortran Library routine cannot be guaranteed to return meaningful results irrespective of the data supplied to it. Care and thought must be exercised in:

- (a) formulating the problem;
- (b) programming the use of library routines;
- (c) assessing the significance of the results.

The Foreword to the Manual provides some further discussion of points (a) and (c); the remainder of Section 2 is concerned with (b).

2.2 Programming Advice

The NAG Fortran Library and its documentation are designed on the assumption that you know how to write a calling program in Fortran.

When programming a call to a routine, read the routine document carefully, especially the description of the **Parameters**. This states clearly which parameters must have values assigned to them on entry to the routine, and which return useful values on exit. See Section 3.3 for further guidance.

The most common types of programming error in using the Library are:

- incorrect parameters in a call to a Library routine;
- calling a double precision implementation of the Library from a single precision program, or vice versa.

Therefore if a call to a Library routine results in an unexpected error message from the system (or possibly from within the Library), check the following:

Has the NAG routine been called with the correct number of parameters?

Do the parameters all have the correct type?

Have all array parameters been dimensioned correctly?

Is your program in the same precision as the NAG Library routines to which your program is being linked?

Have NAG routine names been modified - if necessary - as described in Section 1.6 and Section 2.5?

Avoid the use of NAG-type names for your own program units or COMMON blocks: in general, do not use names which contain a three-character NAG chapter name embedded in them; they may clash with the names of an auxiliary routine or COMMON block used by the NAG Library.

ESSINT.4 [NP3390/19]

Introduction Essential Introduction

2.3 Error Handling and the Parameter IFAIL

NAG Fortran Library routines may detect various kinds of error, failure or warning conditions. Such conditions are handled in a systematic way by the Library. They fall roughly into three classes:

- (i) an invalid value of a parameter on entry to a routine;
- (ii) a numerical failure during computation (e.g., approximate singularity of a matrix, failure of an iteration to converge);
- (iii) a warning that although the computation has been completed, the results cannot be guaranteed to be completely reliable.

All three classes are handled in the same way by the Library, and are all referred to here simply as 'errors'.

The error-handling mechanism uses the parameter IFAIL, which occurs as the last parameter in the calling sequence of most NAG Library routines. IFAIL serves two purposes:

- (i) it allows users to specify what action a Library routine should take if it detects an error;
- (ii) it reports the outcome of a call to a Library routine, either 'success' (IFAIL = 0) or 'failure' (IFAIL ≠ 0, with different values indicating different reasons for the failure, as explained in Section 6 of the routine document).

For the first purpose IFAIL must be assigned a value before calling the routine; since IFAIL is reset by the routine, it must be passed as a variable, not as an integer constant. Allowed values on entry are:

IFAIL = 0: an error message is output, and execution is terminated ('hard failure');

IFAIL = +1: execution continues without any error message;

IFAIL = -1: an error message is output, and execution continues.

The settings IFAIL = ± 1 are referred to as 'soft failure'.

The safest choice is to set IFAIL to 0, but this is not always convenient: some routines return useful results even though a failure (in some cases merely a warning) is indicated. However, if IFAIL is set to ± 1 on entry, it is essential for the program to test its value on exit from the routine, and to take appropriate action.

The specification of IFAIL in Section 5 of a routine document suggests a suitable setting of IFAIL for that routine.

For a full description of the error-handling mechanism, see Chapter P01.

Routines in Chapter F07 and Chapter F08 do **not** use the usual error handling mechanism; in order to preserve complete compatibility with LAPACK software, they have a diagnostic output parameter INFO which need not be set before entry. See the F07 Chapter Introduction or the F08 Chapter Introduction for further details.

Some routines in Chapter F06 output an error message if an illegal input parameter is detected, then terminate program execution immediately. See the F06 Chapter Introduction for further details.

2.4 Input/output in the Library

Most NAG Library routines perform no output to an external file, except possibly to output an error message. All error messages are written to a logical error message unit. This unit number (which is set by default to 6 in most implementations) can be changed by calling the Library routine X04AAF.

Some NAG Library routines may optionally output their final results, or intermediate results to monitor the course of computation. In general, output other than error messages is written to a logical advisory message unit. This unit number (which is also set by default to 6 in most implementations) can be changed by calling the Library routine X04ABF. Although it is logically distinct from the error message unit, in practice the two unit numbers may be the same. A few routines in Chapter E04 allow this unit number to be specified directly as an option.

All output from the Library is formatted.

There are only a few Library routines which perform input from an external file. These examples occur in Chapter E04 and Chapter H. The unit number of the external file is a parameter to the routine, and all input is formatted.

You must ensure that the relevant Fortran unit numbers are associated with the desired external files, either by an OPEN statement in your calling program, or by operating system commands.

[NP3390/19] ESSINT.5

Essential Introduction Introduction

2.5 Auxiliary Routines

In addition to those Library routines which are documented and are intended to be called by users, the Library also contains many auxiliary routines. Details of all the auxiliary routines which are called directly or indirectly by any documented NAG Library routine are supplied to sites in machine-readable form with the Library software.

In general, you need not be concerned with them at all, although you may be made aware of their existence if, for example, you examine a memory map of an executable program which calls NAG routines. The only exception is that when calling some NAG Library routines you may be required or allowed to supply the name of an auxiliary routine from the NAG Library as an external procedure parameter. The routine documents give the necessary details. In such cases, you only need to supply the name of the routine; you never need to know details of its parameter list.

NAG auxiliary routines have names which are similar to the name of the documented routine(s) to which they are related, but with last letter 'Z', 'Y', and so on, e.g.,

D01BAZ is an auxiliary routine called by D01BAF.

In a single precision implementation in which the names of documented routines end in 'E', the names of auxiliary routines have their first three and last three characters interchanged, e.g.,

BAZD01 is an auxiliary routine (corresponding to D01BAZ) called by D01BAE.

2.6 Thread Safety

Some implementations of the Library facilitate the use of threads; that is, you can call routines from the Library from within a multi-threaded application. You should note however that Mark 19 is not fully thread safe. See the document 'Thread Safety' for more detailed guidance on using the Library in a multi-threaded context. You may also need to refer to the Users' Note for details of whether your implementation of the Library has been compiled in a manner that facilitates the use of threads.

2.7 Calling the Library from Other Languages

In general the NAG Fortran Library can be called from other computer languages (such as C and Visual Basic) provided that appropriate mappings exist between their data types.

As part of its Library service, NAG provides a C Header Files service which comprises a set of header files indicating the match between C and Fortran data types for various compilers, documentation and examples. The documentation and examples are available from the NAG Web site.

The Dynamic Link Library (DLL) version can be called in a straightforward manner from Visual Basic. Guidance on this is provided as part of the NAG Fortran Library DLLs. Further details can be found on the NAG Web site.

3 Using the Documentation

3.1 Using the Manual

The Manual is designed to serve the following functions:

- to give background information about different areas of numerical and statistical computation;
- to advise on the choice of the most suitable NAG Library routine or routines to solve a particular problem:
- to give all the information needed to call a NAG Library routine correctly from a Fortran program, and to assess the results.

At the beginning of the Manual are some general introductory documents. The following may help you to find the chapter, and possibly the routine, which you need to solve your problem:

Library Contents - a structured list of routines in the Library, by chapter;

KWIC Index - a keyword index to chapters and routines;

GAMS Index - a list of NAG routines classified according to the GAMS scheme.

ESSINT.6 [NP3390/19]

Introduction Essential Introduction

Having found a likely chapter or routine, you should read the corresponding Chapter Introduction, which gives background information about that area of numerical computation, and recommendations on the choice of a routine, including indexes, tables or decision trees.

When you have chosen a routine, you must consult the **routine document**. Each routine document is essentially self-contained (it may contain references to related documents). It includes a description of the method, detailed specifications of each parameter, explanations of each error exit, remarks on accuracy, and (in most cases) an example program to illustrate the use of the routine.

3.2 Structure of Routine Documents

Note that at Mark 17 a new typesetting scheme was used to generate documentation. If you have a Manual which contains pre-Mark 17 routine documents, you will find that it contains older documents which differ in appearance, although the structure is the same.

Note also that at Mark 14 some changes were made to the style and appearance of routine documents. If you have a Manual which contains pre-Mark 14 routine documents, you will find that it contains older documents which differ in style, although they contain essentially the same information. Section 3.2, Section 3.3 and Section 3.5 of this Essential Introduction describe the **new-style** routine documents. Section 3.7 gives some details about the old-style documents.

All routine documents have the same structure, consisting of nine numbered sections:

- 1. Purpose
- 2. Specification
- 3. Description
- 4. References
- 5. Parameters (see Section 3.3 below)
- 6. Error Indicators and Warnings
- 7. Accuracy
- 8. Further Comments
- 9. Example (see Section 3.5 below)

In a few documents there are a further three sections:

- 10. Algorithmic Details
- 11. Optional Parameters
- 12. Description of Monitoring Information

3.3 Specification of Parameters

Section 5 of each routine document contains the specification of the parameters, in the order of their appearance in the parameter list.

3.3.1 Classification of parameters

Parameters are classified as follows.

Input: you must assign values to these parameters on or before entry to the routine, and these values are unchanged on exit from the routine.

Output: you need not assign values to these parameters on or before entry to the routine; the routine may assign values to them.

Input/Output: you must assign values to these parameters on or before entry to the routine, and the routine may then change these values.

Workspace: array parameters which are used as workspace by the routine. You must supply arrays of the correct type and dimension. In general, you need not be concerned with their contents.

External Procedure: a subroutine or function which must be supplied (e.g., to evaluate an integrand or to print intermediate output). Usually it must be supplied as part of your calling program, in which case its specification includes full details of its parameter list and specifications of its parameters (all enclosed in a box). Its parameters are classified in the same way as those of the Library routine, but because you must write the procedure rather than call it, the significance of the classification is different.

[NP3390/19] ESSINT.7

Essential Introduction Introduction

Input: values may be supplied on entry, which your procedure must not change.

Output: you may or must assign values to these parameters before exit from your procedure.

Input/Output: values may be supplied on entry, and you may or must assign values to them before exit from your procedure.

Occasionally, as mentioned in Section 2.5, the procedure can be supplied from the NAG Library, and then you only need to know its name.

User Workspace: array parameters which are passed by the Library routine to an external procedure parameter. They are not used by the routine, but you may use them to pass information between your calling program and the external procedure.

Dummy: a simple variable which is not used by the routine. A variable or constant of the correct type must be supplied, but its value need not be set. (A dummy parameter is usually a parameter which was required by an earlier version of the routine and is retained in the parameter list for compatibility.)

3.3.2 Constraints and suggested values

The word 'Constraint:' or 'Constraints:' in the specification of an Input parameter introduces a statement of the range of valid values for that parameter, e.g.,

```
Constraint: N > 0.
```

If the routine is called with an invalid value for the parameter (e.g., N = 0), the routine will usually take an error exit, returning a non-zero value of IFAIL (see Section 2.3).

In newer routine documents, constraints on parameters of type CHARACTER only list upper case alphabetic characters, e.g.,

```
Constraint: STRING = 'A' or 'B'.
```

In practice, all routines with CHARACTER parameters will permit the use of lower case characters.

The phrase 'Suggested Value:' introduces a suggestion for a reasonable initial setting for an Input parameter (e.g., accuracy or maximum number of iterations) in case you are unsure what value to use; you should be prepared to use a different setting if the suggested value turns out to be unsuitable for your problem.

3.3.3 Array parameters

Most array parameters have dimensions which depend on the size of the problem. In Fortran terminology they have 'adjustable dimensions': the dimensions occurring in their declarations are integer variables which are also parameters of the Library routine.

For example, a Library routine might have the specification:

```
SUBROUTINE <name> (M, N, A, B, LDB)
INTEGER M, N, A(N), B(LDB,N), LDB
```

For a one-dimensional array parameter, such as A in this example, the specification would begin:

```
A(N) - INTEGER array
```

You must ensure that the dimension of the array, as declared in your calling (sub)program, is at least as large as the value you supply for N. It may be larger, but the routine uses only the first N elements.

For a two-dimensional array parameter, such as B in the example, the specification might be:

```
B(LDB,N) — INTEGER array
```

On entry: the m by n matrix B.

and the parameter LDB might be described as follows:

LDB — INTEGER Input

On entry: the first dimension of the array B as declared in the (sub)program from which <name> is called.

Constraint: LDB \geq M.

ESSINT.8 [NP3390/19]

Introduction Essential Introduction

You must supply the first dimension of the array B, as declared in your calling (sub)program, through the parameter LDB, even though the number of rows actually used by the routine is determined by the parameter M. You must ensure that the first dimension of the array is at least as large as the value you supply for M. The extra parameter LDB is needed because Fortran does not allow information about the dimensions of array parameters to be passed automatically to a routine.

You must also ensure that the second dimension of the array, as declared in your calling (sub)program, is at least as large as the value you supply for N. It may be larger, but the routine uses only the first N columns.

A program to call the hypothetical routine used as an example in this section might include the statements:

```
INTEGER AA(100), BB(100,50)
LDB = 100
.
.
.
M = 80
N = 20
CALL <name>(M,N,AA,BB,LDB)
```

Fortran requires that the dimensions which occur in array declarations must be greater than zero. Many NAG routines are designed so that they can be called with a parameter like N in the above example set to 0 (in which case they would usually exit immediately without doing anything). If so, the declarations in the Library routine would use the 'assumed size' array dimension, and would be given as:

```
INTEGER M, N, A(*), B(LDB,*), LDB
```

However, the original declaration of an array in your calling program must always have constant dimensions, greater than or equal to 1.

Consult an expert or a textbook on Fortran if you have difficulty in calling NAG routines with array parameters.

3.4 Implementation-dependent Information

In order to support all implementations of the Library, the Manual has adopted a convention of using **bold italics** to distinguish terms which have different interpretations in different implementations.

The most important bold italicised terms are the following; their interpretation depends on whether the implementation is in single precision or double precision.

real	means	REAL	or	DOUBLE PRECISION
complex	means	COMPLEX	or	COMPLEX*16 (or equivalent)
basic precision	means	single precision	or	double precision
additional precision	means	double precision	or	quadruple precision

Another important bold italicised term is **machine precision**, which denotes the relative precision to which **real** floating-point numbers are stored in the computer, e.g., in an implementation with approximately 16 decimal digits of precision, **machine precision** has a value of approximately 10^{-16} .

The precise value of *machine precision* is given by the function X02AJF. Other functions in Chapter X02 return the values of other implementation-dependent constants, such as the overflow threshold, or the largest representable integer. Refer to the X02 Chapter Introduction for more details.

The bold italicised term **blocksize** is used only in Chapter F07 and Chapter F08. It denotes the block size used by block algorithms in these chapters. You only need to be aware of its value when it affects the amount of workspace to be supplied – see the parameters WORK and LWORK of the relevant routine documents and the Chapter Introduction.

For each implementation of the Library, a separate Users' Note is published. This is a short document, revised at each Mark. At most installations it is available in machine-readable form. It gives any necessary additional information which applies specifically to that implementation, in particular:

[NP3390/19] ESSINT.9

Essential Introduction

- the interpretation of bold italicised terms;
- the values returned by X02 routines;
- the default unit numbers for output (see Section 2.4);
- details of name changes for Library routines (see Section 1.6 and Section 2.5).

In Chapter F06, Chapter F07 and Chapter F08 where alternate routine names are available for BLAS and LAPACK derived routines the alternate name appears in **bold italics** – for example, **sgetrf**, which should be interpreted as either SGETRF (in single precision) or DGETRF (in double precision) in the case of F07ADF, which handles real matrices. Similarly, F07ARF for complex matrices uses **cgetrf**, which should be interpreted as either CGETRF (in single precision) or ZGETRF (in double precision).

3.5 Example Programs and Results

The example program in Section 9 of each routine document illustrates a simple call of the routine. The programs are designed so that they can fairly easily be modified, and so serve as the basis for a simple program to solve your problem.

Bold italicised terms are used in the printed text of the example program to denote precision-dependent features in the code. The correct Fortran code must therefore be substituted before the program can be run. In addition to the terms **real** and **complex**, which were explained in Section 3.4, the following terms are used in the example programs:

Intrinsic Functions:	real imag cmplx conjg	means means means	REAL AIMAG CMPLX CONJG	or or or	DBLE DIMAG DCMPLX DCONJG	(see Note below)
Edit Descriptor:	e	means	\mathbf{E}	or	D	(in FORMAT statements)
Exponent Letter:	$oldsymbol{e}$	means	${f E}$	or	D	(in constants)

Note that in some implementations the intrinsic function *real* with a *complex* argument must be interpreted as DREAL rather than DBLE.

The examples in Chapter F07 and Chapter F08 use the precision-dependent LAPACK routine names, as mentioned in Section 3.4.

For each implementation of the Library, NAG distributes the example programs in machine-readable form, with all necessary modifications already applied. Many sites make the programs accessible to you in this form. They may also be obtained directly from the NAG Web site.

Note that the results from running the example programs may not be identical in all implementations, and may not agree exactly with the results which are printed in the Manual and which were obtained from a double precision implementation (with approximately 16 digits of precision).

The Users' Note for your implementation will mention any special changes which need to be made to the example programs, and any significant differences in the results.

3.6 Summary for New Users

If you are unfamiliar with the NAG Library and are thinking of using a routine from it, please follow these instructions:

- (a) read the whole of the Essential Introduction;
- (b) consult the Library Contents to choose an appropriate chapter or routine;
- (c) or search through the KWIC Index, GAMS Index or via an online search facility;
- (d) read the relevant Chapter Introduction;
- (e) choose a routine, and read the routine document. If the routine does not after all meet your needs, return to steps (b) or (c);
- (f) read the Users' Note for your implementation;
- (g) consult local documentation, which should be provided by your local support staff, about access to the NAG Library on your computing system.

ESSINT.10 [NP3390/19]

Introduction Essential Introduction

You should now be in a position to include a call to the routine in a program, and to attempt to compile and run it. You may of course need to refer back to the relevant documentation in the case of difficulties, for advice on assessment of results, and so on.

As you become familiar with the Library, some of steps (a) to (f) can be omitted, but it is always essential to:

- be familiar with the Chapter Introduction;
- read the routine document;
- be aware of the Users' Note for your implementation.

3.7 Pre-Mark 14 Routine Documents

You need only read this section if you have an updated Manual which contains pre-Mark 14 documents.

You will find that older routine documents appear in a somewhat different style, or even several styles if your Manual dates back to Mark 7, say. The following are the most important differences between the earlier styles and the new style introduced at Mark 14:

- before Mark 12, routine documents had 13 sections: the extra sections have either been dropped or merged with the present Section 8 (Further Comments);
- in Section 5, parameters were not classified as Input, Output and so on; the phrase 'Unchanged on exit' was used to indicate an input parameter;
- the example programs were revised at Mark 12 and again at Mark 14, to take advantage of features of Fortran 77: the programs printed in older documents do not correspond exactly with those which are now distributed to sites in machine-readable form or available on the NAG Web site:
- before Mark 12, the printed example programs did not use bold italicised terms; they were written in standard single precision Fortran;
- before Mark 9, the printed example results were generated on an ICL 1906A (with approximately 11 digits of precision), and between Marks 9 and 12 they were generated on an ICL 2900 (with approximately 16 digits of precision);
- before Mark 13, documents referred to 'the appropriate implementation document'; this means the same as 'the Users' Note for your implementation'.

4 Support from NAG

NAG places considerable emphasis on providing high quality user support. In addition to comprehensive documentation we offer a variety of services to support our users.

(a) NAG Response Centres

The Response Centres are available to answer technical queries from sites with an annually licensed product or Support Service.

The Response Centres are open during office hours, but contact is possible by fax, email and telephone (answering machine) at all times. You can find the contact details for your local Response Centre in the Support Documentation supplied with this product.

However, general queries concerning this library should be directed initially to any local advisory service your site may provide.

(b) NAG Web Sites

The NAG web sites provide a valuable resource for product information, technical documentation and demonstrations, as well as articles of more general interest. The sites can be accessed at:

www.nag.co.uk or www.nag.com

(c) Training Courses

NAG organises workshops and training courses at various locations throughout the world. Information about forthcoming courses is posted on the NAG web sites. If you have a particular training requirement please contact us.

As well as offering these services to users, NAG values feedback to ensure that we continue to develop products that meet your needs. We welcome your comments.

[NP3390/19] ESSINT.11

5 Background to NAG

Various aspects of the design and development of the NAG Library, and NAG's technical policies and organisation are given in references [2], [3], [4], and [5].

6 References

- [1] (1960-1976) Collected algorithms from ACM index by subject to algorithms
- [2] Ford B (1982) Transportable numerical software Lecture Notes in Computer Science 142 Springer-Verlag 128-140
- [3] Ford B, Bentley J, Du Croz J J and Hague S J (1979) The NAG Library 'machine' Softw. Pract. Exper. 9(1) 65-72
- [4] Ford B and Pool J C T (1984) The evolving NAG Library service Sources and Development of Mathematical Software (ed W Cowell) Prentice-Hall 375-397
- [5] Hague S J, Nugent S M and Ford B (1982) Computer-based documentation for the NAG Library Lecture Notes in Computer Science 142 Springer-Verlag 91-127
- [6] (1966) USA standard Fortran Publication X3.9 American National Standards Institute
- [7] (1978) American National Standard Fortran Publication X3.9 American National Standards Institute
- [8] ISO Fortran 90 programming language (ISO 1539:1991)

ESSINT.12 (last) [NP3390/19]

Introduction Mark 19 News

Mark 19 News

1 Introduction

At Mark 19 of the Fortran Library new functionality has been introduced in addition to improvements in existing areas. The Library now contains 1155 documented routines, of which 62 are new at this Mark. These extend the areas of fast Fourier transforms (FFTs), optimization, eigenvalue problems (LAPACK), sparse linear algebra, statistics, operations research (OR) and sorting as summarized below.

The most significant additions to the FFT chapter (Chapter C06) are as follows:

- new routines for complex Fourier transforms using complex data type arrays;
- new routines for sine and cosine transforms.

Coverage in the optimization chapter (Chapter E04) has been extended with the addition of a routine to solve sparse nonlinear programming problems.

New routines for solving eigenproblems (Chapter F08) are included for:

- computing all the eigenvalues (and optionally all the eigenvectors) of real symmetric and complex Hermitian matrices;
- reducing real and complex rectangular band matrices to upper bidiagonal form;
- computing a split Cholesky factorization of real symmetric positive-definite and complex Hermitian positive-definite band matrices;
- reducing real symmetric-definite and complex Hermitian-definite banded generalized eigenproblems to standard form.

Coverage in the sparse linear algebra chapter (Chapter F11) has been extended to provide iterative methods and preconditioners for complex symmetric and non-Hermitian linear systems of equations.

Two of the new routines are in the statistics chapters (Chapter G01 to Chapter G13). They include facilities (in the stated chapters) for:

- conditional logistic analysis for case-control studies and survival analysis (G11);
- computing the risk sets in the analysis of survival data (G12).

Coverage in the OR chapter (Chapter H) has been extended to provide solvers for dense and sparse integer quadratic programming problems.

A new routine for sorting a vector of complex numbers into the order specified by a vector of ranks is included in Chapter M01.

2 New Routines

The 62 new user-callable routines included in the NAG Fortran Library at Mark 19 are as follows.

C06PAF	Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex data format for Hermitian sequences
C06PCF	Single one-dimensional complex discrete Fourier transform, complex data format
C06PFF	One-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
C06PJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
C06PKF	Circular convolution or correlation of two complex vectors
C06PPF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences
C06PQF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences and sequences stored as columns
C06PRF	Multiple one-dimensional complex discrete Fourier transforms using complex data format
C06PSF	Multiple one-dimensional complex discrete Fourier transforms using complex data format and sequences stored as columns

[NP3390/19] MK19NEWS.1

C06PUF	Two-dimensional complex discrete Fourier transform, complex data format
C06PXF	Three-dimensional complex discrete Fourier transform, complex data format
C06RAF	Discrete sine transform (easy-to-use)
C06RBF	Discrete cosine transform (easy-to-use)
C06RCF	Discrete quarter-wave sine transform (easy-to-use)
C06RDF	Discrete quarter-wave cosine transform (easy-to-use)
E04UGF	NLP problem (sparse)
E04UHF	Read optional parameter values for E04UGF from external file
E04UJF	Supply optional parameter values to E04UGF
F08FCF	(SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real
	symmetric matrix, using divide and conquer
F08FQF	(CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex
	Hermitian matrix, using divide and conquer
F08GCF	(SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvectors of real
100001	symmetric matrix, packed storage, using divide and conquer
F08GQF	(CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvectors of complex
10000	Hermitian matrix, packed storage, using divide and conquer
F08HCF	(SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real
1 001101	symmetric band matrix, using divide and conquer
F08HQF	(CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex
roomer	Hermitian band matrix, using divide and conquer
F08JCF	(SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvectors of real
ruojer	symmetric tridiagonal matrix, using divide and conquer
EOOL EE	(SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper
F08LEF	, , ,
E001 CE	bidiagonal form (CCRRRD / CCRRRD) Reduction of complex restangular hand matrix to upper
F08LSF	(CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper
DOOLIDE	bidiagonal form
F08UEF	(SSBGST/DSBGST) Reduction of real symmetric-definite banded generalized
	eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same
DOGUDD	bandwidth as A
F08UFF	(SPBSTF/DPBSTF) Computes a split Cholesky factorization of real symmetric
noottan	positive-definite band matrix A
F08USF	(CHBGST/ZHBGST) Reduction of complex Hermitian-definite banded generalized
	eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same
	bandwidth as A
F08UTF	(CPBSTF/ZPBSTF) Computes a split Cholesky factorization of complex Hermitian
	positive-definite band matrix A
F11BDF	Real sparse nonsymmetric linear systems, set-up for F11BEF
F11BEF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-
	CGSTAB or TFQMR method
F11BFF	Real sparse nonsymmetric linear systems, diagnostic for F11BEF
F11BRF	Complex sparse non-Hermitian linear systems, set-up for F11BSF
F11BSF	Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-
	CGSTAB or TFQMR method
F11BTF	Complex sparse non-Hermitian linear systems, diagnostic for F11BSF
F11DNF	Complex sparse non-Hermitian linear systems, incomplete LU factorization
F11DPF	Solution of complex linear system involving incomplete LU preconditioning matrix
	generated by F11DNF
F11DQF	Solution of complex sparse non-Hermitian linear system, RGMRES, CGS Bi-
	CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box)
F11DRF	Solution of linear system involving preconditioning matrix generated by applying
	SSOR to complex sparse non-Hermitian matrix
F11DSF	Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-
	CGSTAB or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
F11JNF	Complex sparse Hermitian matrix, incomplete Cholesky factorization
F11JPF	Solution of complex linear system involving incomplete Cholesky preconditioning
	matrix generated by F11JNF
F11JQF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos
•	method, preconditioner computed by F11JNF (Black Box)
	,

MK19NEWS.2 [NP3390/19]

Introduction Mark 19 News

F11JRF	Solution of linear system involving preconditioning matrix generated by applying
	SSOR to complex sparse Hermitian matrix
F11JSF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos
	method, Jacobi or SSOR preconditioner (Black Box)
F11XNF	Complex sparse non-Hermitian matrix vector multiply
F11XSF	Complex sparse Hermitian matrix vector multiply
F11ZNF	Complex sparse non-Hermitian matrix reorder routine
F11ZPF	Complex sparse Hermitian matrix reorder routine
G11CAF	Returns parameter estimates for the conditional analysis of stratified data
$^{\circ}$ G12ZAF	Creates the risk sets associated with the Cox proportional hazards model for fixed
	covariates
H02CBF	Integer QP problem (dense)
H02CCF	Read optional parameter values for H02CBF from external file
H02CDF	Supply optional parameter values to H02CBF
H02CEF	Integer LP or QP problem (sparse)
H02CFF	Read optional parameter values for H02CEF from external file
H02CGF	Supply optional parameter values to H02CEF
M01EDF	Rearrange a vector according to given ranks, complex numbers
X04ACF	Open unit number for reading, writing or appending, and associate unit with named
110 11101	file
X04ADF	Close file associated with given unit number

3 Withdrawn Routines

The following routines have been withdrawn from the NAG Fortran Library at Mark 19. Warning of their withdrawal was included in the Mark 18 Library Manual, together with advice on which routines to use instead. See the document 'Advice on Replacement Calls for Superseded/Withdrawn Routines' for more detailed guidance.

Withdrawn Routine	Recommended Replacement
E04FDF	E04FYF
E04GCF	E04GYF
E04GEF	E04GZF
E04HFF	E04HYF
E04JAF	E04JYF
E04KAF	E04KYF
E04KCF	E04KZF
E04LAF	E04LYF
E04UPF	E04UNF
F01MAF	F11JAF
F02BBF	F02FCF
F02BCF	F02ECF
F02BDF	F02GCF
F04MAF	F11JCF
F04MBF	F11GAF, F11GBF and F11GCF (or F11JCF or F11JEF)

4 Routines Scheduled for Withdrawal

The routines listed below are scheduled for withdrawal from the NAG Fortran Library, because improved routines have now been included in the Library. Users are advised to stop using routines which are scheduled for withdrawal immediately and to use recommended replacement routines instead. See the document 'Advice on Replacement Calls for Superseded/Withdrawn Routines' for more detailed guidance, including advice on how to change a call to the old routine into a call to its recommended replacement.

The following routines will be withdrawn at Mark 20.

Routine Scheduled for Withdrawal	Recommended Replacement
E01SEF	E01SGF
E01SFF	E01SHF

Mark 19 News

The following routines have been superseded, but will not be withdrawn from the Library until Mark 21 at the earliest.

Superseded routine	Recommended Replacement	
F11BAF	F11BDF	
F11BBF	F11BEF	
F11BCF	F11BFF	

MK19NEWS.4 (last) [NP3390/19]

Introduction Thread Safety

Thread Safety

International standards are now making it practicable for developers to write portable multi-threaded applications. Consequently there is an increasing demand for Library developers to produce software that is thread safe.

In a Fortran 77 context the constructs that prohibit thread safety are, potentially, DATA, SAVE, COMMON and EQUIVALENCE. This is because such constructs define data that will be shared by different threads, perhaps leading to unwanted interactions between them; for example, the possibility that one thread may be modifying the contents of a COMMON block at the same time as another thread is reading it. You are therefore advised to avoid the use of such constructs wherever possible within multi-threaded applications.

At Mark 19 of the NAG Library the use of unsafe constructs has been eliminated from the majority of routines in the Library, making them thread safe. However, there are some routines where complete removal of these constructs would seriously affect their interface design and usability. In such cases it makes more sense to keep the routines unchanged and give clear warnings in the documentation that care should be taken when calling such routines in a multi-threaded context. It should be noted that it is safe to call any NAG routine in one thread (only) of a multi-threaded application.

Some Library routines require you to supply a routine and to pass the name of the routine as an argument in the call to the Library routine. It is often the case that you need to supply your routine with more information than can be given via the interface argument list. In such circumstances it is usual to define a COMMON block containing the required data in the supplied routine (and also in the calling program). It is safe to do this only if no data referenced in the defined COMMON block is updated within the supplied routine (thus avoiding the possibility of simultaneous modification by different threads). Where separate calls are made to a Library routine by different threads and these calls require different data sets to be passed through COMMON blocks to user-supplied routines, these routines and the COMMON blocks defined within them should have different names.

You are also advised to check whether the Library routines you intend to call have equivalent reverse communication interfaces, which are designed specifically for problems where user-supplied routine interfaces are not flexible enough for a given problem; their use should eliminate the need to provide data through COMMON blocks.

The Library contains routines for setting the current error and advisory message unit numbers (X04AAF and X04ABF). These routines use the SAVE statement to retain the values of the current unit numbers between calls. It is therefore not advisable for different threads of a multi-threaded program to set the message unit numbers to different values. A consequence of this is that error or advisory messages output simultaneously may become garbled, and in any event there is no indication of which thread produces which message. You are therefore advised always to select the 'soft failure' mechanism without any error message (IFAIL = +1, see Section 2.3 of Essential Intorducation) on entry to each NAG routine called from a multi-threaded application; it is then essential that the value of IFAIL is tested on return to the application.

A related problem is that of multiple threads writing to or reading from files. You are advised to make different threads use different unit numbers for opening files and to give these files different names (perhaps by appending an index number to the file basename). The only alternative to this is for you to protect each write to a file or unit number; for example, by putting each WRITE statement in a critical region.

You are also advised to refer to the Users' Note for details of whether the Library has been compiled in a manner that facilitates the use of multiple threads. Please note however that at Mark 19 the routines listed in the following table are not thread safe in any implementations.

C02AFF	C02AGF	C02AHF	C02AJF	C05NDF	C05PDF
D01AHF	D01EAF	D01FDF	D01GBF	D01GCF	D01GDF
D01JAF	D02BJF	D02CJF	D02EJF	D02GAF	D02GBF
D02HAF	D02HBF	D02JAF	D02JBF	D02KAF	D02KDF
D02KEF	D02LAF	D02LXF	D02LYF	D02LZF	D02MVF
D02MZF	D02NBF	D02NCF	D02NDF	D02NGF	D02NHF
D02MZF	D02NBF	D02NCF	D02NDF	D02NGF	D02NTF
D02NJF	D02NMF	D02NNF	D02NRF	D02NSF	

[NP3390/19] SAFETY.1

Thread Safety

Introduction

D02NUF	D02NVF	D02NWF	D02NXF	D02NYF	D02NZF
D02PCF	D02PDF	D02PVF	D02PWF	D02PXF	D02PYF
D02PZF	D02QFF	D02QGF	D02QXF	D02QYF	D02QZF
D02RAF	D02SAF	D02XJF	D02XKF	D02ZAF	D03PCF
D03PDF	D03PEF	D03PFF	D03PHF	D03PJF	D03PKF
D03PLF	D03PPF	D03PRF	D03PSF	D03PUF	D03PVF
D03PWF	D03PXF	D03PZF	D03RAF	D03RBF	D05BDF
D05BEF	E02GBF	E04DGF	E04DJF	E04DKF	E04MFF
E04MGF	E04MHF	E04MZF	E04NCF	E04NDF	E04NEF
E04NFF	E04NGF	E04NHF	E04NKF	E04NLF	E04NMF
E04UCF	E04UDF	E04UEF	E04UFF	E04UGF	E04UHF
E04UJF	E04UNF	E04UQF	E04URF	E04XAF	F02FCF
F02FJF	F02HCF	F04YCF	F04ZCF	F08JKF	F08JXF
F11BAF	F11BBF	F11BCF	F11DCF	F11DEF	F11GAF
F11GBF	F11GCF	F11JCF	F11 JEF	G01DCF	G01DHF
G01EMF	G01HBF	G01JDF	G03FAF	G03FCF	G05CAF
G05CBF	G05CCF	G05CFF	G05CGF	G05DAF	G05DBF
G05DCF	G05DDF	G05DEF	G05DFF	G05DHF	G05DJF
G05DKF	G05DPF	G05DRF	G05DYF	G05DZF	G05EGF
G05EHF	G05EJF	G05EWF	G05EYF	G05EZF	G05FAF
G05FBF	G05FDF	G05FEF	G05FFF	G05FSF	G05GAF
G05GBF	G05HDF	G07AAF	G07BEF	G07EAF	G07EBF
G08EAF	G08EBF	G08ECF	G08EDF	G10BAF	G13DCF
H02BBF	H02BFF	H02BVF	H02CBF	H02CCF	H02CDF
H02CEF	H02CFF	H02CGF	X04AAF	X04ABF	

SAFETY.2 (last) [NP3390/19]

Library Information Library Contents

NAG Fortran Library, Mark 19 Library Contents

Chapter A00 - Library Identification

ACCAAF Prints details of the NAG Fortran Library implementation

Chapter A02 - Complex Arithmetic

A02AAF Square root of complex number
A02ABF Modulus of complex number
A02ACF Quotient of two complex numbers

Chapter C02 - Zeros of Polynomials

CO2AFF
CO2AFF
All zeros of complex polynomial, modified Laguerre method
All zeros of real polynomial, modified Laguerre method
CO2AFF
All zeros of complex quadratic
All zeros of real quadratic

Chapter C05 - Roots of One or More Transcendental Equations

COSADF Zero of continuous function in given interval, Bus and Dekker algorithm

COSAGF Zero of continuous function, Bus and Dekker algorithm, from given starting value, binary search for interval

COSAJF Zero of continuous function, continuation method, from a given starting value

COSAVF Binary search for interval containing zero of continuous function (reverse communication)

COSAXF Zero of continuous function by continuation method, from given starting value (reverse communication)

COSAZF Zero in given interval of continuous function by Bus and Dekker algorithm (reverse communication)

COSNBF Solution of system of nonlinear equations using function values only (easy-to-use)

COSNCF Solution of system of nonlinear equations using function values only (comprehensive)

COSNDF Solution of system of nonlinear equations using function values only (reverse communication)

CO5PBF Solution of system of nonlinear equations using first derivatives (easy-to-use)
CO5PCF Solution of system of nonlinear equations using first derivatives (comprehensive)

COSPCF Solution of system of nonlinear equations using first derivatives (comprehensive)

Solution of system of nonlinear equations using first derivatives (reverse communication)

C05ZAF Check user's routine for calculating first derivatives

Chapter C06 - Summation of Series

CO6BAF Acceleration of convergence of sequence, Shanks' transformation and epsilon algorithm

CO6DBF Sum of a Chebyshev series

CO6EAF Single one-dimensional real discrete Fourier transform, no extra workspace

Single one-dimensional Hermitian discrete Fourier transform, no extra workspace

CO6ECF Single one-dimensional complex discrete Fourier transform, no extra workspace Circular convolution or correlation of two real vectors, no extra workspace

CO6FAF Single one-dimensional real discrete Fourier transform, extra workspace for greater speed

CO6FBF Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed Single one-dimensional complex discrete Fourier transform, extra workspace for greater speed

CO6FFF One-dimensional complex discrete Fourier transform of multi-dimensional data

Multi-dimensional complex discrete Fourier transform of multi-dimensional data

CO6FKF Circular convolution or correlation of two real vectors, extra workspace for greater speed

CO6FPF Multiple one-dimensional real discrete Fourier transforms

CO6FQF Multiple one-dimensional Hermitian discrete Fourier transforms
Multiple one-dimensional complex discrete Fourier transforms

CO6FUF Two-dimensional complex discrete Fourier transform
CO6FXF Three-dimensional complex discrete Fourier transform

COGGBF Complex conjugate of Hermitian sequence

[NP3390/19] LIBCONTS.1

D01EAF

50055P	Complex agriculture of complex converge
CO6GCF	Complex conjugate of complex sequence Complex conjugate of multiple Hermitian sequences
CO6GQF	Convert Hermitian sequences to general complex sequences
CO6GSF	
CO6HAF	Discrete sine transform
CO6HBF	Discrete cosine transform
CO6HCF	Discrete quarter-wave sine transform
CO6HDF	Discrete quarter-wave cosine transform
CO6LAF	Inverse Laplace transform, Crump's method
CO6LBF	Inverse Laplace transform, modified Weeks' method
C06LCF	Evaluate inverse Laplace transform as computed by C06LBF
CO6PAF	Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex
	data format for Hermitian sequences
CO6PCF	Single one-dimensional complex discrete Fourier transform, complex data format
CO6PFF	One-dimensional complex discrete Fourier transform of multi-dimensional data (using complex
	data type)
CO6PJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data (using complex
	data type)
CO6PKF	Circular convolution or correlation of two complex vectors
CO6PPF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using
	complex data format for Hermitian sequences
CO6PQF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using
	complex data format for Hermitian sequences and sequences stored as columns
CO6PRF	Multiple one-dimensional complex discrete Fourier transforms using complex data format
CO6PSF	Multiple one-dimensional complex discrete Fourier transforms using complex data format and
	sequences stored as columns
CO6PUF	Two-dimensional complex discrete Fourier transform, complex data format
CO6PXF	Three-dimensional complex discrete Fourier transform, complex data format
CO6RAF	Discrete sine transform (easy-to-use)
CO6RBF	Discrete cosine transform (easy-to-use)
CO6RCF	Discrete quarter-wave sine transform (easy-to-use)
CO6RDF	Discrete quarter-wave cosine transform (easy-to-use)
Chapter	· D01 – Quadrature

CO6RDF	Discrete quarter-wave cosine transform (easy-to-use)
Chapter	D01 - Quadrature
D01AHF	One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
D01AJF	One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker, allowing for badly-behaved integrands
D01AKF	One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions
D01ALF	One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
D01AMF	One-dimensional quadrature, adaptive, infinite or semi-infinite interval
DO1ANF	One-dimensional quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
D01APF	One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type
D01AQF	One-dimensional quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform)
DO1ARF	One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals
D01ASF	One-dimensional quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
D01ATF	One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient on vector machines
D01AUF	One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient on vector machines
DO1BAF	One-dimensional Gaussian quadrature
DO1BBF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
D01BCF	Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
DO1BDF	One-dimensional quadrature, non-adaptive, finite interval
D01DAF	Two-dimensional quadrature, finite region

LIBCONTS.2 [NP3390/19]

Multi-dimensional adaptive quadrature over hyper-rectangle, multiple integrands

Library Contents Library Information

DO1FBF	Multi-dimensional Gaussian quadrature over hyper-rectangle Multi-dimensional adaptive quadrature over hyper-rectangle
	Multi-dimensional quadrature, Sag-Szekeres method, general product region or n-sphere
D01FDF	One-dimensional quadrature, integration of function defined by data values, Gill-Miller method
D01GAF	One-dimensional quadrature, integration of function defined by data values, our white member
D01GBF	Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
D01GCF	Multi-dimensional quadrature, general product region, number-theoretic method
D01GDF	Multi-dimensional quadrature, general product region, number-theoretic method, variant of
	D01GCF efficient on vector machines
D01GYF	Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime
D01GZF	Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product
	of two primes
D01JAF	Multi-dimensional quadrature over an n-sphere, allowing for badly-behaved integrands
D01PAF	Multi-dimensional quadrature over an n-simplex

Chapter D02 - Ordinary Differential Equations

D02BJF

D02AGF	ODEs, boundary value problem, shooting and matching technique, allowing interior matching
	point, general parameters to be determined
D02BGF	ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple

driver) ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) D02BHF

ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)

ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple D02CJF driver)

ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple D02EJF driver)

ODEs, boundary value problem, finite difference technique with deferred correction, simple D02GAF nonlinear problem

ODEs, boundary value problem, finite difference technique with deferred correction, general D02GBF linear problem

ODEs, boundary value problem, shooting and matching, boundary values to be determined DO2HAF

ODEs, boundary value problem, shooting and matching, general parameters to be determined DO2HBF ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation D02JAF

ODEs, boundary value problem, collocation and least-squares, system of first-order linear D02JBF equations

Second-order Sturm-Liouville problem, regular system, finite range, eigenvalue only DO2KAF

Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigen-D02KDF value only, user-specified break-points

Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigen-D02KEF value and eigenfunction, user-specified break-points

Second-order ODEs, IVP, Runge-Kutta-Nystrom method DO2LAF

Second-order ODEs, IVP, set-up for D02LAF D02LXF

Second-order ODEs, IVP, diagnostics for D02LAF D02LYF Second-order ODEs, IVP, interpolation for D02LAF D02LZF

ODEs, IVP, DASSL method, set-up for D02M-N routines DO2MVF

ODEs, IVP, interpolation for D02M-N routines, natural interpolant D02MZF

Explicit ODEs, stiff IVP, full Jacobian (comprehensive) DO2NBF Explicit ODEs, stiff IVP, banded Jacobian (comprehensive) DO2NCF

Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive) DO2NDF

Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive) DO2NGF Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive) DO2NHF

Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive) DO2NJF

Explicit ODEs, stiff IVP (reverse communication, comprehensive) DO2NMF

Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive) DO2NNF ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

DO2NRF ODEs, IVP, for use with D02M-N routines, full Jacobian, linear algebra set-up DO2NSF

ODEs, IVP, for use with D02M-N routines, banded Jacobian, linear algebra set-up DO2NTF ODEs, IVP, for use with D02M-N routines, sparse Jacobian, linear algebra set-up

DO2NUF

LIBCONTS.3 [NP3390/19]

DO3PHF

D03PJF

variable

one space variable

ODEs, IVP, BDF method, set-up for D02M-N routines DO2NVF ODEs, IVP, Blend method, set-up for D02M-N routines DO2NWF ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M-N routines DO2NXF ODEs, IVP, integrator diagnostics, for use with D02M-N routines DO2NYF ODEs, IVP, set-up for continuation calls to integrator, for use with D02M-N routines DO2NZF ODEs. IVP. Runge-Kutta method, integration over range with output D02PCF ODEs. IVP. Runge-Kutta method, integration over one step D02PDF ODEs, IVP, set-up for D02PCF and D02PDF D02PVF ODEs, IVP, resets end of range for D02PDF D02PWF ODEs, IVP, interpolation for D02PDF DO2PXF ODEs, IVP, integration diagnostics for D02PCF and D02PDF D02PYF ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF D02PZF ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) D02QFF ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive) D02QGF ODEs, IVP, set-up for D02QFF and D02QGF D02QWF ODEs, IVP, diagnostics for D02QFF and D02QGF D02QXF ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF D02QYF ODEs, IVP, interpolation for D02QFF or D02QGF D02QZF ODEs, general nonlinear boundary value problem, finite difference technique with deferred DO2RAF correction, continuation facility DO2SAF ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined nth-order linear ODEs, boundary value problem, collocation and least-squares D02TGF ODEs, general nonlinear boundary value problem, collocation technique D02TKF ODEs, general nonlinear boundary value problem, set-up for D02TKF DO2TVF ODEs, general nonlinear boundary value problem, continuation facility for D02TKF DO2TXF D02TYF ODEs, general nonlinear boundary value problem, interpolation for D02TKF ODEs, general nonlinear boundary value problem, diagnostics for D02TKF D02TZF ODEs, IVP, interpolation for D02M-N routines, natural interpolant D02XJF ODEs, IVP, interpolation for D02M-N routines, C_1 interpolant D02XKF ODEs, IVP, weighted norm of local error estimate for D02M-N routines D02ZAF

Chapter	D03 – Partial Differential Equations
DOSEAF	Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
D03EBF	Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule,
	iterate to convergence
DOSECF	Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional
	molecule, iterate to convergence
DOSEDF	Elliptic PDE, solution of finite difference equations by a multigrid technique
DOSEEF	Discretize a second-order elliptic PDE on a rectangle
DOSFAF	Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates
DOSMAF	Triangulation of plane region
DOSPCF	General system of parabolic PDEs, method of lines, finite differences, one space variable
D03PDF	General system of parabolic PDEs, method of lines, Chebyshev C^0 collocation, one space variable
DOSPEF	General system of first-order PDEs, method of lines, Keller box discretisation, one space variable
D03PFF	General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, **DO3PKF** one space variable D03PLF General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space

General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C^0 collocation,

LIBCONTS.4 [NP3390/19]

Library Contents Library Information

DO3PPF	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing	,,
	one space variable	

- General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, D03PRF remeshing, one space variable
- General system of convection-diffusion PDEs with source terms in conservative form, coupled D03PSF DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, remeshing, one space variable
- Roe's approximate Riemann solver for Euler equations in conservative form, for use with D03PUF D03PFF, D03PLF and D03PSF
- Osher's approximate Riemann solver for Euler equations in conservative form, for use with D03PVF D03PFF, D03PLF and D03PSF
- Modified HLL Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PWF D03PLF and D03PSF
- Exact Riemann Solver for Euler equations in conservative form, for use with D03PFF, D03PLF D03PXF and D03PSF
- PDEs, spatial interpolation with D03PDF or D03PJF D03PYF
- PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PZF D03PPF, D03PRF or D03PSF
- General system of second-order PDEs, method of lines, finite differences, remeshing, two space DO3RAF variables, rectangular region
- General system of second-order PDEs, method of lines, finite differences, remeshing, two space **DO3RBF** variables, rectilinear region
- Check initial grid data in D03RBF **DO3RYF**
- Extract grid data from D03RBF **DO3RZF**
- Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, **DO3UAF** one iteration
- Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional D03UBF molecule, one iteration

Chapter D04 - Numerical Differentiation

Numerical differentiation, derivatives up to order 14, function of one real variable DO4AAF

Chapter D05 - Integral Equations

Linear non-singular Fredholm integral equation, second kind, split kernel D05AAF Linear non-singular Fredholm integral equation, second kind, smooth kernel D05ABF Nonlinear Volterra convolution equation, second kind D05BAF Nonlinear convolution Volterra-Abel equation, second kind, weakly singular DO5BDF Nonlinear convolution Volterra-Abel equation, first kind, weakly singular D05BEF Generate weights for use in solving Volterra equations D05BWF Generate weights for use in solving weakly singular Abel-type equations D05BYF

Chapter E01 - Interpolation

- Interpolated values, Aitken's technique, unequally spaced data, one variable E01AAF Interpolated values, Everett's formula, equally spaced data, one variable E01ABF
- Interpolating functions, polynomial interpolant, data may include derivative values, one variable E01AEF
- Interpolating functions, cubic spline interpolant, one variable E01BAF
- Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable E01BEF
- Interpolated values, interpolant computed by E01BEF, function only, one variable E01BFF
- Interpolated values, interpolant computed by E01BEF, function and first derivative, one E01BGF variable
- Interpolated values, interpolant computed by E01BEF, definite integral, one variable E01BHF
- Interpolating functions, fitting bicubic spline, data on rectangular grid E01DAF
- Interpolating functions, rational interpolant, one variable E01RAF
- Interpolated values, evaluate rational interpolant computed by E01RAF, one variable E01RBF
- Interpolating functions, method of Renka and Cline, two variables E01SAF
- Interpolated values, evaluate interpolant computed by E01SAF, two variables E01SBF
- Interpolating functions, modified Shepard's method, two variables E01SEF

LIBCONTS.5 [NP3390/19]

E01SFF Interpolated values, evaluate interpolant computed by E01SEF, two variables
 E01SGF Interpolating functions, modified Shepard's method, two variables
 E01SHF Interpolated values, evaluate interpolant computed by E01SGF, function and first derivatives, two variables
 E01TGF Interpolating functions, modified Shepard's method, three variables
 E01THF Interpolated values, evaluate interpolant computed by E01TGF, function and first derivatives, three variables

Chapter E02 - Curve and Surface Fitting

'	
E02ACF	Minimax curve fit by polynomials
E02ADF	Least-squares curve fit, by polynomials, arbitrary data points
E02AEF	Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
E02AFF	Least-squares polynomial fit, special data points (including interpolation)
E02AGF	Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points
E02AHF	Derivative of fitted polynomial in Chebyshev series form
E02AJF	Integral of fitted polynomial in Chebyshev series form
E02AKF	Evaluation of fitted polynomial in one variable from Chebyshev series form
E02BAF	Least-squares curve cubic spline fit (including interpolation)
E02BBF	Evaluation of fitted cubic spline, function only
E02BCF	Evaluation of fitted cubic spline, function and derivatives
E02BDF	Evaluation of fitted cubic spline, definite integral
E02BEF	Least-squares cubic spline curve fit, automatic knot placement
E02CAF	Least-squares surface fit by polynomials, data on lines
E02CBF	Evaluation of fitted polynomial in two variables
E02DAF	Least-squares surface fit, bicubic splines
E02DCF	Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid
E02DDF	Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
E02DEF	Evaluation of fitted bicubic spline at a vector of points
E02DFF	Evaluation of fitted bicubic spline at a mesh of points
E02GAF	L_1 -approximation by general linear function
E02GBF	L_1 -approximation by general linear function subject to linear inequality constraints
E02GCF	L_{∞} -approximation by general linear function
E02RAF	Padé-approximants
E02RBF	Evaluation of fitted rational function as computed by E02RAF
E02ZAF	Sort two-dimensional data into panels for fitting bicubic splines

Chapter E04 - Minimizing or Maximizing a Function

algorithm using first derivatives (comprehensive)

E04GYF

E04ABF E04BBF	Minimum, function of one variable using function values only Minimum, function of one variable, using first derivative
E04CCF	Unconstrained minimum, simplex algorithm, function of several variables using function values only (comprehensive)
E04DGF	Unconstrained minimum, preconditioned conjugate gradient algorithm, function of several variables using first derivatives (comprehensive)
E04DJF	Read optional parameter values for E04DGF from external file
E04DKF	Supply optional parameter values to E04DGF
E04FCF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive)
E04FYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use)
E04GBF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive)
E04GDF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton

algorithm, using first derivatives (easy-to-use)

Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton

LIBCONTS.6 [NP3390/19]

Library Information Library Contents

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton E04GZF algorithm using first derivatives (easy-to-use) Check user's routine for calculating first derivatives of function E04HCF Check user's routine for calculating second derivatives of function E04HDF Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton E04HEF algorithm, using second derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton E04HYF algorithm, using second derivatives (easy-to-use) Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function E04JYF values only (easy-to-use) Minimum, function of several variables, modified Newton algorithm, simple bounds, using first E04KDF derivatives (comprehensive) Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first E04KYF derivatives (easy-to-use) Minimum, function of several variables, modified Newton algorithm, simple bounds, using first E04KZF derivatives (easy-to-use) Minimum, function of several variables, modified Newton algorithm, simple bounds, using first E04LBF and second derivatives (comprehensive) Minimum, function of several variables, modified Newton algorithm, simple bounds, using first E04LYF and second derivatives (easy-to-use) LP problem (dense) **EO4MFF** Read optional parameter values for E04MFF from external file **EO4MGF** Supply optional parameter values to E04MFF E04MHF Converts MPSX data file defining LP or QP problem to format required by E04NKF E04MZF Convex QP problem or linearly-constrained linear least-squares problem (dense) E04NCF Read optional parameter values for E04NCF from external file E04NDF Supply optional parameter values to E04NCF **EO4NEF** QP problem (dense) E04NFF Read optional parameter values for E04NFF from external file **E04NGF** Supply optional parameter values to E04NFF E04NHF LP or QP problem (sparse) **EO4NKF** Read optional parameter values for E04NKF from external file **EO4NLF** Supply optional parameter values to E04NKF **EO4NMF** Minimum, function of several variables, sequential QP method, nonlinear constraints, using **E04UCF** function values and optionally first derivatives (forward communication, comprehensive) Read optional parameter values for E04UCF or E04UFF from external file E04UDF Supply optional parameter values to E04UCF or E04UFF **E04UEF** Minimum, function of several variables, sequential QP method, nonlinear constraints, using E04UFF function values and optionally first derivatives (reverse communication, comprehensive) NLP problem (sparse) **E04UGF** Read optional parameter values for E04UGF from external file **EO4UHF** Supply optional parameter values to E04UGF E04UJF Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function **E04UNF** values and optionally first derivatives (comprehensive) Read optional parameter values for E04UNF from external file **E04UQF** Supply optional parameter values to E04UNF E04URF Estimate (using numerical differentiation) gradient and/or Hessian of a function E04XAF Check user's routine for calculating Jacobian of first derivatives E04YAF Check user's routine for calculating Hessian of a sum of squares **EO4YBF** Covariance matrix for nonlinear least-squares problem (unconstrained) E04YCF Check user's routines for calculating first derivatives of function and constraints E04ZCF

Chapter F01 - Matrix Factorizations

Inverse of real symmetric positive-definite matrix using iterative refinement
Inverse of real symmetric positive-definite matrix
Pseudo-inverse and rank of real m by n matrix $(m \ge n)$
LU factorization of real sparse matrix
LU factorization of real sparse matrix with known sparsity pattern

[NP3390/19] LIBCONTS.7

F01BUF	$ULDL^TU^T$ factorization of real symmetric positive-definite band matrix
F01BVF	Reduction to standard form, generalized real symmetric-definite banded eigenproblem
F01CKF	Matrix multiplication
F01CRF	Matrix transposition
F01CTF	Sum or difference of two real matrices, optional scaling and transposition
F01CWF	Sum or difference of two complex matrices, optional scaling and transposition
F01LEF	LU factorization of real tridiagonal matrix
F01LHF	LU factorization of real almost block diagonal matrix
F01MCF	LDL^T factorization of real symmetric positive-definite variable-bandwidth matrix
FO'1QGF	RQ factorization of real m by n upper trapezoidal matrix $(m \leq n)$
F01QJF	RQ factorization of real m by n matrix $(m \leq n)$
F01QKF	Operations with orthogonal matrices, form rows of Q , after RQ factorization by F01QJF
F01RGF	RQ factorization of complex m by n upper trapezoidal matrix $(m \leq n)$
F01RJF	RQ factorization of complex m by n matrix $(m \leq n)$
F01RKF	Operations with unitary matrices, form rows of Q , after RQ factorization by F01RJF
F01ZAF	Convert real matrix between packed triangular and square storage schemes
F01ZBF	Convert complex matrix between packed triangular and square storage schemes
F01ZCF	Convert real matrix between packed banded and rectangular storage schemes
F01ZDF	Convert complex matrix between packed banded and rectangular storage schemes

Chapter F02 - Eigenvalues and Eigenvectors

F02BJF	All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ algorithm, real matrices (Black Box)
F02EAF	All eigenvalues and Schur factorization of real general matrix (Black Box)
F02EBF	All eigenvalues and eigenvectors of real general matrix (Black Box)
F02ECF	Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
F02FAF	All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
F02FCF	Selected eigenvalues and eigenvectors of real symmetric matrix (Black Box)
F02FDF	All eigenvalues and eigenvectors of real symmetric-definite generalized problem (Black Box)
F02FHF	All eigenvalues of generalized banded real symmetric-definite eigenproblem (Black Box)
F02FJF	Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
F02GAF	All eigenvalues and Schur factorization of complex general matrix (Black Box)
F02GBF	All eigenvalues and eigenvectors of complex general matrix (Black Box)
F02GCF	Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)
F02GJF	All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ
	algorithm (Black Box)
FO2HAF	All eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
F02HCF	Selected eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
F02HDF	All eigenvalues and eigenvectors of complex Hermitian-definite generalized problem (Black Box)
F02SDF	Eigenvector of generalized real banded eigenproblem by inverse iteration
F02WDF	QR factorization, possibly followed by SVD
F02WEF	SVD of real matrix (Black Box)
F02WUF	SVD of real upper triangular matrix (Black Box)
F02XEF	SVD of complex matrix (Black Box)
F02XUF	SVD of complex upper triangular matrix (Black Box)

Chapter F03 - Determinants

FOSAAF	Determinant of real matrix (Black Box)
FO3ABF	Determinant of real symmetric positive-definite matrix (Black Box)
FOSACF	Determinant of real symmetric positive-definite band matrix (Black Box)
FOSADF	Determinant of complex matrix (Black Box)
FOSAEF	LL^T factorization and determinant of real symmetric positive-definite matrix
FOSAFF	LU factorization and determinant of real matrix

LIBCONTS.8 [NP3390/19]

Library Information Library Contents

Chapter F04 - Simultaneous Linear Equations

FO4AAF Solution of real simultaneous linear equations with multiple right-hand sides (Black Box)

FO4ABF Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides using iterative refinement (Black Box)

FO4ACF Solution of real symmetric positive-definite banded simultaneous linear equations with multiple right-hand sides (Black Box)

FO4ADF Solution of complex simultaneous linear equations with multiple right-hand sides (Black Box)

FO4AEF Solution of real simultaneous linear equations with multiple right-hand sides using iterative refinement (Black Box)

FO4AFF Solution of real symmetric positive-definite simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AEF)

FO4AGF Solution of real symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized by F03AEF)

FO4AHF Solution of real simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AFF)

FO4AJF Solution of real simultaneous linear equations (coefficient matrix already factorized by F03AFF)

FO4AMF Least-squares solution of m real equations in n unknowns, rank = n, $m \ge n$ using iterative refinement (Black Box)

FO4ARF Solution of real simultaneous linear equations, one right-hand side (Black Box)

FO4ASF Solution of real symmetric positive-definite simultaneous linear equations, one right-hand side using iterative refinement (Black Box)

FO4ATF Solution of real simultaneous linear equations, one right-hand side using iterative refinement (Black Box)

FO4AXF Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)

FO4EAF Solution of real tridiagonal simultaneous linear equations, one right-hand side (Black Box)

FO4FAF Solution of real symmetric positive-definite tridiagonal simultaneous linear equations, one right-hand side (Black Box)

F04FEF Solution of the Yule-Walker equations for real symmetric positive-definite Toeplitz matrix, one right-hand side

F04FFF Solution of real symmetric positive-definite Toeplitz system, one right-hand side

F04JAF Minimal least-squares solution of m real equations in n unknowns, rank $\leq n$, $m \geq n$

F04JDF Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$

F04JGF Least-squares (if rank = n) or minimal least-squares (if rank < n) solution of m real equations in n unknowns, rank $\leq n$, $m \geq n$

F04JLF Real general Gauss-Markov linear model (including weighted least-squares)

F04JMF Equality-constrained real linear least-squares problem

FO4KLF Complex general Gauss-Markov linear model (including weighted least-squares)

FO4KMF Equality-constrained complex linear least-squares problem

F04LEF Solution of real tridiagonal simultaneous linear equations (coefficient matrix already factorized by F01LEF)

FO4LHF Solution of real almost block diagonal simultaneous linear equations (coefficient matrix already factorized by F01LHF)

FO4MCF Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized by F01MCF)

FO4MEF Update solution of the Yule-Walker equations for real symmetric positive-definite Toeplitz matrix

FO4MFF Update solution of real symmetric positive-definite Toeplitz system

FO4QAF Sparse linear least-squares problem, m real equations in n unknowns

FO4YAF Covariance matrix for linear least-squares problems, m real equations in n unknowns

FO4YCF Norm estimation (for use in condition estimation), real matrix

F04ZCF Norm estimation (for use in condition estimation), complex matrix

Chapter F05 - Orthogonalisation

FOSAAF Gram-Schmidt orthogonalisation of n vectors of order m

Library Contents Library Information

Chapter F06 - Linear Algebra Support Routines

```
(SROTG/DROTG) Generate real plane rotation
F06AAF
F06BAF
            Generate real plane rotation, storing tangent
F06BCF
            Recover cosine and sine from given real tangent
           Generate real Jacobi plane rotation
F06BEF
           Apply real similarity rotation to 2 by 2 symmetric matrix
F06BHF
           Compute quotient of two real scalars, with overflow flag
F06BLF
FO6BMF
           Compute Euclidean norm from scaled form
           Compute square root of (a^2 + b^2), real a and b
FO6BNF
           Compute eigenvalue of 2 by 2 real symmetric matrix
F06BPF
           Generate complex plane rotation, storing tangent, real cosine
F06CAF
F06CBF
           Generate complex plane rotation, storing tangent, real sine
           Recover cosine and sine from given complex tangent, real cosine
FO6CCE
           Recover cosine and sine from given complex tangent, real sine
F06CDF
F06CHF
           Apply complex similarity rotation to 2 by 2 Hermitian matrix
F06CLF
           Compute quotient of two complex scalars, with overflow flag
F06DBF
           Broadcast scalar into integer vector
F06DFF
           Copy integer vector
           (SDOT/DDOT) Dot product of two real vectors
F06EAF
           (SAXPY/DAXPY) Add scalar times real vector to real vector
F06ECF
F06EDF
           (SSCAL/DSCAL) Multiply real vector by scalar
           (SCOPY/DCOPY) Copy real vector
F06EFF
           (SSWAP/DSWAP) Swap two real vectors
F06EGF
           (SNRM2/DNRM2) Compute Euclidean norm of real vector
F06EJF
F06EKF
           (SASUM/DASUM) Sum absolute values of real vector elements
F06EPF
           (SROT/DROT) Apply real plane rotation
F06ERF
           (SDOTI/DDOTI) Dot product of two real sparse vectors
F06ETF
           (SAXPYI/DAXPYI) Add scalar times real sparse vector to real sparse vector
F06EUF
           (SGTHR/DGTHR) Gather real sparse vector
F06EVF
           (SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
F06EWF
           (SSCTR/DSCTR) Scatter real sparse vector
           (SROTI/DROTI) Apply plane rotation to two real sparse vectors
F06EXF
FO6FAF
           Compute cosine of angle between two real vectors
F06FBF
           Broadcast scalar into real vector
F06FCF
           Multiply real vector by diagonal matrix
F06FDF
           Multiply real vector by scalar, preserving input vector
F06FGF
           Negate real vector
F06FJF
           Update Euclidean norm of real vector in scaled form
F06FKF
           Compute weighted Euclidean norm of real vector
F06FLF
           Elements of real vector with largest and smallest absolute value
F06FPF
           Apply real symmetric plane rotation to two vectors
F06FQF
           Generate sequence of real plane rotations
F06FRF
           Generate real elementary reflection, NAG style
F06FSF
           Generate real elementary reflection, LINPACK style
F06FTF
           Apply real elementary reflection, NAG style
FOSFIIF
           Apply real elementary reflection, LINPACK style
F06GAF
           (CDOTU/ZDOTU) Dot product of two complex vectors, unconjugated
           (CDOTC/ZDOTC) Dot product of two complex vectors, conjugated
F06GBF
F06GCF
           (CAXPY/ZAXPY) Add scalar times complex vector to complex vector
F06GDF
           (CSCAL/ZSCAL) Multiply complex vector by complex scalar
F06GFF
           (CCOPY/ZCOPY) Copy complex vector
F06GGF
           (CSWAP/ZSWAP) Swap two complex vectors
F06GRF
           (CDOTUI/ZDOTUI) Dot product of two complex sparse vector, unconjugated
F06GSF
           (CDOTCI/ZDOTCI) Dot product of two complex sparse vector, conjugated
           (CAXPYI/ZAXPYI) Add scalar times complex sparse vector to complex sparse vector
F06GTF
F06GUF
           (CGTHR/ZGTHR) Gather complex sparse vector
F06GVF
           (CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
F06GWF
           (CSCTR/ZSCTR) Scatter complex sparse vector
```

LIBCONTS.10 [NP3390/19]

```
Broadcast scalar into complex vector
F06HBF
           Multiply complex vector by complex diagonal matrix
F06HCF
           Multiply complex vector by complex scalar, preserving input vector
F06HDF
           Negate complex vector
FO6HGF
           Apply complex plane rotation
FO6HPF
           Generate sequence of complex plane rotations
F06HQF
           Generate complex elementary reflection
F06HRF
           Apply complex elementary reflection
FO6HTF
           (CSSCAL/ZDSCAL) Multiply complex vector by real scalar
F06JDF
           (SCNRM2/DZNRM2) Compute Euclidean norm of complex vector
F06JJF
           (SCASUM/DZASUM) Sum absolute values of complex vector elements
F06JKF
           (ISAMAX/IDAMAX) Index, real vector element with largest absolute value
F06JLF
           (ICAMAX/IZAMAX) Index, complex vector element with largest absolute value
F06JMF
           Multiply complex vector by real diagonal matrix
F06KCF
           Multiply complex vector by real scalar, preserving input vector
F06KDF
           Copy real vector to complex vector
F06KFF
           Update Euclidean norm of complex vector in scaled form
F06KJF
           Last non-negligible element of real vector
F06KLF
           Apply real plane rotation to two complex vectors
F06KPF
           (SGEMV/DGEMV) Matrix-vector product, real rectangular matrix
F06PAF
           (SGBMV/DGBMV) Matrix-vector product, real rectangular band matrix
F06PBF
           (SSYMV/DSYMV) Matrix-vector product, real symmetric matrix
F06PCF
           (SSBMV/DSBMV) Matrix-vector product, real symmetric band matrix
F06PDF
           (SSPMV/DSPMV) Matrix-vector product, real symmetric packed matrix
F06PEF
           (STRMV/DTRMV) Matrix-vector product, real triangular matrix
F06PFF
           (STBMV/DTBMV) Matrix-vector product, real triangular band matrix
F06PGF
           (STPMV/DTPMV) Matrix-vector product, real triangular packed matrix
F06PHF
           (STRSV/DTRSV) System of equations, real triangular matrix
F06PJF
           (STBSV/DTBSV) System of equations, real triangular band matrix
F06PKF
           (STPSV/DTPSV) System of equations, real triangular packed matrix
F06PLF
           (SGER/DGER) Rank-1 update, real rectangular matrix
F06PMF
           (SSYR/DSYR) Rank-1 update, real symmetric matrix
F06PPF
           (SSPR/DSPR) Rank-1 update, real symmetric packed matrix
F06PQF
           (SSYR2/DSYR2) Rank-2 update, real symmetric matrix
F06PRF
           (SSPR2/DSPR2) Rank-2 update, real symmetric packed matrix
F06PSF
           Matrix copy, real rectangular or trapezoidal matrix
F06QFF
           Matrix initialisation, real rectangular matrix
F06QHF
           Permute rows or columns, real rectangular matrix, permutations represented by an integer array
F060JF
           Permute rows or columns, real rectangular matrix, permutations represented by a real array
F06QKF
           Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations
F06QMF
           QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix
F060PF
           QR factorization by sequence of plane rotations, real upper triangular matrix augmented by a
F06QQF
           QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix
F06QRF
           QR or RQ factorization by sequence of plane rotations, real upper spiked matrix
F06QSF
           QR factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of
F06QTF
           plane rotations
           Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix
F06QVF
           Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
F06QWF
           Apply sequence of plane rotations, real rectangular matrix
F06QXF
           1-norm, ∞-norm, Frobenius norm, largest absolute element, real general matrix
F06RAF
           1-norm, ∞-norm, Frobenius norm, largest absolute element, real band matrix
F06RBF
           1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix
F06RCF
           1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix, packed
F06RDF
           storage
           1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric band matrix
F06REF
           1-norm, ∞-norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix
```

LIBCONTS.11 [NP3390/19]

F06RJF

F06VXF

F06RKF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage
F06RLF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular band matrix
F06RMF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real Hessenberg matrix
F06SAF	(CGEMV/ZGEMV) Matrix-vector product, complex rectangular matrix
F06SBF	(CGBMV/ZGBMV) Matrix-vector product, complex rectangular band matrix
F06SCF	(CHEMV/ZHEMV) Matrix-vector product, complex Hermitian matrix
F06SDF	(CHBMV/ZHBMV) Matrix-vector product, complex Hermitian band matrix
F06SEF	(CHPMV/ZHPMV) Matrix-vector product, complex Hermitian packed matrix
F06SFF	(CTRMV/ZTRMV) Matrix-vector product, complex triangular matrix
F06SGF	(CTBMV/ZTBMV) Matrix-vector product, complex triangular band matrix
F06SHF	(CTPMV/ZTPMV) Matrix-vector product, complex triangular packed matrix
F06SJF	(CTRSV/ZTRSV) System of equations, complex triangular matrix
F06SKF	(CTBSV/ZTBSV) System of equations, complex triangular band matrix
F06SLF	(CTPSV/ZTPSV) System of equations, complex triangular packed matrix
F06SMF	(CGERU/ZGERU) Rank-1 update, complex rectangular matrix, unconjugated vector
F06SNF	(CGERC/ZGERC) Rank-1 update, complex rectangular matrix, conjugated vector
F06SPF	(CHER/ZHER) Rank-1 update, complex Hermitian matrix
F06SQF	(CHPR/ZHPR) Rank-1 update, complex Hermitian packed matrix
F06SRF	(CHER2/ZHER2) Rank-2 update, complex Hermitian matrix
F06SSF	(CHPR2/ZHPR2) Rank-2 update, complex Hermitian packed matrix
F06TFF	Matrix copy, complex rectangular or trapezoidal matrix
FO6THF	Matrix initialisation, complex rectangular matrix
F06TMF	Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations
F06TPF	QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular
	matrix
F06TQF	QRxk factorization by sequence of plane rotations, complex upper triangular matrix augmented
	by a full row
F06TRF	QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
F06TSF	QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
F06TTF	QR factorization of UZ or RQ factorization of ZU , U complex upper triangular, Z a sequence
	of plane rotations
F06TVF	Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular
	matrix
F06TWF	Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix
F06TXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
F06TYF	Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine
F06UAF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex general matrix
F06UBF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex band matrix
F06UCF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hermitian matrix
F06UDF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed
100021	storage
F06UEF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian band matrix
F06UFF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric matrix
F06UGF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed
100001	storage
F06UHF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex symmetric band matrix
F06UJF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular
100051	matrix
F06UKF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex triangular matrix, packed
100011	storage
F06ULF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex triangular band matrix
FOGUMF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix
FO6VJF	Permute rows or columns, complex rectangular matrix, permutations represented by an integer
LOOATL	
F06VKF	array Permute rows or columns, complex rectangular matrix, permutations represented by a real
FOOVRE	array
	urraj

LIBCONTS.12 [NP3390/19]

Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine

Library Information Library Contents

FOGYAF (SGEMM/DGEMM) Matrix-matrix product, two real rectangular matrices

FOGYCF (SSYMM/DSYMM) Matrix-matrix product, one real symmetric matrix, one real rectangular

F06YFF (STRMM/DTRMM) Matrix-matrix product, one real triangular matrix, one real rectangular matrix

F06YJF (STRSM/DTRSM) Solves system of equations with multiple right-hand sides, real triangular coefficient matrix

FOGYPF (SSYRK/DSYRK) Rank-k update of real symmetric matrix

FOGYRF (SSYR2K/DSYR2K) Rank-2k update of real symmetric matrix

F06ZAF (CGEMM/ZGEMM) Matrix-matrix product, two complex rectangular matrices

F06ZCF (CHEMM/ZHEMM) Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix

F06ZFF (CTRMM/ZTRMM) Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix

F06ZJF (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix

F06ZPF (CHERK/ZHERK) Rank-k update of complex Hermitian matrix

F06ZRF (CHER2K/ZHER2K) Rank-2k update of complex Hermitian matrix

F06ZTF (CSYMM/ZSYMM) Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix

F06ZUF (CSYRK/ZSYRK) Rank-k update of complex symmetric matrix (CSYR2K/ZHER2K) Rank-2k update of complex symmetric matrix

Chapter F07 - Linear Equations (LAPACK)

FO7ADF (SGETRF/DGETRF) LU factorization of real m by n matrix

FO7AEF (SGETRS/DGETRS) Solution of real system of linear equations, multiple right-hand sides, matrix already factorized by F07ADF

F07AGF (SGECON/DGECON) Estimate condition number of real matrix, matrix already factorized by F07ADF

FO7AHF (SGERFS/DGERFS) Refined solution with error bounds of real system of linear equations, multiple right-hand sides

FO7AJF (SGETRI/DGETRI) Inverse of real matrix, matrix already factorized by F07ADF

FOTARF (CGETRF/ZGETRF) LU factorization of complex m by n matrix

FO7ASF (CGETRS/ZGETRS) Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by F07ARF

FO7AUF (CGECON/ZGECON) Estimate condition number of complex matrix, matrix already factorized by F07ARF

FO7AVF (CGERFS/ZGERFS) Refined solution with error bounds of complex system of linear equations, multiple right-hand sides

FO7AWF (CGETRI/ZGETRI) Inverse of complex matrix, matrix already factorized by F07ARF

FO7BDF (SGBTRF/DGBTRF) LU factorization of real m by n band matrix

F07BEF (SGBTRS/DGBTRS) Solution of real band system of linear equations, multiple right-hand sides, matrix already factorized by F07BDF

F07BGF (SGBCON/DGBCON) Estimate condition number of real band matrix, matrix already factorized by F07BDF

FO7BHF (SGBRFS/DGBRFS) Refined solution with error bounds of real band system of linear equations, multiple right-hand sides

FOTERF (CGBTRF/ZGBTRF) LU factorization of complex m by n band matrix

FO7BSF (CGBTRS/ZGBTRS) Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by F07BRF

F07BUF (CGBCON/ZGBCON) Estimate condition number of complex band matrix, matrix already factorized by F07BRF

FO7BVF (CGBRFS/ZGBRFS) Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides

F07FDF (SPOTRF/DPOTRF) Cholesky factorization of real symmetric positive-definite matrix

F07FEF (SPOTRS/DPOTRS) Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FDF

Library Contents Library Information

F07FGF (SPOCON/DPOCON) Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by F07FDF

- FO7FHF (SPORFS/DPORFS) Refined solution with error bounds of real symmetric positive-definite system of linear equations, multiple right-hand sides
- F07FJF (SPOTRI/DPOTRI) Inverse of real symmetric positive-definite matrix, matrix already factorized by F07FDF
- FO7FRF (CPOTRF/ZPOTRF) Cholesky factorization of complex Hermitian positive-definite matrix
- F07FSF (CPOTRS/ZPOTRS) Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FRF
- F07FUF (CPOCON/ZPOCON) Estimate condition number of complex Hermitian positive-definite matrix, matrix already factorized by F07FRF
- F07FVF (CPORFS/ZPORFS) Refined solution with error bounds of complex Hermitian positive-definite system of linear equations, multiple right-hand sides
- FO7FWF (CPOTRI/ZPOTRI) Inverse of complex Hermitian positive-definite matrix, matrix already factorized by F07FRF
- F07GDF (SPPTRF/DPPTRF) Cholesky factorization of real symmetric positive-definite matrix, packed storage
- F07GEF (SPPTRS/DPPTRS) Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07GDF, packed storage
- F07GGF (SPPCON/DPPCON) Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by F07GDF, packed storage
- FO7GHF (SPPRFS/DPPRFS) Refined solution with error bounds of real symmetric positive-definite system of linear equations, multiple right-hand sides, packed storage
- F07GJF (SPPTRI/DPPTRI) Inverse of real symmetric positive-definite matrix, matrix already factorized by F07GDF, packed storage
- F07GRF (CPPTRF/ZPPTRF) Cholesky factorization of complex Hermitian positive-definite matrix, packed storage
- F07GSF (CPPTRS/ZPPTRS) Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07GRF, packed storage
- F07GUF (CPPCON/ZPPCON) Estimate condition number of complex Hermitian positive-definite matrix, matrix already factorized by F07GRF, packed storage
- FO7GVF (CPPRFS/ZPPRFS) Refined solution with error bounds of complex Hermitian positive-definite system of linear equations, multiple right-hand sides, packed storage
- F07GWF (CPPTRI/ZPPTRI) Inverse of complex Hermitian positive-definite matrix, matrix already factorized by F07GRF, packed storage
- FO7HDF (SPBTRF/DPBTRF) Cholesky factorization of real symmetric positive-definite band matrix
- FO7HEF (SPBTRS/DPBTRS) Solution of real symmetric positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by F07HDF
- FO7HGF (SPBCON/DPBCON) Estimate condition number of real symmetric positive-definite band matrix, matrix already factorized by F07HDF
- FO7HHF (SPBRFS/DPBRFS) Refined solution with error bounds of real symmetric positive-definite band system of linear equations, multiple right-hand sides
- FO7HRF (CPBTRF/ZPBTRF) Cholesky factorization of complex Hermitian positive-definite band matrix
- FO7ESF (CPBTRS/ZPBTRS) Solution of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by F07HRF
- FO7HUF (CPBCON/ZPBCON) Estimate condition number of complex Hermitian positive-definite band matrix, matrix already factorized by F07HRF
- FO7EVF (CPBRFS/ZPBRFS) Refined solution with error bounds of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides
- FO7MDF (SSYTRF/DSYTRF) Bunch-Kaufman factorization of real symmetric indefinite matrix
- FO7MEF (SSYTRS/DSYTRS) Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07MDF
- F07MGF (SSYCON/DSYCON) Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07MDF
- FO7MHF (SSYRFS/DSYRFS) Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides

LIBCONTS.14 [NP3390/19]

Library Information Library Contents

FO7MJF (SSYTRI/DSYTRI) Inverse of real symmetric indefinite matrix, matrix already factorized by F07MDF

- FO7MRF (CHETRF/ZHETRF) Bunch-Kaufman factorization of complex Hermitian indefinite matrix
- FO7MSF (CHETRS/ZHETRS) Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07MRF
- FO7MUF (CHECON/ZHECON) Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07MRF
- FO7MVF (CHERFS/ZHERFS) Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides
- FO7MWF (CHETRI/ZHETRI) Inverse of complex Hermitian indefinite matrix, matrix already factorized by F07MRF
- FOTNRF (CSYTRF/ZSYTRF) Bunch-Kaufman factorization of complex symmetric matrix
- FOTNSF (CSYTRS/ZSYTRS) Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by F07NRF
- FOTNUF (CSYCON/ZSYCON) Estimate condition number of complex symmetric matrix, matrix already factorized by F07NRF
- FOTNVF (CSYRFS/ZSYRFS) Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides
- FO7NWF (CSYTRI/ZSYTRI) Inverse of complex symmetric matrix, matrix already factorized by F07NRF
- FO7PDF (SSPTRF/DSPTRF) Bunch-Kaufman factorization of real symmetric indefinite matrix, packed storage
- F07PEF (SSPTRS/DSPTRS) Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07PDF, packed storage
- F07PGF (SSPCON/DSPCON) Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07PDF, packed storage
- FO7PHF (SSPRFS/DSPRFS) Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides, packed storage
- F07PJF (SSPTRI/DSPTRI) Inverse of real symmetric indefinite matrix, matrix already factorized by F07PDF, packed storage
- FO7PRF (CHPTRF/ZHPTRF) Bunch-Kaufman factorization of complex Hermitian indefinite matrix, packed storage
- F07PSF (CHPTRS/ZHPTRS) Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07PRF, packed storage
- F07PUF (CHPCON/ZHPCON) Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07PRF, packed storage
- FO7PVF (CHPRFS/ZHPRFS) Refined solution with error bounds of complex Hermitian indefinite system of linear equations, multiple right-hand sides, packed storage
- F07PWF (CHPTRI/ZHPTRI) Inverse of complex Hermitian indefinite matrix, matrix already factorized by F07PRF, packed storage
- FO7QRF (CSPTRF/ZSPTRF) Bunch-Kaufman factorization of complex symmetric matrix, packed storage
- F07QSF (CSPTRS/ZSPTRS) Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by F07QRF, packed storage
- F07QUF (CSPCON/ZSPCON) Estimate condition number of complex symmetric matrix, matrix already factorized by F07QRF, packed storage
- FO7QVF (CSPRFS/ZSPRFS) Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides, packed storage
- F07QWF (CSPTRI/ZSPTRI) Inverse of complex symmetric matrix, matrix already factorized by F07QRF, packed storage
- FO7TEF (STRTRS/DTRTRS) Solution of real triangular system of linear equations, multiple right-hand sides
- FO7TGF (STRCON/DTRCON) Estimate condition number of real triangular matrix
- FO7THF (STRRFS/DTRRFS) Error bounds for solution of real triangular system of linear equations, multiple right-hand sides
- FO7TJF (STRTRI/DTRTRI) Inverse of real triangular matrix
- FO7TSF (CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides

F07TUF	(CTRCON	/ZTRCON	Estimate condition	number of	complex	triangular	matrix
--------	---------	---------	--------------------	-----------	---------	------------	--------

FO7TVF (CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides

FO7TWF (CTRTRI/ZTRTRI) Inverse of complex triangular matrix

FO7UEF (STPTRS/DTPTRS) Solution of real triangular system of linear equations, multiple right-hand sides, packed storage

FO7UGF (STPCON/DTPCON) Estimate condition number of real triangular matrix, packed storage

FO7UHF (STPRFS/DTPRFS) Error bounds for solution of real triangular system of linear equations, multiple right-hand sides, packed storage

FO7UJF (STPTRI/DTPTRI) Inverse of real triangular matrix, packed storage

FO7USF (CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage

FOTUUF (CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage (CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear

equations, multiple right-hand sides, packed storage

(CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage

FO7VEF (STBTRS/DTBTRS) Solution of real band triangular system of linear equations, multiple right-hand sides

F07VGF (STBCON/DTBCON) Estimate condition number of real band triangular matrix

FO7VHF (STBRFS/DTBRFS) Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides

F07VSF (CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides

FO7VUF (CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix

FO7VVF (CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides

Chapter F08 - Least-squares and Eigenvalue Problems (LAPACK)

FOSAEF (SGEQRF/DGEQRF) QR factorization of real general rectangular matrix

FO8AFF (SORGQR/DORGQR) Form all or part of orthogonal Q from QR factorization determined by F08AEF or F08BEF

FO8AGF (SORMQR/DORMQR) Apply orthogonal transformation determined by F08AEF or F08BEF

FOSAHF (SGELQF/DGELQF) LQ factorization of real general rectangular matrix

FO8AJF (SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization determined by F08AHF

F08AKF (SORMLQ/DORMLQ) Apply orthogonal transformation determined by F08AHF

FOBASF (CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix

FO8ATF (CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF

FOSAUF (CUNMQR/ZUNMQR) Apply unitary transformation determined by FOSASF or FOSBSF

FOSAVF (CGELQF/ZGELQF) LQ factorization of complex general rectangular matrix

FOBAWF (CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by FOBAVF

FOSAXF (CUNMLQ/ZUNMLQ) Apply unitary transformation determined by FOSAVF

FO8BEF (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting

FOSFCF (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer

FO8FEF (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form

F08FFF (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08FEF

FO8FGF (SORMTR/DORMTR) Apply orthogonal transformation determined by F08FEF

FOSFQF (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, using divide and conquer

FO8FSF (CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form

LIBCONTS.16 [NP3390/19]

Library Information Library Contents

FO8FTF (CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08FSF

- FOSFUF (CUNMTR/ZUNMTR) Apply unitary transformation matrix determined by FOSFSF
- FOSCE (SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, packed storage, using divide and conquer
- FO8GEF (SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
- FO8GFF (SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08GEF
- FO8GGF (SOPMTR/DOPMTR) Apply orthogonal transformation determined by F08GEF
- FOSGQF (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, packed storage, using divide and conquer
- FORGSF (CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
- FOSGTF (CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F0SGSF
- FOSGUF (CUPMTR/ZUPMTR) Apply unitary transformation matrix determined by F08GSF
- FOSECF (SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real symmetric band matrix, using divide and conquer
- FOSHEF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
- FOSHQF (CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian band matrix, using divide and conquer
- FOSHSF (CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
- FOBJCF (SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvectors of real symmetric tridiagonal matrix, using divide and conquer
- FOBJEF (SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR
- FOBJFF (SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, root-free variant of QL or QR
- FOBJGF (SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal matrix, reduced from real symmetric positive-definite matrix
- FOBJJF (SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix by bisection
- FOBJKF (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
- FOBJSF (CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR
- FOBJUF (CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal matrix, reduced from complex Hermitian positive-definite matrix
- FOBJXF (CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
- FOSKEF (SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal form
- FO8KFF (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF
- FO8KGF (SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF
- FORKSF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal form
- FORKTF (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF
- FORKUF (CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form determined by F08KSF
- FOSLEF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form
- FOBLSF (CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form
- FOSMEF (SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix
- FORMSF (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general matrix

Library Contents Library Information

FOSNEF (SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form

- FORMFF (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessenberg form determined by FO8NEF
- FOSNGF (SORMHR/DORMHR) Apply orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF
- FOSNHF (SGEBAL/DGEBAL) Balance real general matrix
- FORNJF (SGEBAK/DGEBAK) Transform eigenvectors of real balanced matrix to those of original matrix supplied to FORNHF
- FOBNSF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form
- FOENTF (CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF
- FOSNUF (CUNMHR/ZUNMHR) Apply unitary transformation matrix from reduction to Hessenberg form determined by FOSNSF
- FOBNVF (CGEBAL/ZGEBAL) Balance complex general matrix
- FOSNWF (CGEBAK/ZGEBAK) Transform eigenvectors of complex balanced matrix to those of original matrix supplied to FOSNVF
- FOSPEF (SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
- FOSPKF (SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
- FO8PSF (CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
- FOSPXF (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
- FOSQFF (STREXC/DTREXC) Reorder Schur factorization of real matrix using orthogonal similarity transformation
- FORQGF (STRSEN/DTRSEN) Reorder Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
- FOSQHF (STRSYL/DTRSYL) Solve real Sylvester matrix equation AX + XB = C, A and B are upper quasi-triangular or transposes
- FOSQKF (STREVC/DTREVC) Left and right eigenvectors of real upper quasi-triangular matrix
- FOSQLF (STRSNA/DTRSNA) Estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
- FOSQTF (CTREXC/ZTREXC) Reorder Schur factorization of complex matrix using unitary similarity transformation
- FOSQUF (CTRSEN/ZTRSEN) Reorder Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
- FOSQVF (CTRSYL/ZTRSYL) Solve complex Sylvester matrix equation AX + XB = C, A and B are upper triangular or conjugate-transposes
- FOSQXF (CTREVC/ZTREVC) Left and right eigenvectors of complex upper triangular matrix
- FOSQYF (CTRSNA/ZTRSNA) Estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix
- FO8SEF (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by F07FDF
- FO8SSF (CHEGST/ZHEGST) Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by F07FRF
- FOSTEF (SSPGST/DSPGST) Reduction to standard form of real symmetric-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by F07GDF
- FO8TSF (CHPGST/ZHPGST) Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by F07GRF
- FO8UEF (SSBGST/DSBGST) Reduction of real symmetric-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
- FOSUFF (SPBSTF/DPBSTF) Computes a split Cholesky factorization of real symmetric positive-definite band matrix A
- FO8USF (CHBGST/ZHBGST) Reduction of complex Hermitian-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
- FOSUTF (CPBSTF/ZPBSTF) Computes a split Cholesky factorization of complex Hermitian positive-definite band matrix A

LIBCONTS.18 [NP3390/19]

Library Information Library Contents

Chapter F11 - Sparse Linear Algebra

- F11BAF Real sparse nonsymmetric linear systems, set-up for F11BBF
- F11BBF Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB
- F11BCF Real sparse nonsymmetric linear systems, diagnostic for F11BBF
- F11BDF Real sparse nonsymmetric linear systems, set-up for F11BEF
- F11BEF Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
- F11BFF Real sparse nonsymmetric linear systems, diagnostic for F11BEF
- F11BRF Complex sparse non-Hermitian linear systems, set-up for F11BSF
- F11BSF Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
- F11BTF Complex sparse non-Hermitian linear systems, diagnostic for F11BSF
- F11DAF Real sparse nonsymmetric linear systems, incomplete LU factorization
- F11DBF Solution of linear system involving incomplete LU preconditioning matrix generated by F11DAF
- F11DCF Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, preconditioner computed by F11DAF (Black Box)
- F11DDF Solution of linear system involving preconditioning matrix generated by applying SSOR to real sparse nonsymmetric matrix
- F11DEF Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner (Black Box)
- F11DNF Complex sparse non-Hermitian linear systems, incomplete LU factorization
- F11DPF Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF
- F11DQF Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box)
- F11DRF Solution of linear system involving preconditioning matrix generated by applying SSOR to complex sparse non-Hermitian matrix
- F11DSF Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
- F11GAF Real sparse symmetric linear systems, set-up for F11GBF
- F11GBF Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos
- F11GCF Real sparse symmetric linear systems, diagnostic for F11GBF
- F11JAF Real sparse symmetric matrix, incomplete Cholesky factorization
- F11JBF Solution of linear system involving incomplete Cholesky preconditioning matrix generated by F11JAF
- F11JCF Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JAF (Black Box)
- F11JDF Solution of linear system involving preconditioning matrix generated by applying SSOR to real sparse symmetric matrix
- F11JEF Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
- F11JNF Complex sparse Hermitian matrix, incomplete Cholesky factorization
- F11JPF Solution of complex linear system involving incomplete Cholesky preconditioning matrix generated by F11JNF
- F11JQF Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JNF (Black Box)
- F11JRF Solution of linear system involving preconditioning matrix generated by applying SSOR to complex sparse Hermitian matrix
- F11JSF Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
- F11XAF Real sparse nonsymmetric matrix vector multiply
- F11XEF Real sparse symmetric matrix vector multiply
- F11XNF Complex sparse non-Hermitian matrix vector multiply
- F11XSF Complex sparse Hermitian matrix vector multiply
- F11ZAF Real sparse nonsymmetric matrix reorder routine
- F11ZBF Real sparse symmetric matrix reorder routine
- F11ZNF Complex sparse non-Hermitian matrix reorder routine
- F11ZPF Complex sparse Hermitian matrix reorder routine

Chapter G01 - Simple Calculations and Statistical Data

G01AAF Mean, variance, skewness, kurtosis, etc, one variable, from raw data Mean. variance, skewness, kurtosis, etc, two variables, from raw data GO1ABF G01ADF Mean, variance, skewness, kurtosis, etc, one variable, from frequency table Frequency table from raw data G01AEF Two-way contingency table analysis, with χ^2 /Fisher's exact test G01AFF Lineprinter scatterplot of two variables GO1AGF Lineprinter scatterplot of one variable against Normal scores GO1AHF **GO1AJF** Lineprinter histogram of one variable Computes a five-point summary (median, hinges and extremes) G01ALF Constructs a stem and leaf plot G01ARF Constructs a box and whisker plot **GO1ASF** GO1BJF Binomial distribution function GO1BKF Poisson distribution function G01BLF Hypergeometric distribution function GO1DAF Normal scores, accurate values G01DBF Normal scores, approximate values G01DCF Normal scores, approximate variance-covariance matrix G01DDF Shapiro and Wilk's W test for Normality GO1DHF Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores Computes probabilities for the standard Normal distribution GO1EAF Computes probabilities for Student's t-distribution G01EBF Computes probabilities for χ^2 distribution G01ECF Computes probabilities for F-distribution G01EDF G01EEF Computes upper and lower tail probabilities and probability density function for the beta distribution G01EFF Computes probabilities for the gamma distribution G01EMF Computes probability for the Studentized range statistic G01EPF Computes bounds for the significance of a Durbin-Watson statistic G01ERF Computes probability for von Mises distribution Computes probabilities for the one-sample Kolmogorov-Smirnov distribution **GO1EYF** G01EZF Computes probabilities for the two-sample Kolmogorov-Smirnov distribution GO1FAF Computes deviates for the standard Normal distribution Computes deviates for Student's t-distribution G01FBF Computes deviates for the χ^2 distribution G01FCF Computes deviates for the F-distribution G01FDF G01FEF Computes deviates for the beta distribution G01FFF Computes deviates for the gamma distribution G01FMF Computes deviates for the Studentized range statistic G01GBF Computes probabilities for the non-central Student's t-distribution G01GCF Computes probabilities for the non-central χ^2 distribution G01GDF Computes probabilities for the non-central F-distribution G01GEF Computes probabilities for the non-central beta distribution GO1HAF Computes probability for the bivariate Normal distribution G01HBF Computes probabilities for the multivariate Normal distribution Computes probability for a positive linear combination of χ^2 variables G01JCF G01JDF Computes lower tail probability for a linear combination of (central) χ^2 variables GO1MBF Computes reciprocal of Mills' Ratio GO1NAF Cumulants and moments of quadratic forms in Normal variables G01NBF Moments of ratios of quadratic forms in Normal variables, and related statistics

Chapter G02 - Correlation and Regression Analysis

G02BAF	Pearson product-moment correlation coefficients, all variables, no missing values
G02BBF	Pearson product-moment correlation coefficients, all variables, casewise treatment of missing
	values
GO2BCF	Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing

GO2BCF Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values

LIBCONTS.20 [NP3390/19]

Library Information Library Contents

COORDE	Correlation-like coefficients (about zero), all variables, no missing values
GO2BDF GO2BEF	Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
GO2BEF GO2BFF	Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
GO2BFF GO2BGF	Pearson product-moment correlation coefficients, subset of variables, no missing values
GO2BHF	Pearson product-moment correlation coefficients, subset of variables, casewise treatment of
GOZBE	missing values
GO2BJF	Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of
	missing values
G02BKF	Correlation-like coefficients (about zero), subset of variables, no missing values
GO2BLF	Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
G02BMF	Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values
GO2BNF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting
GUZDNF	input data
G02BPF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing
GUZBFF	values, overwriting input data
G02BQF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving
GOZDQI	input data
G02BRF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing
	values preserving input data
G02BSF	Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing
	values
GO2BTF	Update a weighted sum of squares matrix with a new observation
GO2BUF	Computes a weighted sum of squares matrix
G02BWF	Computes a correlation matrix from a sum of squares matrix
GO2BXF	Computes (optionally weighted) correlation and covariance matrices
G02BYF	Computes partial correlation/variance-covariance matrix from correlation/variance-covariance
	matrix computed by G02BXF
G02CAF	Simple linear regression with constant term, no missing values
G02CBF	Simple linear regression without constant term, no missing values
G02CCF	Simple linear regression with constant term, missing values
G02CDF	Simple linear regression without constant term, missing values
G02CEF	Service routines for multiple linear regression, select elements from vectors and matrices Service routines for multiple linear regression, re-order elements of vectors and matrices
G02CFF	Multiple linear regression, from correlation coefficients, with constant term
G02CGF	Multiple linear regression, from correlation-like coefficients, with constant term
GO2CHF	Fits a general (multiple) linear regression model
GO2DAF	Add/delete an observation to/from a general linear regression model
GO2DCF GO2DDF	Estimates of linear parameters and general linear regression model from updated model
GO2DDF GO2DEF	Add a new variable to a general linear regression model
GO2DEF GO2DFF	Delete a variable from a general linear regression model
GO2DFF	Fits a general linear regression model for new dependent variable
GO2DKF	Estimates and standard errors of parameters of a general linear regression model for given
~	constraints
GO2DNF	Computes estimable function of a general linear regression model and its standard error
GO2EAF	Computes residual sums of squares for all possible linear regressions for a set of independent
	variables
G02ECF	Calculates R^2 and C_P values from residual sums of squares
G02EEF	Fits a linear regression model by forward selection
G02FAF	Calculates standardized residuals and influence statistics
G02FCF	Computes Durbin-Watson test statistic
G02GAF	Fits a generalized linear model with Normal errors
G02GBF	Fits a generalized linear model with binomial errors
G02GCF	Fits a generalized linear model with Poisson errors
G02GDF	Fits a generalized linear model with gamma errors
G02GKF	Estimates and standard errors of parameters of a general linear model for given constraints
GO2GNF	Computes estimable function of a generalized linear model and its standard error

GO2HAF	Robust regression, standard M-estimates
GO2HBF	Robust regression, compute weights for use with G02HDF
GO2HDF	Robust regression, compute regression with user-supplied functions and weights
G02HFF	Robust regression, variance-covariance matrix following G02HDF
GO2HKF	Calculates a robust estimation of a correlation matrix, Huber's weight function
GO2HLF	Calculates a robust estimation of a correlation matrix, user-supplied weight function plus
GOZILLI	derivatives
GO2HMF	Calculates a robust estimation of a correlation matrix, user-supplied weight function
Chapter	r G03 - Multivariate Methods
GOSAAF	Performs principal component analysis
GOSACF	Performs canonical variate analysis
GOSADF	Performs canonical correlation analysis
GOSBAF	Computes orthogonal rotations for loading matrix, generalized orthomax criterion
GO3BCF	Computes Procrustes rotations
GOSCAF	Computes maximum likelihood estimates of the parameters of a factor analysis model, factor
GOOGNI	loadings, communalities and residual correlations
GO3CCF	Computes factor score coefficients (for use after G03CAF)
GOSCCF	Computes test statistic for equality of within-group covariance matrices and matrices for
GOSDAF	discriminant analysis
COSDDE	Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for
GO3DBF	
GOODGE	use after G03DAF)
GO3DCF	Allocates observations to groups according to selected rules (for use after G03DAF)
GOSEAF	Computes distance matrix
G03ECF	Hierarchical cluster analysis
G03EFF	K-means cluster analysis
GOSEHF	Constructs dendrogram (for use after G03ECF)
G03EJF	Computes cluster indicator variable (for use after G03ECF)
GO3FAF	Performs principal co-ordinate analysis, classical metric scaling
GO3FCF	Performs non-metric (ordinal) multidimensional scaling
GO3ZAF	Produces standardized values (z-scores) for a data matrix
Chapter	G04 - Analysis of Variance
-	•
GO4AGF	Two-way analysis of variance, hierarchical classification, subgroups of unequal size
GO4BBF	Analysis of variance, randomized block or completely randomized design, treatment means and
	standard errors
GO4BCF	Analysis of variance, general row and column design, treatment means and standard errors
GO4CAF	Analysis of variance, complete factorial design, treatment means and standard errors
GO4DAF	Computes sum of squares for contrast between means
GO4DBF	Computes confidence intervals for differences between means computed by G04BBF or G04BCF
GO4EAF	Computes orthogonal polynomials or dummy variables for factor/classification variable
Chapter	G05 – Random Number Generators
GO5CAF	Pseudo-random real numbers, uniform distribution over (0,1)
GO5CRF GO5CBF	Initialise random number generating routines to give repeatable sequence
G05CCF	Initialise random number generating routines to give non-repeatable sequence
G05CFF	Save state of random number generating routines
GO5CGF	Restore state of random number generating routines
GO5DAF	Pseudo-random real numbers, uniform distribution over (a, b)
GO5DBF	Pseudo-random real numbers, (negative) exponential distribution
GO5DCF	Pseudo-random real numbers, logistic distribution
GO5DDF	Pseudo-random real numbers, Normal distribution
G05DEF	Pseudo-random real numbers, log-normal distribution
G05DFF	Pseudo-random real numbers, Cauchy distribution
GO5DHF	Pseudo-random real numbers, χ^2 distribution
G05DJF	Pseudo-random real numbers, Student's t-distribution

LIBCONTS.22 [NP3390/19]

Library Contents Library Information

G05DKF	Pseudo-random real numbers, F-distribution
GOSDPF	Pseudo-random real numbers, Weibull distribution
GOSDRF	Pseudo-random integer, Poisson distribution
GOSDYF	Pseudo-random integer from uniform distribution
GO5DZF	Pseudo-random logical (boolean) value
GOSEAF	Set up reference vector for multivariate Normal distribution
G05EBF	Set up reference vector for generating pseudo-random integers, uniform distribution
GOSECF	Set up reference vector for generating pseudo-random integers, Poisson distribution
G05EDF	Set up reference vector for generating pseudo-random integers, binomial distribution
G05EEF	Set up reference vector for generating pseudo-random integers, negative binomial distribution
GOSEFF	Set up reference vector for generating pseudo-random integers, hypergeometric distribution
G05EGF	Set up reference vector for univariate ARMA time series model
GOSEHF	Pseudo-random permutation of an integer vector
G05EJF	Pseudo-random sample from an integer vector
G05EWF	Generate next term from reference vector for ARMA time series model
G05EXF	Set up reference vector from supplied cumulative distribution function or probability distribu-
	tion function
G05EYF	Pseudo-random integer from reference vector
G05EZF	Pseudo-random multivariate Normal vector from reference vector
G05FAF	Generates a vector of random numbers from a uniform distribution
G05FBF	Generates a vector of random numbers from an (negative) exponential distribution
G05FDF	Generates a vector of random numbers from a Normal distribution
G05FEF	Generates a vector of pseudo-random numbers from a beta distribution
G05FFF	Generates a vector of pseudo-random numbers from a gamma distribution
G05FSF	Generates a vector of pseudo-random variates from von Mises distribution
G05GAF	Computes random orthogonal matrix
G05GBF	Computes random correlation matrix
G05HDF	Generates a realisation of a multivariate time series from a VARMA model

Chapter G07 - Univariate Estimation

-	
G07AAF	Computes confidence interval for the parameter of a binomial distribution
G07ABF	Computes confidence interval for the parameter of a Poisson distribution
G07BBF	Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
G07BEF	Computes maximum likelihood estimates for parameters of the Weibull distribution
G07CAF	Computes t -test statistic for a difference in means between two Normal populations, confidence interval
G07DAF	Robust estimation, median, median absolute deviation, robust standard deviation
G07DBF	Robust estimation, M-estimates for location and scale parameters, standard weight functions
G07DCF	Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
G07DDF	Computes a trimmed and winsorized mean of a single sample with estimates of their variance
G07EAF	Robust confidence intervals, one-sample
G07EBF	Robust confidence intervals, two-sample

Chapter G08 - Nonparametric Statistics

Chapter	Gus - Nonparametric Statistics
G08AAF	Sign test on two paired samples
G08ACF	Median test on two samples of unequal size
G08AEF	Friedman two-way analysis of variance on k matched samples
G08AFF	Kruskal-Wallis one-way analysis of variance on k samples of unequal size
G08AGF	Performs the Wilcoxon one-sample (matched pairs) signed rank test
G08AHF	Performs the Mann-Whitney U test on two independent samples
G08AJF	Computes the exact probabilities for the Mann-Whitney U statistic, no ties in pooled sample
G08AKF	Computes the exact probabilities for the Mann-Whitney U statistic, ties in pooled sample
G08ALF	Performs the Cochran Q test on cross-classified binary data
G08BAF	Mood's and David's tests on two samples of unequal size
G08CBF	Performs the one-sample Kolmogorov-Smirnov test for standard distributions
G08CCF	Performs the one-sample Kolmogorov-Smirnov test for a user-supplied distribution

LIBCONTS.23 [NP3390/19]

GO8CDF GO8CGF GO8DAF GO8EAF GO8EBF GO8ECF GO8EDF GO8RAF GO8RBF	Performs the two-sample Kolmogorov-Smirnov test Performs the χ^2 goodness of fit test, for standard continuous distributions Kendall's coefficient of concordance Performs the runs up or runs down test for randomness Performs the pairs (serial) test for randomness Performs the triplets test for randomness Performs the gaps test for randomness Regression using ranks, uncensored data Regression using ranks, right-censored data
Chapter	G10 - Smoothing in Statistics
G10ABF G10ACF G10BAF G10CAF G10ZAF	Fit cubic smoothing spline, smoothing parameter given Fit cubic smoothing spline, smoothing parameter estimated Kernel density estimate using Gaussian kernel Compute smoothed data sequence using running median smoothers Reorder data to give ordered distinct observations
Chapter	G11 - Contingency Table Analysis
G11AAF G11BAF G11BBF G11BCF G11CAF G11SAF G11SBF	χ^2 statistics for two-way contingency table Computes multiway table from set of classification factors using selected statistic Computes multiway table from set of classification factors using given percentile/quantile Computes marginal tables for multiway table computed by G11BAF or G11BBF Returns parameter estimates for the conditional analysis of stratified data Contingency table, latent variable model for binary data Frequency count for G11SAF
Chapter	G12 - Survival Analysis
G12AAF G12BAF G12ZAF	Computes Kaplan-Meier (product-limit) estimates of survival probabilities Fits Cox's proportional hazard model Creates the risk sets associated with the Cox proportional hazards model for fixed covariates
Chapter	G13 - Time Series Analysis
G13AAF G13ABF G13ACF G13AFF G13AFF G13AFF G13AHF G13AJF G13ASF G13AUF G13BAF G13BBF G13BBF G13BBF G13BBF G13BBF G13BBF G13BBF G13BBF	Univariate time series, seasonal and non-seasonal differencing Univariate time series, sample autocorrelation function Univariate time series, partial autocorrelations from autocorrelations Univariate time series, preliminary estimation, seasonal ARIMA model Univariate time series, estimation, seasonal ARIMA model (comprehensive) Univariate time series, estimation, seasonal ARIMA model (easy-to-use) Univariate time series, update state set for forecasting Univariate time series, forecasting from state set Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model Univariate time series, diagnostic checking of residuals, following G13AEF or G13AFF Computes quantities needed for range-mean or standard deviation-mean plot Multivariate time series, filtering (pre-whitening) by an ARIMA model Multivariate time series, filtering by a transfer function model Multivariate time series, preliminary estimation of transfer function model Multivariate time series, estimation of multi-input model Multivariate time series, update state set for forecasting from multi-input model Multivariate time series, forecasting from state set of multi-input model Multivariate time series, state set and forecasts from fully specified multi-input model Univariate time series, state set and forecasts from fully specified multi-input model Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen
G13CBF	lag window Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window

LIBCONTS.24 [NP3390/19]

Library Information Library Contents

G13CCF	Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
G13CDF	Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
G13CEF	Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra
G13CFF	Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra
G13CGF	Multivariate time series, noise spectrum, bounds, impulse response function and its standard error
G13DBF	Multivariate time series, multiple squared partial autocorrelations
G13DCF	Multivariate time series, estimation of VARMA model
G13DJF	Multivariate time series, forecasts and their standard errors
G13DKF	Multivariate time series, updates forecasts and their standard errors
G13DLF	Multivariate time series, differences and/or transforms (for use before G13DCF)
G13DMF	Multivariate time series, sample cross-correlation or cross-covariance matrices
G13DNF	Multivariate time series, sample partial lag correlation matrices, χ^2 statistics and significance levels
G13DPF	Multivariate time series, partial autoregression matrices
G13DSF	Multivariate time series, diagnostic checking of residuals, following G13DCF
G13DXF	Calculates the zeros of a vector autoregressive (or moving average) operator
G13EAF	Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
G13EBF	Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter

Chapter H - Operations Research

Chapter M01 - Sorting

-	_
MO1CAF	Sort a vector, real numbers
MO1CBF	Sort a vector, integer numbers
M01CCF	Sort a vector, character data
MO1DAF	Rank a vector, real numbers
MO1DBF	Rank a vector, integer numbers
MO1DCF	Rank a vector, character data
MO1DEF	Rank rows of a matrix, real numbers
MO1DFF	Rank rows of a matrix, integer numbers
MO1DJF	Rank columns of a matrix, real numbers
MO1DKF	Rank columns of a matrix, integer numbers
MO1DZF	Rank arbitrary data
MO1EAF	Rearrange a vector according to given ranks, real numbers
MO1EBF	Rearrange a vector according to given ranks, integer numbers
MO1ECF	Rearrange a vector according to given ranks, character data
MO1EDF	Rearrange a vector according to given ranks, complex numbers
MO1ZAF	Invert a permutation

```
M01ZBF Check validity of a permutation

M01ZCF Decompose a permutation into cycles
```

Chapter P01 - Error Trapping

POIABF Return value of error indicator/terminate with error message

Chapter S - Approximations of Special Functions

```
ln(1+x)
S01BAF
            Complex exponential, e^z
S01EAF
S07AAF
            \tan x
S09AAF
            \arcsin x
S09ABF
            \arccos x
S10AAF
            \tanh x
S10ABF
            \sinh x
            \cosh x
S10ACF
S11AAF
            arctanh x
            arcsinh x
S11ABF
S11ACF
            \operatorname{arccosh} x
            Exponential integral E_1(x)
S13AAF
S13ACF
            Cosine integral Ci(x)
            Sine integral Si(x)
S13ADF
            Gamma function
S14AAF
            Log Gamma function
S14ABF
S14ACF
            \psi(x) - \ln x
S14ADF
            Scaled derivatives of \psi(x)
            Incomplete Gamma functions P(a, x) and Q(a, x)
S14BAF
            Cumulative normal distribution function P(x)
S15ABF
            Complement of cumulative normal distribution function Q(x)
S15ACF
            Complement of error function erfc(x)
S15ADF
            Error function erf(x)
S15AEF
            Dawson's integral
S15AFF
            Scaled complex complement of error function, \exp(-z^2)\operatorname{erfc}(-iz)
S15DDF
            Bessel function Y_0(x)
S17ACF
S17ADF
            Bessel function Y_1(x)
            Bessel function J_0(x)
S17AEF
            Bessel function J_1(x)
S17AFF
            Airy function Ai(x)
S17AGF
S17AHF
            Airy function Bi(x)
            Airy function Ai'(x)
S17AJF
S17AKF
            Airy function Bi'(x)
            Bessel functions Y_{\nu+a}(z), real a \ge 0, complex z, \nu = 0, 1, 2, \dots
S17DCF
            Bessel functions J_{\nu+a}(z), real a \ge 0, complex z, \nu = 0, 1, 2, \dots
S17DEF
            Airy functions Ai(z) and Ai'(z), complex z
S17DGF
            Airy functions Bi(z) and Bi'(z), complex z
S17DHF
            Hankel functions H_{\nu+a}^{(j)}(z), j=1,2, real a\geq 0, complex z, \nu=0,1,2,\ldots
S17DLF
            Modified Bessel function K_0(x)
S18ACF
S18ADF
            Modified Bessel function K_1(x)
S18AEF
            Modified Bessel function I_0(x)
            Modified Bessel function I_1(x)
S18AFF
            Modified Bessel function e^x K_0(x)
S18CCF
            Modified Bessel function e^x K_1(x)
S18CDF
            Modified Bessel function e^{-|x|}I_0(x)
S18CEF
            Modified Bessel function e^{-|x|}I_1(x)
S18CFF
            Modified Bessel functions K_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, \ldots
S18DCF
            Modified Bessel functions I_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, \ldots
S18DEF
            Kelvin function ber x
S19AAF
            Kelvin function bei x
S19ABF
```

LIBCONTS.26 [NP3390/19]

Library Contents

S19ACF	Kelvin function ker x
S19ADF	Kelvin function kei x
S20ACF	Fresnel integral $S(x)$
S20ADF	Fresnel integral $C(x)$
S21BAF	Degenerate symmetrised elliptic integral of 1st kind $R_C(x,y)$
S21BBF	Symmetrised elliptic integral of 1st kind $R_F(x, y, z)$
S21BCF	Symmetrised elliptic integral of 2nd kind $R_D(x, y, z)$
S21BDF	Symmetrised elliptic integral of 3rd kind $R_J(x, y, z, r)$
S21CAF	Jacobian elliptic functions sn, cn and dn

Chapter X01 - Mathematical Constants

X01AAF Provides the mathematical constant π
--

X01ABF Provides the mathematical constant γ (Euler's Constant)

Chapter X02 - Machine Constants

XO2AHF	The largest permissible argument for sin and cos
XO2AJF	The machine precision
X02AKF	The smallest positive model number
XO2ALF	The largest positive model number
XO2AMF	The safe range parameter
XO2ANF	The safe range parameter for complex floating-point arithmetic
XO2BBF	The largest representable integer
XO2BEF	The maximum number of decimal digits that can be represented
XO2BHF	The floating-point model parameter, b
XO2BJF	The floating-point model parameter, p
X02BKF	The floating-point model parameter e_{\min}
X02BLF	The floating-point model parameter e_{max}
XO2DAF	Switch for taking precautions to avoid underflow
XO2DJF	The floating-point model parameter ROUNDS

Chapter X03 - Inner Products

XO3AAF Real inner product added to initial value, basic/additional precision

XO3ABF Complex inner product added to initial value, basic/additional precision

Chapter X04 - Input/Output Utilities

```
XO4AAF
           Return or set unit number for error messages
XO4ABF
           Return or set unit number for advisory messages
           Open unit number for reading, writing or appending, and associate unit with named file
XO4ACF
           Close file associated with given unit number
XO4ADF
           Write formatted record to external file
XO4BAF
           Read formatted record from external file
X04BBF
XO4CAF
           Print real general matrix (easy-to-use)
           Print real general matrix (comprehensive)
XO4CBF
           Print real packed triangular matrix (easy-to-use)
X04CCF
           Print real packed triangular matrix (comprehensive)
X04CDF
XO4CEF
           Print real packed banded matrix (easy-to-use)
           Print real packed banded matrix (comprehensive)
X04CFF
           Print complex general matrix (easy-to-use)
XO4DAF
           Print complex general matrix (comprehensive)
XO4DBF
           Print complex packed triangular matrix (easy-to-use)
X04DCF
           Print complex packed triangular matrix (comprehensive)
XO4DDF
           Print complex packed banded matrix (easy-to-use)
X04DEF
XO4DFF
           Print complex packed banded matrix (comprehensive)
           Print integer matrix (easy-to-use)
XO4EAF
X04EBF
           Print integer matrix (comprehensive)
```

Chapter X05 - Date and Time Utilities

Return date and time as an array of integers X05AAF Convert array of integers representing date and time to character string X05ABF Compare two character strings representing date and time

X05ACF Return the CPU time X05BAF

LIBCONTS.28 (last)

Introduction Withdrawn Routines

Withdrawn Routines

This document lists all those routines that have been present in earlier Marks of the Library (back as far as Mark 6), but have since been withdrawn. Copies of these documents may be obtained from NAG upon request. The document gives the names of the routines which are now recommended as their replacements. Another document 'Advice on Replacement Calls for Withdrawn/Superseded Routines' gives more detailed guidance for those routines withdrawn since Mark 13.

Withdrawn	Mark of	Recommended Replacement
Routine	Withdrawal	
C02ADF	15	C02AFF
C02AEF	16	C02AGF
C05AAF	9	C05ADF
C05ABF	9	C05ADF
C05ACF	9	C05ADF
C05NAF	10	C05NBF or C05NCF
C05PAF	8	C05PBF or C05PCF
C06AAF	9	C06ECF or C06FRF
C06ABF	9	C06EAF or C06FPF
C06ACF	12	C06EKF or C06FKF
C06ADF	12	C06FFF
D01AAF	8	D01AJF
D01ABF	8	D01AJF
D01ACF	9	D01BDF
D01ADF	8	D01BAF or D01BBF
D01AEF	8	D01BAF or D01BBF
D01AFF	8	D01BAF or D01BBF
D01AGF	9	D01AJF
D01FAF	11	D01GBF
D02AAF	8	D02PDF and related routines
D02ABF	8	D02PCF and related routines
D02ADF	9	D02HAF or D02GAF
D02AFF	9	D02TGF
D02AHF	8	D02CJF or D02QFF
D02AJF	8	D02EJF or D02NBF and related routines
D02BAF	18	D02PCF and associated D02P routines
D02BBF	18	D02PCF and associated D02P routines
D02BDF	18	D02PCF and associated D02P routines
D02CAF	18	D02CJF
D02CBF	18	D02CJF
D02CGF	18	D02CJF
D02CHF	18	D02CJF
D02EAF	18	D02EJF
D02EBF	18	D02EJF
D02EGF	18	D02EJF
D02EHF	18	D02EJF
D02PAF	18	D02PDF and associated D02P routines
D02QAF	14	D02QFF, D02QWF and D02QXF
D02QBF	13	D02NBF and related routines
D02QDF	17	D02NBF or D02NCF
D02QQF	17	not needed except with D02QDF
D02XAF	18	D02PXF and associated D02P routines
D02XBF	18	D02PXF and associated D02P routines
D02XGF	14	D02QZF
D02XHF	14	D02QZF
D02YAF	18	D02PDF and associated D02P routines
D02TAF D03PAF	17	D03PCF
DOI AT	11	Door Or

[NP3390/19] WITHDRAWN.1

Withdrawn Routine	Mark of Withdrawal	Recommended Replacement
D03PBF	17	D03PCF
D03PGF	17	D03PCF
E01ACF	15	E01DAF and E02DEF
E01ADF	9	E01BAF
E01ADF E02DBF	16	E02DEF
E02DBF E04AAF	7	E04ABF
E04AAF E04BAF	7	E04BBF
E04DAF E04CDF	7	E04UCF
E04CEF	7	E04JAF
E04CEF	8	E04UCF
E04CGF	13	E04JAF
E04CGT E04DBF	13	E04DGF
E04DBF E04DCF	7	E04UCF or E04KDF
E04DDF	8	E04UCF or E04KDF
E04DEF	13	E04KAF
E04DEF	13	E04KCF
E04EAF	8	E04LBF
E04EAF E04EBF	13	E04LAF
E04EBF E04FAF	8	E04FCF or E04FDF
E04FBF	7	E04FCF or E04FDF
E04FDF	19	E04FYF
E04FDF E04GAF	8	E04GBF, E04GCF, E04GDF or E04GEF
E04GAF E04GCF	19	E04GYF
E04GCF E04HAF	7	E04UCF
E04HAF	16	no longer required
E04HFF	19	E04HYF
E04HTT E04JAF	19	E04JYF
E04JAF E04JBF	16	E04UCF
E04JBF E04KAF	19	E04KYF
E04KAF E04KBF	16	E04UCF
E04KBF E04KCF	19	E04KZF
E04KCF E04LAF	19	E04LYF
E04LAT E04MBF	18	E04MFF
E04NAF	18	E04NFF
E04NAF	13	E04UCF
E04UPF	19	E04UNF
E04VAF	12	E04UCF
E04VBF	12	E04UCF
E04VCF	17	E04UCF
E04VDF	17	E04UCF
E04WAF	12	E04UCF
E04ZAF	12	E04ZCF
E04ZBF	12	no longer required
F01AAF	17	F07ADF (SGETRF/DGETRF) and F07AJF (SGETRI/DGETRI)
F01ACF	16	F01ABF
F01AEF	18	F07FDF (SPOTRF/DPOTRF) and F08SEF (SSYGST/DSYGST)
F01AFF	18	F06YJF (STRSM/DTRSM)
F01AGF	18	F08FEF (SSYTRD/DSYTRD)
F01AHF	18	F08FGF (SORMTR/DORMTR)
F01AJF	18	F08FEF (SSYTRD/DSYTRD) and F08FFF (SORGTR/DORGTR)
F01AKF	18	F08NEF (SGEHRD/DGEHRD)
F01ALF	18	F08NGF (SORMHR/DORMHR)
F01AMF	18	F08NSF (CGEHRD/ZGEHRD)
F01ANF	18	F08NTF (CUNMHR/ZUNMHR)
F01APF	18	F08NFF (SORGHR/DORGHR)
1 01/11 1	10	

WITHDRAWN.2 [NP3390/19]

Introduction Withdrawn Routines

Withdrawn Routine	Mark of Withdrawal	Recommended Replacement
F01ATF	18	F08NHF (SGEBAL/DGEBAL)
F01AUF	18	F08NJF (SGEBAK/DGEBAK)
F01AVF	18	F08NVF (CGEBAL/ZGEBAL)
F01AWF	18	F08NWF (CGEBAK/ZGEBAK)
F01AXF	18	F08BEF (SGEQPF/CGEQPF)
F01AYF	18	F08GEF (SSPTRD/DSPTRD)
F01AZF	18	F08GGF (SOPMTR/DOPMTR)
F01BCF	18	F08FSF (CHETRD/ZHETRD) and F08FTF (CUNGTR/ZUNGTR)
F01BDF	18	F07FDF (SPOTRF/DPOTRF) and F08SEF (SSYGST/DSYGST)
F01BEF	18	F06YFF (STRMM/DTRMM)
F01BFF	8	F07GDF (SPPTRF/DPPTRF) or F07PDF (SSPTRF/DSPTRF)
F01BHF	9	F02WEF
F01BJF	9	F08HEF (SSBTRD/DSBTRD)
F01BKF	9	F02WDF
F01BMF	9	F07BDF (SGBTRF/DGBTRF)
F01BNF	17	F07FRF (CPOTRF/ZPOTRF)
F01BPF	17	F07FRF (CPOTRF/ZPOTRF) and F07FWF (CPOTRI/ZPOTRI)
F01BQF	16	F07GDF (SPPTRF/DPPTRF) or F07PDF (SSPTRF/DSPTRF)
F01BTF	18	F07ADF (SGETRF/DGETRF)
F01BWF	18	F08HEF (SSBTRD/DSBTRD)
F01BXF	17	F07FDF (SPOTRF/DPOTRF)
F01CAF	14	F06QHF
F01CBF	14	F06QHF
F01CCF	7	F06QFF
F01CDF	15	F01CTF
F01CEF	15	F01CTF
F01CFF	14	F06QFF
F01CFF	15	F01CTF
F01CHF	15	F01CTF
F01CJF	8	F01CRF
F01CLF	16	F06YAF (SGEMM/DGEMM)
F01CMF	14	F06QFF
F01CNF	13	F06EFF (SCOPY/DCOPY)
F01CPF	13	F06EFF (SCOPY/DCOPY)
F01CQF	13	F06FBF
F01CSF	13	F06PEF (SSPMV/DSPMV)
F01DAF	13	F06EAF (SDOT/DDOT)
F01DBF	13	X03AAF
F01DCF	13	F06GAF (CDOTU/ZDOTU)
F01DDF	13	X03ABF
F01DEF	14	F06EAF (SDOT/DDOT)
F01LBF	18	F07BDF (SGBTRF/DGBTRF)
F01LZF	15	F08KEF (SGEBRD/DGEBRD) and F08KFF (SORGBR/DORGBR)
1 011121	10	or F08KGF (SORMBR/DORMBR)
F01MAF	19	F11JAF
F01NAF	17	F07BRF (CGBTRF/ZGBTRF)
	15	F08AEF (SGEQRF/DGEQRF)
F01QAF		F01QJF
F01QBF	15 18	F08AEF (SGEQRF/DGEQRF)
F01QCF		F08AGF (SORMQR/DORMQR)
F01QDF	18 18	F08AFF (SORGQR/DORGQR)
F01QEF	18	
F01QFF	18	F08BEF (SGEQPF/DGEQPF)
F01RCF	18	F08ASF (CGEQRF/ZGEQRF) F08AUF (CUNMOR/ZUNMOR)
F01RDF	18	F08AUF (CUNNQR/ZUNMQR)
F01REF	18	F08ATF (CUNGQR/ZUNGQR)
F01RFF	18	F08BSF (CGEQPF/ZGEQPF)

[NP3390/19] WITHDRAWN.3

Withdrawn Routine	Mark of Withdrawal	Recommended Replacement
F02AAF	18	F02FAF
F02ABF	18	F02FAF
F02ADF	18	F02FDF
F02ADF F02AEF	18	F02FDF
	18	F02EBF
F02AFF	18	F02EBF
F02AGF	8	F02ECF
F02AHF F02AJF	18	F02GBF
	18	F02GBF
FO2AKF	8	F02GCF
F02ALF	18	F08JEF (SSTEQR/DSTEQR)
F02AMF		F08PSF (CHSEQR/ZHSEQR)
F02ANF	18	F08PEF (SHSEQR/DHSEQR)
F02APF	18	F08PEF (SHSEQR/DHSEQR) and F08QKF (STREVC/DTREVC)
F02AQF	18	F08PSF (CHSEQR/ZHSEQR) and F08QXF (CTREVC/ZTREVC)
F02ARF	18	F08PKF (SHSEIN/DHSEIN)
F02ATF	8	
F02AUF	8	F08PXF (CHSEIN/ZHSEIN)
F02AVF	18	FO8JFF (SSTERF/DSTERF)
F02AWF	18	FO2HAF
F02AXF	18	FO2HAF
F02AYF	18	F08JSF (CSTEQR/ZSTEQR)
F02BBF	19	F02FCF
F02BCF	19	F02ECF
F02BDF	19	F02GCF
F02BEF	18	F08JJF (SSTEBZ/DSTEBZ) and F08JKF (SSTEIN/DSTEIN)
F02BFF	18	F08JJF (SSTEBZ/DSTEBZ)
F02BKF	18	F08PKF (SHSEIN/DHSEIN)
F02BLF	18	F08PXF (CHSEIN/ZHSEIN)
F02BMF	9	F08HEF (SSBTRD/DSBTRD) and F08JJF (SSTEBZ/DSTEBZ)
F02SWF	18	F08KEF (SGEBRD/DGEBRD)
F02SXF	18	F08KFF (SORGBR/DORGBR) or F08KGF (SORMBR/DORMBR)
F02SYF	18	F08MEF (SBDSQR/DBDSQR)
F02SZF	15	F08MEF (SBDSQR/DBDSQR)
F02UWF	18	F08KSF (CGEBRD/ZGEBRD)
F02UXF	18	F08KTF (CUNGBR/ZUNGBR) or F08KUF (CUNMBR/ZUNMBR)
F02UYF	18	F08MSF (CBDSQR/ZBDSQR)
F02WAF	16	F02WEF
F02WBF	14	F02WEF
F02WCF	14	F02WEF
F03AGF	17	F07HDF (SPBTRF/DPBTRF)
F03AHF	17	F07ARF (CGETRF/ZGETRF)
F03AJF	8	F01BRF
F03AKF	8	F01BSF
F03ALF	9	F07BDF (SGBTRF/DGBTRF)
F03AMF	17	none - see the F03 Chapter Introduction
F04AKF	17	F07ASF (CGETRS/ZGETRS)
F04ALF	17	F07HEF (SPBTRS/DPBTRS)
F04ANF	18	F08AGF (SORMQR/DORMQR) and F06PJF (STRSV/DTRSV)
F04APF	8	F04AXF
F04AI F	16	F07GEF (SPPTRS/DPPTRS) or F07PEF (SSPTRS/DSPTRS)
F04AUF	9	F04JGF
F04AVF	9	F07BEF (SGBTRS/DGBTRS)
F04AVF	9 17	F07FSF (CPOTRS/ZPOTRS)
F04AVF	18	F07AEF (SGETRS/DGETRS)
	16 17	F07FEF (SPOTRS/DPOTRS)
F04AZF	11	ruller (31 Olim)

WITHDRAWN.4 [NP3390/19]

Introduction Withdrawn Routines

Withdrawn	Mark of	Recommended Replacement
Routine	Withdrawal	
F04LDF	18	F07BEF (SGBTRS/DGBTRS)
F04MAF	19	F11JCF
F04MBF	19	F11GAF, F11GBF and F11GCF (or F11JCF or F11JEF)
F04NAF	17	F07BSF (CGBTRS/ZGBTRS)
F05ABF	14	F06EJF (SNRM2/DNRM2)
F06QGF	16	F06RAF, F06RCF and F06RJF
F06VGF	16	F06UAF, F06UCF and F06UJF
G01ACF	9	G04BBF
G01BAF	16	G01EBF
G01BBF	16	G01EDF
G01BCF	16	G01ECF
G01BDF	16	G01EEF
G01CAF	16	G01FBF
G01CBF	16	G01FDF
G01CCF	16	G01FCF
G01CDF	16	G01FEF
G01CEF	18	G01FAF
G02CJF	16	G02DAF and G02DGF
G04ADF	17	G04BCF
G04AEF	17	G04BBF
G04AFF	17	G04CAF
G05AAF	7	G05CAF
G05ABF	7	G05DAF
G05ACF	7	G05DBF
G05ADF	7	G05DDF
G05AEF	7	G05DDF
G05AFF	7	G05DEF
G05AGF	7	G05DFF
G05AHF	7	G05FFF
G05AJF	7	G05FFF
G05AKF	7	G05FFF
G05ALF	7	G05FEF
G05AMF	7	G05FEF
G05ANF	7	G05DHF
G05APF	7	G05DJF
G05AQF	7	G05DKF
G05ARF	7	G05EXF
G05ASF	7	G05EDF
G05ATF	7	G05EBF
G05AUF	7	G05EFF
G05AVF	7	G05ECF
G05AWF	7	G05EXF
G05AZF	7	G05EYF
G05BAF	7	G05CBF
G05BBF	7	G05CCF
G05DGF	16	G05FFF
G05DLF	16	G05FEF
G05DMF	16	G05FEF
G08ABF	16	G08AGF
G08ADF	16	G08AHF, G08AKF and G08AJF
G08CAF	16	G08CBF
G13DAF	17	G13DMF
H01ABF	12	E04MFF
H01ADF	12	E04MFF
H01AEF	9	E04MFF
H01AFF	12	E04MFF
H01BAF	12	E04MFF

[NP3390/19] WITHDRAWN.5

Withdrawn Routines

Introduction

Withdrawn	Mark of	Recommended Replacement
Routine	Withdrawal	
H02AAF	12	E04NCF
H02BAF	15	H02BBF
M01AAF	13	M01DAF
M01ABF	13	M01DAF
M01ACF	13	M01DBF
M01ADF	13	M01DBF
M01AEF	13	M01DEF and M01EAF
M01AFF	13	M01DEF and M01EAF
M01AGF	13	M01DFF and M01EBF
M01AHF	13	M01DFF and M01EBF
M01AJF	16	M01DAF, M01ZAF and M01CAF
M01AKF	16	M01DAF, M01ZAF and M01CAF
M01ALF	13	M01DBF, M01ZAF and M01CBF
M01AMF	13	M01DBF, M01ZAF and M01CBF
M01ANF	13	M01CAF
M01APF	16	M01CAF
M01AQF	13	M01CBF
M01ARF	13	M01CBF
M01BAF	13	M01CCF
M01BBF	13	M01CCF
M01BCF	13	M01CCF
M01BDF	13	M01CCF
P01AAF	13	P01ABF
X02AAF	16	X02AJF
X02ABF	16	X02AKF
X02ACF	16	X02ALF
X02ADF	14	X02AJF and X02AKF
X02AEF	14	X02AMF
X02AFF	14	X02AMF
X02AGF	16	X02AMF
X02BAF	14	X02BHF
X02BCF	14	X02AMF
X02BDF	14	X02AMF
X02CAF	17	not needed except with F01BTF and F01BXF

Introduction Replacement Calls

Advice on Replacement Calls for Withdrawn/Superseded Routines

The following list illustrates how a call to routine, which has been withdrawn or superseded since Mark 13, may be replaced by a call to a new routine. The list indicates the minimum change necessary, but many of the replacement routines have additional flexibility and users may wish to take advantage of new features. It is strongly recommended that users consult the routine documents. Copies of the documents for withdrawn routines may be obtained from NAG upon request.

C02 - Zeros of Polynomials

C02ADF

Withdrawn at Mark 15

```
Old: CALL CO2ADF(AR, AC, N, REZ, IMZ, TOL, IFAIL)
New: CALL CO2AFF(A, N-1, SCALE, Z, W, IFAIL)
```

The coefficients are stored in the **real** array A of dimension (2, N+1) rather than in the arrays AR and AC, the zeros are returned in the **real** array Z of dimension (2,N) rather than in the arrays REZ and IMZ, and W is a **real** work array of dimension (4 * (N+1)).

C02AEF

Withdrawn at Mark 16

```
Old: CALL CO2AEF(A,N,REZ,IMZ,TOL,IFAIL)
New: CALL CO2AGF(A,N-1,SCALE,Z,W,IFAIL)
```

The zeros are returned in the **real** array Z of dimension (2,N) rather than in the arrays REZ and IMZ, and W is a **real** work array of dimension (2*(N+1)).

D02 - Ordinary Differential Equations

D02BAF

Withdrawn at Mark 18

THRES, YP and YMAX are *real* arrays of length N and the length of array W needs extending to length 14*N.

D02BBF

Withdrawn at Mark 18

[NP3390/19] REPLACE.1

Replacement Calls

Introduction

THRES, YP and YMAX are *real* arrays of length N and the length of array W needs extending to length 14*N.

D02BDF

Withdrawn at Mark 18

THRES, YP, YMAX and RMSERR are *real* arrays of length N and W is now a *real* one-dimensional array of length 32*N.

D02CAF

Withdrawn at Mark 18

```
Old: CALL DO2CAF(X,XEND,N,Y,TOL,FCN,W,IFAIL)
New: CALL DO2CJF(X,XEND,N,Y,FCN,TOL,'M',DO2CJX,DO2CJW,W,IFAIL)
```

D02CJX is a subroutine provided in the NAG Fortran Library and D02CJW is a *real* function also provided. Both must be declared as EXTERNAL. The array W needs to be 5 elements greater in length.

D02CBF

Withdrawn at Mark 18

```
Old: CALL DO2CBF(X,XEND,N,Y,TOL,IRELAB,FCN,OUTPUT,W,IFAIL)

New: CALL DO2CJF(X,XEND,N,Y,FCN,TOL,RELABS,OUTPUT,DO2CJW,W,IFAIL)
```

D02CJW is a *real* function provided in the NAG Fortran Library and must be declared as EXTERNAL. The array W needs to be 5 elements greater in length. The integer parameter IRELAB (which can take values 0, 1 or 2) is catered for by the new CHARACTER*1 argument RELABS (whose corresponding values are 'M', 'A' and 'R').

D02CGF

Withdrawn at Mark 18

D02CJX is a subroutine provided in the NAG Fortran Library and should be declared as EXTERNAL. Note the functionality of HMAX is no longer available directly. Checking the value of Y(M)-VAL at intervals of length HMAX can be effected by a user-supplied procedure OUTPUT in place of D02CJX in the call described above. See the routine document for D02CJF for more details.

D02CHF

Withdrawn at Mark 18

```
Old: CALL DO2CHF(X,XEND,N,Y,TOL,IRELAB,HMAX,FCN,G,W,IFAIL)
New: CALL DO2CJF(X,XEND,N,Y,FCN,TOL,RELABS,DO2CJX,G,W,IFAIL)
```

REPLACE.2 [NP3390/19]

Introduction Replacement Calls

D02CJX is a subroutine provided by the NAG Fortran Library and should be declared as EXTERNAL. The functionality of HMAX can be provided as described under the replacement call for D02CGF above. The relationship between the parameters IRELAB and RELABS is described under the replacement call for D02CBF.

D02EAF

Withdrawn at Mark 18

D02EJY and D02EJX are subroutines provided in the NAG Fortran Library and D02EJW is a *real* function also provided. All must be declared as EXTERNAL.

D02EBF

Withdrawn at Mark 18

```
Old: CALL DO2EBF(X,XEND,N,Y,TOL,IRELAB,FCN,MPED,PEDERV,OUTPUT,W,IW,

+ IFAIL)

New: CALL DO2EJF(X,XEND,N,Y,FCN,PEDERV,TOL,RELABS,OUTPUT,DO2EJW,W,IW,

+ IFAIL)
```

D02EJW is a *real* function provided in the NAG Fortran Library and must be declared as EXTERNAL. The integer parameter IRELAB (which can take values 0, 1 or 2) is catered for by the new CHARACTER*1 argument RELABS (whose corresponding values are 'M', 'A' and 'R'). If MPED = 0 in the call of D02EBF then PEDERV must be the routine D02EJY, which is supplied in the Library and should be declared as EXTERNAL.

D02EGF

Withdrawn at Mark 18

D02EJY and D02EJX are subroutines provided in the NAG Fortran Library and should be declared as EXTERNAL. Note the functionality of HMAX is no longer available directly. Checking the value of Y(M)-VAL at intervals of length HMAX can be effected by a user-supplied procedure OUTPUT in place of D02EJX in the call described above. See the routine document for D02EJF for more details.

D02EHF

Withdrawn at Mark 18

```
Old: CALL DO2EHF(X,XEND,N,Y,TOL,IRELAB,HMAX,MPED,PEDERV,FCN,G,W,IFAIL)
New: CALL DO2EJF(X,XEND,N,Y,FCN,PEDERV,TOL,RELABS,DO2EJX,G,W,IFAIL)
```

D02EJX is a subroutine provided by the NAG Fortran Library and should be declared as EXTERNAL. The functionality of HMAX can be provided as described under the replacement call for D02EGF above. The relationship between the parameters IRELAB and RELABS is described under the replacement call for D02EBF. If MPED = 0 in the call of D02EHF then PEDERV must be the routine D02EJY, which is supplied in the Library and should be declared as EXTERNAL.

D02PAF

Withdrawn at Mark 18

Existing programs should be modified to call D02PVF and D02PDF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

[NP3390/19] REPLACE.3

Replacement Calls

Introduction

D02QAF

Withdrawn at Mark 14

Existing programs should be modified to call D02QWF and D02QFF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02OBF

Withdrawn at Mark 13

Existing programs should be modified to call D02NSF, D02NVF and D02NBF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02QDF

Withdrawn at Mark 17

Existing programs should be modified to call D02NSF, D02NVF and D02NBF, or D02NTF, D02NVF and D02NCF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02QQF

Withdrawn at Mark 17

Not needed except with D02QDF.

D02XAF, D02XBF

Withdrawn at Mark 18

Not needed except with D02PAF. The equivalent routine is D02PXF.

D02XGF, D02XHF

Withdrawn at Mark 14

Not needed except with D02QAF. The equivalent routine is D02QZF.

D02YAF

Withdrawn at Mark 18

There is no precise equivalent to this routine. The closest alternative routine is D02PDF.

D03 - Partial Differential Equations

D03PAF, D03PBF, D03PGF

Withdrawn at Mark 17

Existing programs should be modified to call D03PCF. The replacement routine is designed to solve a broader class of problems. Therefore it is not possible to give precise details of a replacement call. Please consult the appropriate routine documents.

E01 - Interpolation

E01ACF

Withdrawn at Mark 15

REPLACE.4 [NP3390/19]

Introduction Replacement Calls

where PX, PY and M are INTEGER variables, LAMDA is a real array of dimension (N1 + 4), MU is a real array of dimension (M1 + 4), C is a real array of dimension (N1*M1), WRK is a real array of dimension ((N1 + 6) * (M1 + 6)), A1, B1 and FF are real arrays of dimension (1), and IWRK is an INTEGER array of dimension (M1).

The above new calls duplicate almost exactly the effect of the old call, except that the new routines produce a single interpolated value for each point, rather than the two alternative values VAL and VALL produced by the old routine. By attempting this duplication, however, efficiency is probably being sacrificed. In general it is preferable to evaluate the interpolating function provided by E01DAF at a set of M points, supplied in arrays A1 and B1, rather than at a single point. In this case, A1, B1 and FF must be dimensioned of length M.

Note also that E01ACF uses natural splines, i.e., splines having zero second derivatives at the ends of the ranges. This is likely to be slightly unsatisfactory, and E01DAF does not have this problem. It does mean however that results produced by E01DAF may not be exactly the same as those produced by E01ACF.

E01SEF

Superseded at Mark 18 Scheduled for withdrawal at Mark 20

```
Old: CALL E01SEF(M,X,Y,F,RNW,RNQ,NW,NQ,FNODES,MINNQ,WRK,IFAIL)
New: CALL E01SGF(M,X,Y,F,NW,NQ,IQ,LIQ,RQ,LRQ,IFAIL)
```

E01SEF has been superseded by E01SGF which gives improved accuracy, facilities for obtaining gradient values and a consistent interface with E01TGF for interpolation of scattered data in three dimensions.

The interpolant generated by the two routines will not be identical, but similar results may be obtained by using the same values of NW and NQ. Details of the interpolant are passed to the evaluator through the arrays IQ and RQ rather than FNODES and RNW.

E01SFF

Superseded at Mark 18 Scheduled for withdrawal at Mark 20

```
Old: CALL E01SFF(M,X,Y,F,RNW,FNODES,PX,PY,PF,IFAIL)
New: CALL E01SHF(M,X,Y,F,IQ,LIQ,RQ,LRQ,1,PX,PY,PF,QX,QY,IFAIL)
```

The two calls will not produce identical results due to differences in the generation routines E01SEF and E01SGF. Details of the interpolant are passed from E01SGF through the arrays IQ and RQ rather than FNODES and RNW.

E01SHF also returns gradient values in QX and QY and allows evaluation at arrays of points rather than just single points.

E02 - Curve and Surface Fitting

E02DBF

Withdrawn at Mark 16

```
Old: CALL EO2DBF(M,PX,PY,X,Y,FF,LAMDA,MV,POINT,NPOINT,C,NC,IFAIL)
New: CALL EO2DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)
```

where WRK is a **real** array of dimension (PY - 4), and IWRK is an INTEGER array of dimension (PY - 4).

E04 - Minimizing or Maximizing a Function

E04CGF

Withdrawn at Mark 13

```
Old: CALL EO4CGF(N,X,F,IW,LIW,W,LW,IFAIL)

New: CALL EO4JAF(N,1,W,W(N+1),X,F,IW,LIW,W(2*N+1),LW-2*N,IFAIL)
```

[NP3390/19] REPLACE.5

E04DBF

Withdrawn at Mark 13

```
Old: CALL EO4DBF(N,X,F,G,XTOL,FEST,DUM,W,FUNCT,MONIT,MAXCAL,IFAIL)
New: CALL EO4DGF(N,OBJFUN,ITER,F,G,X,IWORK,WORK,IUSER,USER,IFAIL)
```

The subroutine providing function and gradient values to E04DGF is OBJFUN: it has a different parameter list to FUNCT, but can be constructed simply as:

```
SUBROUTINE OBJFUN(MODE, N, XC, FC, GC, NSTATE, IUSER, USER)

INTEGER MODE, N, NSTATE, IUSER(*)

real XC(N), FC, GC(N), USER(*)

C

CALL FUNCT(N, XC, FC, GC)

RETURN
END
```

The parameters IWORK and WORK are workspace parameters for E04DGF and must have lengths at least (N + 1) and (12*N) respectively. IUSER and USER must be declared as arrays each of length at least (1).

There is no parameter MONIT to E04DGF, but monitoring output may be obtained by calling an option setting routine. Similarly, values for FEST and MAXCAL may be supplied by calling an option setting routine. See the routine document for further information.

E04DEF

Withdrawn at Mark 13

```
Old: CALL EO4DEF(N,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL EO4KAF(N,1,W,W(N+1),X,F,G,IW,LIW,W(2*N+1),LW-2*N,IFAIL)
```

E04DFF

Withdrawn at Mark 13

```
Old: CALL EO4DFF(N,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL EO4KCF(N,1,W,W(N+1),X,F,G,IW,LIW,W(2*N+1),LW-2*N,IFAIL)
```

E04EBF

Withdrawn at Mark 13

```
Old: CALL E04EBF(N,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04LAF(N,1,W,W(N+1),X,F,G,IW,LIW,W(2*N+1),LW-2*N,IFAIL)
```

E04FDF

Withdrawn at Mark 19

```
Old: CALL EO4FDF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL EO4FYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)
```

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN1 of E04FDF. LSFUN must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN1. It may be derived from LSFUN1 as follows:

```
SUBROUTINE LSFUN(M,N,XC,FVECC,IUSER,USER)
INTEGER M, N, IUSER(*)
real XC(N), FVECC(M), USER(*)

C
CALL LSFUN1(M,N,XC,FVECC)

C
RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

REPLACE.6 [NP3390/19]

Introduction Replacement Calls

E04GCF

Withdrawn at Mark 19

```
Old: CALL EO4GCF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL EO4GYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)
```

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN2 of E04GCF. LSFUN must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN2. It may be derived from LSFUN2 as follows:

```
SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
real XC(N), FVECC(M), FJACC(LJC,N), USER(*)

C
CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
C
RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising. If however, the array IW was used to pass information through E04GCF into LSFUN2, or get information from LSFUN2, then the array IUSER should be declared appropriately and used for this purpose.

E04GEF

Withdrawn at Mark 19

```
Old: CALL EO4GEF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL EO4GZF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)
```

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN2 of E04GEF. LSFUN must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN2. It may be derived from LSFUN2 as follows:

```
SUBROUTINE LSFUN(M,N,X,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
real XC(N), FVECC(M), FJACC(LJC,N), USER(*)
C
CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
C
RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising. If however, the array IW was used to pass information through E04GEF into LSFUN2, or get information from LSFUN2, then the array IUSER should be declared appropriately and used for this purpose.

E04HBF

Withdrawn at Mark 16
Only required in conjunction with E04JBF

E04HFF

Withdrawn at Mark 19

```
Old: CALL EO4HFF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)

New: CALL EO4HYF(M,N,LSFUN,LSHES,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)
```

LSFUN and LSHES appear in the parameter list instead of the fixed-name subroutines LSFUN2 and LSHES2 of E04HFF. LSFUN and LSHES must both be declared as EXTERNAL in the calling (sub)program. In addition they have an extra two parameters, IUSER and USER, over and above those of LSFUN2 and LSHES2. They may be derived from LSFUN2 and LSHES2 as follows:

[NP3390/19] REPLACE.7

```
SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
                 M, N, LJC, IUSER(*)
      INTEGER
                 XC(N), FVECC(M), FJACC(LJC,N), USER(*)
      real
С
      CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
С
      RETURN
      END
C
      SUBROUTINE LSHES(M,N,FVECC,XC,B,LB,IUSER,USER)
                 M, N, LB, IUSER(*)
      INTEGER
                 FVECC(M), XC(N), B(LB), USER(*)
      real
С
      CALL LSHES2(M,N,FVECC,XC,B,LB)
С
      RETURN
      END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising. If however, the array IW was used to pass information through E04HFF into LSFUN2 or LSHES2, or to get information from LSFUN2, then the array IUSER should be declared appropriately and used for this purpose.

E04JAF

Withdrawn at Mark 19

```
Old: CALL EO4JAF(N, IBOUND, BL, BU, X, F, IW, LIW, LW, IFAIL)

New: CALL EO4JYF(N, IBOUND, FUNCT, BL, BU, X, F, IW, LIW, W, LW, IUSER, USER, IFAIL)
```

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT1 of E04JAF. FUNCT must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT1. It may be derived from FUNCT1 as follows:

```
SUBROUTINE FUNCT(N,XC,FC,IUSER,USER)
INTEGER N, IUSER(*)
real XC(N), FC, USER(*)
C
CALL FUNCT1(N,XC,FC)
C
RETURN
FND
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04JBF

Withdrawn at Mark 16

No comparative calls are given between E04JBF and E04UCF since both routines have considerable flexibility and can be called with many different options. E04UCF allows some values to be passed to it, not through the parameter list, but as 'optional parameters', supplied through calls to E04UDF or E04UEF. Names of optional parameters are given here in **bold** type.

E04UCF is a more powerful routine than E04JBF, in that it allows for general linear and nonlinear constraints, and for some or all of the first derivatives to be supplied; however when replacing E04JBF, only the simple bound constraints are relevant, and only function values are assumed to be available.

Therefore E04UCF must be called with NCLIN = NCNLN = 0, with dummy arrays of size (1) supplied as the arguments A, C and CJAC, and with the name of the auxiliary routine E04UDM (UDME04 in some implementations) as the argument CONFUN. The optional parameter **Derivative Level** must be set to 0.

The subroutine providing function values to E04UCF is OBJFUN. It has a different parameter list to FUNCT, but can be constructed as follows:

REPLACE.8 [NP3390/19]

Introduction Replacement Calls

```
SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
INTEGER MODE, N, NSTATE, IUSER(*)

real X(N), OBJF, OBJGRD(N), USER(*)
INTEGER IFLAG,IW(1)

real W(1)

C

IFLAG = 0

CALL FUNCT(IFLAG,N,X,OBJF,OBJGRD,IW,1,W,1)
IF (IFLAG.LT.O) MODE = IFLAG

RETURN
END
```

(This assumes that the arrays IW and W are not used to communicate between FUNCT and the calling program; E04UCF supplies the arrays IUSER and USER specifically for this purpose.)

The functions of the parameters BL and BU are similar, but E04UCF has no parameter corresponding to IBOUND; all elements of BL and BU must be set (as when IBOUND = 0 in the call to E04JBF). The optional parameter Infinite bound size must be set to 1.0e+6 if there are any infinite bounds. The function of the parameter ISTATE is similar but the specification is slightly different. The parameters F and G are equivalent to OBJF and OBJGRD of E04UCF. It should also be noted that E04UCF does not allow a user-supplied routine MONIT, but intermediate output is provided by the routine, under the control of the optional parameters Major print level and Minor print level.

Most of the 'tuning' parameters in E04JBF have their counterparts as 'optional parameters' to E04UCF, as indicated in the following list, but the correspondence is not exact and the specifications must be read carefully.

IPRINT INTYPE	Minor print level Cold start/Warm start
MAXCAL	Minor iteration limit (note that this counts iterations rather than function calls)
ETA	Line search tolerance
XTOL	Optimality tolerance (note that this specifies the accuracy in F rather than the accuracy in X)
STEPMX	Step limit
DELTA	Difference interval

E04KAF

Withdrawn at Mark 19

```
Old: CALL EO4KAF(N, IBOUND, BL, BU, X, F, G, IW, LIW, W, LW, IFAIL)

New: CALL EO4KYF(N, IBOUND, FUNCT, BL, BU, X, F, G, IW, LIW, W, LW, IUSER, USER, IFAIL)
```

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT2 of E04KAF. FUNCT must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT2. It may be derived from FUNCT2 as follows:

```
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
real XC(N), FC, GC(N), USER(*)
C
CALL FUNCT2(N,XC,FC,GC)
C
RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

[NP3390/19] REPLACE.9

E04KBF

Withdrawn at Mark 16

No comparative calls are given between E04KBF and E04UCF since both routines have considerable flexibility and can be called with many different options. Most of the advice given for replacing E04JBF (see above) applies also to E04KBF, and only the differences are given here.

The optional parameter Derivative Level must be set to 1.

The subroutine providing both function and gradient values to E04UCF is OBJFUN. It has a different parameter list to FUNCT, but can be constructed as follows:

```
SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
INTEGER MODE, N, NSTATE, IUSER(*)
real X(N), OBJF, OBJGRD(N), USER(*)
INTEGER IW(1)
real W(1)

C
CALL FUNCT(MODE,N,X,OBJF,OBJGRD,IW,1,W,1)
RETURN
END
```

E04KCF

Withdrawn at Mark 19

```
Old: CALL EO4KCF(N, IBOUND, BL, BU, X, F, G, IW, LIW, W, LW, IFAIL)

New: CALL EO4KZF(N, IBOUND, FUNCT, BL, BU, X, F, G, IW, LIW, W, LW, IUSER, USER, IFAIL)
```

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT2 of E04KCF. FUNCT must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT2. It may be derived from FUNCT2 as follows:

```
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
real XC(N), FC, GC(N), USER(*)

C
CALL FUNCT2(N,XC,FC,GC)

C
RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04LAF

Withdrawn at Mark 19

```
Old: CALL EO4LAF(N, IBOUND, BL, BU, X, F, G, IW, LIW, W, LW, IFAIL)
New: CALL EO4LYF(N, IBOUND, FUNCT, HESS, BL, BU, X, F, G, IW, LIW, W, LW, IUSER, USER, IFAIL)
```

FUNCT and HESS appear in the parameter list instead of the fixed-name subroutines FUNCT2 and HESS2 of E04LAF. FUNCT and HESS must both be declared as EXTERNAL in the calling (sub)program. In addition they have an extra two parameters, IUSER and USER, over and above those of FUNCT2 and HESS2. They may be derived from FUNCT2 and HESS2 as follows:

```
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
real XC(N), FC, GC(N), USER(*)

C
CALL FUNCT2(N,XC,FC,GC)

C
RETURN
END
```

```
SUBROUTINE HESS(N,XC,HESLC,LH,HESDC,IUSER,USER)

INTEGER N, LH, IUSER(*)

real XC(N), HESLC(LH), HESDC(N), USER(*)

C

CALL HESS2(N,XC,HESLC,LH,HESDC)

C

RETURN
END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04MBF

Withdrawn at Mark 18

```
Old: CALL EO4MBF(ITMAX,MSGLVL,N,NCLIN,NCTOTL,NROWA,A,BL,BU,CVEC,
+ LINOBJ,X,ISTATE,OBJLP,CLAMDA,IWORK,LIWORK,WORK,
+ LWORK,IFAIL)

New: CALL EO4MFF(N,NCLIN,A,NROWA,BL,BU,CVEC,ISTATE,X,ITER,OBJLP,
+ AX,CLAMDA,IWORK,LIWORK,WORK,LWORK,IFAIL)
```

The parameter NCTOTL is no longer required. Values for ITMAX, MSGLVL and LINOBJ may be supplied by calling an option setting routine.

E04MFF contains two additional parameters as follows:

```
ITER - INTEGER.

AX(*) - real array of dimension at least max(1,NCLIN).
```

The minimum value of the parameter LIWORK must be increased from $2 \times N$ to $2 \times N + 3$. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04NAF

Withdrawn at Mark 18

```
Old: CALL EO4NAF(ITMAX,MSGLVL,N,NCLIN,NCTOTL,NROWA,NROWH,NCOLH,

+ BIGBND,A,BL,BU,CVEC,FEATOL,HESS,QPHESS,COLD,LP,

+ ORTHOG,X,ISTATE,ITER,OBJ,CLAMDA,IWORK,LIWORK,

+ WORK,LWORK,IFAIL)

New: CALL EO4NFF(N,NCLIN,A,NROWA,BL,BU,CVEC,HESS,NROWH,QPHESS,

+ ISTATE,X,ITER,OBJ,AX,CLAMDA,IWORK,LIWORK,WORK,

+ LWORK,IFAIL)
```

The specification of the subroutine QPHESS must also be changed as follows.

```
Old: SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX)

INTEGER N, NROWH, NCOLH, JTHCOL

real HESS(NROWH,NCOLH), X(N), HX(N)

New: SUBROUTINE QPHESS(N,JTHCOL,HESS,NROWH,X,HX)

INTEGER N, JTHCOL, NROWH

real HESS(NROWH,*), X(N), HX(N)
```

The parameters NCTOTL, NCOLH and ORTHOG are no longer required. Values for ITMAX, MSGLVL, BIGBND, FEATOL, COLD and LP may be supplied by calling an option setting routine.

E04NFF contains one additional parameter as follows:

```
AX(*) - real array of dimension at least max(1,NCLIN).
```

The minimum value of the parameter LIWORK must be increased from $2 \times N$ to $2 \times N + 3$. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04UAF

Withdrawn at Mark 13

No comparative calls are given between E04UAF and E04UCF since both routines have considerable flexibility and can be called with many different options. However users of E04UAF should have no difficulty in making the transition. Most of the 'tuning' parameters in E04UAF have their counterparts as optional parameters to E04UCF, and these may be provided by calling an option setting routine prior to the call to E04UCF. The subroutines providing function and constraint values to E04UCF are OBJFUN and CONFUN respectively: they have different parameter lists to FUNCT1 and CON1, but can be constructed simply as:

```
SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, USER)
                  MODE, N, NSTATE, IUSER(*)
      INTEGER
                  X(N), OBJF, OBJGRD(N), USER(*)
      real
С
      CALL FUNCT1(MODE, N, X, OBJF)
      RETURN
      END
      SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, NEEDC, X, C, CJAC. NSTATE,
                          IUSER, USER)
                  MODE, NCNLN, N, NROWJ, NEEDC(*), NSTATE, IUSER(*)
      INTEGER
                  X(X), C(*), CJAC(NROWJ,*), USER(*)
      real
С
      CALL CON1(MODE, N, NCNLN, X,C)
      RETURN
      END
```

The parameters OBJGRD, NEEDC, CJAC, IUSER and USER are the same as those for E04UCF itself. It is important to note that, unlike FUNCT1 and CON1, a call to CONFUN is not preceded by a call to OBJFUN with the same values in X, so that FUNCT1 and CON1 will need to be modified if this property was being utilized. It should also be noted that E04UCF allows general linear constraints to be supplied separately from nonlinear constraints, and indeed this is to be encouraged, but the above call to CON1 assumes that linear constraints are being regarded as nonlinear.

E04UPF

Withdrawn at Mark 19

```
Old: CALL EO4UPF(M,N,NCLIN,LDA,LDCJ,LDFJ,LDR,A,BL,BU,

+ CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC,

+ CLAMDA,OBJF,R,X,IWORK,LIWORK,WORK,LWORK,

+ IUSER,USER,IFAIL)

New: CALL EO4UNF(M,N,NCLIN,LDA,LDCJ,LDFJ,LDR,A,BL,BU,Y,

+ CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC,

+ CLAMDA,OBJF,R,X,IWORK,LIWORK,WORK,LWORK,

+ IUSER,USER,IFAIL)
```

E04UNF contains one additional parameter as follows:

```
Y(M) - real array.
```

Note that a call to E04UPF is the same as a call to E04UNF with Y(i) = 0.0, for i = 1, 2, ..., M.

E04VCF

Withdrawn at Mark 17

```
Old: CALL EO4VCF(ITMAX,MSGLVL,N,NCLIN,NCNLN,NCTOTL,NROWA,NROWJ,

+ NROWR,BIGBND,EPSAF,ETA,FTOL,A,BL,BU,FEATOL,

+ CONFUN,OBJFUN,COLD,FEALIN,ORTHOG,X,ISTATE,R,ITER,

+ C,CJAC,OBJF,OBJGRD,CLAMDA,IWORK,LIWORK,WORK,LWORK,

+ IFAIL)

New: CALL EO4UCF(N,NCLIN,NCNLN,NROWA,NROWJ,NROWR,A,BL,BU,CONFUN,

+ OBJFUN,ITER,ISTATE,C,CJAC,CLAMDA,OBJF,OBJGRD,R,X,

+ IWORK,LIWORK,WORK,LWORK,IUSER,USER,IFAIL)
```

REPLACE.12 [NP3390/19]

The specification of the subroutine OBJFUN must also be changed as follows:

```
Old: SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE)

INTEGER MODE, N, NSTATE

real X(N), OBJF, OBJGRD(N)

New: SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)

INTEGER MODE, N, NSTATE, IUSER(*)

real X(N), OBJF, OBJGRD(N), USER(*)
```

If NCNLN > 0, the specification of the subroutine CONFUN must also be changed as follows:

```
Old: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE)

INTEGER MODE, NCNLN, N, NROWJ, NSTATE

real X(N), C(NROWJ), CJAC(NROWJ, N)

New: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, NEEDC, X, C, CJAC, NSTATE,

IUSER, USER)

INTEGER MODE, NCNLN, N, NROWJ, NEEDC(NCNLN), NSTATE, IUSER(*)

real X(N), C(NCNLN), CJAC(NROWJ, N), USER(*)
```

If NCNLN = 0, then the name of the dummy routine E04VDM (VDME04 in some implementations) may need to be changed to E04UDM (UDME04 in some implementations) in the calling program.

The parameters NCTOTL, EPSAF, FEALIN and ORTHOG are no longer required. Values for ITMAX, MSGLVL, BIGBND, ETA, FTOL, COLD and FEATOL may be supplied by calling an option setting routine.

E04UCF contains two additional parameters as follows:

```
    IUSER(*) - INTEGER array of dimension at least 1.
    USER(*) - real array of dimension at least 1.
```

The minimum value of the parameter LIWORK must be increased from $3\times N + NCLIN + NCNLN$ to $3\times N + NCLIN + 2\times NCNLN$. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04VDF

Withdrawn at Mark 17

The specification of the subroutine OBJFUN must also be changed as follows:

```
Old: SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE)

INTEGER MODE, N, NSTATE

real X(N), OBJF, OBJGRD(N)

New: SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)

INTEGER MODE, N, NSTATE, IUSER(*)

real X(N), OBJF, OBJGRD(N), USER(*)
```

If NCNLN > 0, the specification of the subroutine CONFUN must also be changed as follows:

```
Old: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE)

INTEGER MODE, NCNLN, N, NROWJ, NSTATE

real X(N), C(NROWJ), CJAC(NROWJ,N)

New: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, NEEDC, X, C, CJAC, NSTATE,

+ IUSER, USER)

INTEGER MODE, NCNLN, N, NROWJ, NEEDC(NCNLN), NSTATE, IUSER(*)

real X(N), C(NCNLN), CJAC(NROWJ, N), USER(*)
```

If NCNLN = 0, then the name of the dummy routine E04VDM (VDME04 in some implementations) may need to be changed to E04UDM (UDME04 in some implementations) in the calling program.

The parameter NCTOTL is no longer required. Values for ITMAX, MSGLVL, CTOL and FTOL may be supplied by calling an option setting routine.

E04UCF contains four additional parameters as follows:

```
ITER - INTEGER.
R(N,N) - real array.
IUSER(*) - INTEGER array of dimension at least 1.
USER(*) - real array of dimension at least 1.
```

The minimum value of the parameter LIWORK must be increased from $3\times N + NCLIN + NCNLN$ to $3\times N + NCLIN + 2\times NCNLN$. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

F01 - Matrix Operations, Including Inversion

F01AAF

Withdrawn at Mark 17

where IPIV is an INTEGER vector of length N, and the INTEGER LWORK is the length of array WKSPCE, which must be at least max(1,N). In the replacement calls, F07ADF (SGETRF/DGETRF) computes the LU factorization of the matrix A, F06QFF copies the factorization from A to X, and F07AJF (SGETRI/DGETRI) overwrites X by the inverse of A. If the original matrix A is no longer required, the call to F06QFF is not necessary, and references to X and IX in the call of F07AJF (SGETRI/DGETRI) may be replaced by references to A and IA, in which case A will be overwritten by the inverse.

F01ACF

Withdrawn at Mark 16

```
Old: CALL FO1ACF(N, EPS, A, IA, B, IB, Z, L, IFAIL)
New: CALL FO1ABF(A, IA, N, B, IB, Z, IFAIL)
```

The number of iterative refinement corrections returned by F01ACF in L is no longer available. The parameter EPS is no longer required.

F01AEF

Withdrawn at Mark 18

```
Old: CALL FO1AEF(N,A,IA,B,IB,DL,IFAIL)
New: DO 20 J = 1, N
        DO 10 I = J, N
           A(I,J) = A(J,I)
           B(I,J) = B(J,I)
        CONTINUE
 10
        DL(J) = B(J,J)
 20 CONTINUE
     CALL spotrf('L', N, B, IB, INFO)
     IF (INFO.EQ.O) THEN
        CALL ssygst(1,'L',N,A,IA,B,IB,INFO)
     ELSE
        IFAIL = 1
     END IF
     CALL sswap(N,DL,1,B,IB+1)
```

REPLACE.14 [NP3390/19]

IFAIL is set to 1 if the matrix B is not positive-definite. It is essential to test IFAIL.

F01AFF

Withdrawn at Mark 18

```
Old: CALL F01AFF(N,M1,M2,B,IB,DL,Z,IZ)

New: CALL sswap(N,DL,1,B,IB+1)

CALL strsm('L','L','T','N',N,M2-M1+1,1.0e0,B,IB,Z(1,M1),IZ)

CALL sswap(N,DL,1,B,IB+1)
```

F01AGF

Withdrawn at Mark 18

```
Old: CALL F01AGF(N,TOL,A,IA,D,E,E2)
New: CALL ssytrd('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
    E(1) = 0.0e0
    DO 10 I = 1, N
        E2(I) = E(I)*E(I)
10 CONTINUE
```

where TAU is a *real* array of length at least (N-1), WORK is a *real* array of length at least (1) and LWORK is its actual length.

Note that the tridiagonal matrix computed by F08FEF (SSYTRD/DSYTRD) is different from that computed by F01AGF, but it has the same eigenvalues.

F01AHF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01AGF has been replaced by a call to F08FEF (SSYTRD/DSYTRD) as shown above.

```
Old: CALL F01AHF(N,M1,M2,A,IA,E,Z,IZ)

New: CALL sormtr('L','L','N',N,M2-M1+1,A,IA,TAU,Z(1,M1),IZ,WORK,

+ LWORK,INFO)
```

where WORK is a real array of length at least (M2-M1+1), and LWORK is its actual length.

F01AJF

Withdrawn at Mark 18

where TAU is a *real* array of length at least (N-1), WORK is a *real* array of length at least (N-1) and LWORK is its actual length.

Note that the tridiagonal matrix T and the orthogonal matrix Q computed by F08FEF (SSYTRD/DSYTRD) and F08FFF (SORGTR/DORGTR) are different from those computed by F01AJF, but they satisfy the same relation $Q^TAQ = T$.

F01AKF

Withdrawn at Mark 18

```
Old: CALL FO1AKF(N,K,L,A,IA,INTGER)
New: CALL sgehrd(N,K,L,A,IA,TAU,WORK,LWORK,INFO)
```

where TAU is a real array of length at least (N-1), WORK is a real array of length at least (N) and LWORK is its actual length.

Note that the Hessenberg matrix computed by F08NEF (SGEHRD/DGEHRD) is different from that computed by F01AKF, because F08NEF (SGEHRD/DGEHRD) uses orthogonal transformations, whereas F01AKF uses stabilized elementary transformations.

F01ALF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01AKF has been replaced by a call to F08NEF (SGEHRD/DGEHRD) as indicated above.

```
Old: CALL FO1ALF(K,L,IR,A,IA,INTGER,Z,IZ,N)
New: CALL sormhr('L','N',N,IR,K,L,A,IA,TAU,Z,IZ,WORK,LWORK,INFO)
```

where WORK is a real array of length at least (IR) and LWORK is its actual length.

F01AMF

Withdrawn at Mark 18

where A is a *complex* array of dimension (IA,N), TAU is a *complex* array of length at least (N-1), WORK is a *complex* array of length at least (N) and LWORK is its actual length.

Note that the Hessenberg matrix computed by F08NSF (CGEHRD/ZGEHRD) is different from that computed by F01AMF, because F08NSF (CGEHRD/ZGEHRD) uses orthogonal transformations, whereas F01AMF uses stabilized elementary transformations.

F01ANF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01AMF has been replaced by a call to F08NSF (CGEHRD/ZGEHRD) as indicated above.

where A is a **complex** array of dimension (IA,N), TAU is a **complex** array of length at least (N-1), Z is a **complex** array of dimension (IZ,IR), WORK is a **complex** array of length at least (IR) and LWORK is its actual length.

F01APF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01AKF has been replaced by a call to F08NEF (SGEHRD/DGEHRD) as indicated above.

```
Old: CALL FO1APF(N,K,L,INTGER,H,IH,V,IV)

New: CALL FO6QFF('L',N,N,H,IH,V,IV)

CALL sorghr(N,K,L,V,IV,TAU,WORK,LWORK,INFO)
```

where WORK is a real array of length at least (N), and LWORK is its actual length.

Note that the orthogonal matrix formed by F08NFF (SORGHR/DORGHR) is not the same as the non-orthogonal matrix formed by F01APF. See F01AKF above.

REPLACE.16 [NP3390/19]

F01ATF

Withdrawn at Mark 18

```
Old: CALL FO1ATF(N,IB,A,IA,K,L,D)
New: CALL sgebal('B',N,A,IA,K,L,D,INFO)
```

Note that the balanced matrix returned by F08NHF (SGEBAL/DGEBAL) may be different from that returned by F01ATF.

F01AUF

Withdrawn at Mark 18

```
Old: CALL FO1AUF(N,K,L,M,D,Z,IZ)
New: CALL sgebak('B','R',N,K,L,D,M,Z,IZ,INFO)
```

F01AVF

Withdrawn at Mark 18

where A is a complex array of dimension (IA,N).

Note that the balanced matrix returned by F08NVF (CGEBAL/ZGEBAL) may be different from that returned by F01AVF.

F01AWF

Withdrawn at Mark 18

where Z is a complex array of dimension (IZ,M).

F01AXF

Withdrawn at Mark 18

```
Old: CALL FO1AXF(M,N,QR,IQR,ALPHA,IPIV,Y,E,IFAIL)

New: CALL sgeqpf(M,N,QR,IQR,IPIV,Y,WORK,INFO)

CALL scopy(N,QR,IQR+1,ALPHA,1)
```

where WORK is a *real* array of length at least (3*N).

Note that the details of the Householder matrices returned by F08BEF (SGEQPF/DGEQPF) are different from those returned by F01AXF, but they determine the same orthogonal matrix Q.

F01AYF

Withdrawn at Mark 18

```
Old: CALL F01AYF(N,TOL,A,IA,D,E,E2)
New: CALL ssptrd('U',N,A,D,E(2),TAU,INFO)
        E(1) = 0.0e0
        DO 10 I = 1, N
        E2(I) = E(I)*E(I)
10 CONTINUE
```

where TAU is a real array of length at least (N-1).

F01AZF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01AYF has been replaced by a call to F08GEF (SSPTRD/DSPTRD) as shown above.

```
Old: CALL F01AZF(N,M1,M2,A,IA,Z,IZ)
New: CALL sopmtr('L','U','N',N,M2-M1+1,A,TAU,Z(1,M1),IZ,WORK,INFO)
```

where WORK is a real array of length at least (M2-M1+1).

F01BCF

Withdrawn at Mark 18

```
Old: CALL FO1BCF(N, TOL, AR, IAR, AI, IAI, D, E, WK1, WK2)
New: DO 20 J = 1, N
        DO 10 I = 1, N
            A(I,J) = cmplx(AR(I,J),AI(I,J))
 10
        CONTINUE
 20 CONTINUE
     CALL chetrd('L', N, A, IA, D, E(2), TAU, WORK, LWORK, INFO)
     E(1) = 0.0e0
     CALL cungtr('L', N, A, IA, TAU, WORK, LWORK, INFO)
     DO 40 J = 1, N
        DO 30 I = 1, N
            AR(I,J) = real(A(I,J))
            AI(I,J) = imag(A(I,J))
        CONTINUE
 30
 40 CONTINUE
```

where A is a **complex** array of dimension (IA,N), TAU is a **complex** array of length at least (N-1), WORK is a **complex** array of length at least (N-1), and LWORK is its actual length.

Note that the tridiagonal matrix T and the unitary matrix Q computed by F08FSF (CHETRD/ZHETRD) and F08FTF (CUNGTR/ZUNGTR) are different from those computed by F01BCF, but they satisfy the same relation $Q^HAQ = T$.

F01BDF

Withdrawn at Mark 18

REPLACE.18 [NP3390/19]

```
CALL spotrf('L',N,B,IB,INFO)
IF (INFO.EQ.O) THEN
    CALL ssygst(2,'L',N,A,IA,B,IB,INFO)
ELSE
    IFAIL = 1
END IF
CALL sswap(N,DL,1,B,IB+1)
```

IFAIL is set to 1 if the matrix B is not positive-definite. It is essential to test IFAIL.

F01 BEF

Withdrawn at Mark 18

F01RNF

Withdrawn at Mark 17

```
Old: CALL FO1BNF(N,A,IA,P,IFAIL)
New: CALL cpotrf('Upper',N,A,IA,IFAIL)
```

where, before the call, array A contains the upper triangle of the matrix to be factorized rather than the lower triangle (note that the elements of the upper triangle are the complex conjugates of the elements of the lower triangle). The real array P is no longer required; the upper triangle of A is overwritten by the upper triangular factor U, including the diagonal elements (which are not reciprocated).

F01BPF

Withdrawn at Mark 17

```
Old: CALL FO1BPF(N,A,IA,V,IFAIL)

New: CALL cpotrf('Upper',N,A,IA,IFAIL)

CALL cpotri('Upper',N,A,IA,IFAIL)
```

where, before the calls, the upper triangle of the matrix to be inverted must be contained in rows 1 to N of A, rather than the lower triangle being in rows 2 to N+1 (note that the elements of the upper triangle are the complex conjugates of the elements of the lower triangle). The workspace vector V is no longer required.

F01BQF

Withdrawn at Mark 16

The replacement routines do not have exactly the same functionality as F01BQF; if this functionality is genuinely required, please contact NAG.

(a) where the symmetric matrix is known to be positive-definite (if the matrix is in fact not positive-definite, the replacement routine will return a positive value in IFAIL)

```
Old: CALL FO1BQF(N,EPS,RL,IRL,D,IFAIL)
New: CALL spptrf('Lower',N,RL,IFAIL)
```

(b) where the matrix is not positive-definite (the replacement routine forms an LDL^T factorization where D is block diagonal, rather than a Cholesky factorization)

```
Old: CALL FO1BQF(N,EPS,RL,IRL,D,IFAIL)
New: CALL ssptrf('Lower',N,RL,IPIV,IFAIL)
```

For the replacement calls in both (a) and (b), the array RL must now hold the complete lower triangle of the symmetric matrix, including the diagonal elements, which are no longer required to be stored in the redundant array D. The declared dimension of RL must be increased from at least N(N-1)/2 to at least N(N+1)/2. It is important to note that for the calls of F07GDF (SPPTRF/DPPTRF) and F07PDF (SSPTRF/DSPTRF), the lower triangle of the matrix must be stored packed by column instead of by row. The dimension parameter IRL is no longer required. For the call of F07PDF (SSPTRF/DSPTRF), the INTEGER array IPIV of length N must be supplied.

F01BTF

Withdrawn at Mark 18

```
Old: CALL FO1BTF(N,A,IA,P,DP,IFAIL)
New: CALL sgetrf(N,N,A,IA,IPIV,IFAIL)
```

where IPIV is an INTEGER array of length N which holds the indices of the pivot elements, and the array P is no longer required. It may be important to note that after a call of F07ADF (SGETRF/DGETRF), A is overwritten by the upper triangular factor U and the off-diagonal elements of the unit lower triangular factor L, whereas the factorization returned by F01BTF gives U the unit diagonal. The permutation determinant DP returned by F01BTF is not computed by F07ADF (SGETRF/DGETRF). If this value is required, it may be calculated after a call of F07ADF (SGETRF/DGETRF) by code similar to the following:

F01BWF

Withdrawn at Mark 18

```
Old: CALL F01BWF(N,M1,A,IA,D,E)

New: CALL ssbtrd('N','U',N,M1-1,A,IA,D,E(2),Q,1,WORK,INFO)

E(1) = 0.0e0
```

where Q is a dummy **real** array of length (1) (not used in this call), and WORK is a **real** array of length at least (N).

Note that the tridiagonal matrix computed by F08HEF (SSBTRD/DSBTRD) is different from that computed by F01BWF, but it has the same eigenvalues.

F01BXF

Withdrawn at Mark 17

```
Old: CALL FO1BXF(N,A,IA,P,IFAIL)
New: CALL spotrf('Upper',N,A,IA,IFAIL)
```

where, before the call, array A contains the upper triangle of the matrix to be factorized rather than the lower triangle. The array P is no longer required; the upper triangle of A is overwritten by the upper triangular factor U, including the diagonal elements (which are not reciprocated).

F01CAF

Withdrawn at Mark 14

```
Old: CALL FO1CAF(A,M,N,IFAIL)

New: CALL F06QHF('General',M,N,0.0e0,0.0e0,A,M)
```

F01CBF

Withdrawn at Mark 14

```
Old: CALL FO1CBF(A,M,N,IFAIL)
New: CALL F06QHF('General',M,N,0.0e0,1.0e0,A,M)
```

F01CDF

Withdrawn at Mark 15

```
Old: CALL FO1CDF(A,B,C,M,N,IFAIL)
New: CALL FO1CTF('N','N',M,N,1.0e0,B,M,1.0e0,C,M,A,M,IFAIL)
```

F01CEF

Withdrawn at Mark 15

```
Old: CALL FO1CEF(A,B,C,M,N,IFAIL)

New: CALL FO1CTF('N','N',M,N,1.0e0,B,M,-1.0e0,C,M,A,M,IFAIL)
```

REPLACE.20 [NP3390/19]

F01CFF Withdrawn at Mark 14 Old: CALL FO1CFF(A,MA,NA,P,Q,B,MB,NB,M1,M2,N1,N2,IFAIL) New: CALL F06QFF('General', M2-M1+1, N2-N1+1, B(M1, N1), MB, A(P,Q), MA) F01CGF Withdrawn at Mark 15 Old: CALL FO1CGF(A, MA, NA, P, Q, B, MB, NB, M1, M2, N1, N2, IFAIL) New: CALL FO1CTF('N', 'N', M2-M1+1, N2-N1+1, 1.0e0, A(P,Q), MA, 1.0e0, B(M1,N1),MB,A(P,Q),MA,IFAIL) F01CHF Withdrawn at Mark 15 Old: CALL FO1CHF(A, MA, NA, P, Q, B, MB, NB, M1, M2, N1, N2, IFAIL) New: CALL FO1CTF('N', 'N', M2-M1+1, N2-N1+1, 1.0e0, A(P,Q), MA, -1.0e0, B(M1,N1),MB,A(P,Q),MA,IFAIL)F01CLF Withdrawn at Mark 16 Old: CALL FO1CLF(A,B,C,N,P,M,IFAIL) New: CALL sgemm('N', 'T', N, P, M, 1.0e0, B, N, C, P, 0.0e0, A, N) F01CMF Withdrawn at Mark 14 Old: CALL FO1CMF(A, LA, B, LB, M, N) New: CALL F06QFF('General', M, N, A, LA, B, LB) F01CNF Withdrawn at Mark 13 Old: CALL FO1CNF(V,M,A,LA,I) New: CALL scopy(M,V,1,A(I,1),LA)F01CPF Withdrawn at Mark 13 Old: CALL FO1CPF(A,B,N) New: CALL scopy(N,A,1,B,1)F01CQF Withdrawn at Mark 13 Old: CALL FO1CQF(A,N) New: CALL FO6FBF(N, 0.0e0, A, 1) F01CSF Withdrawn at Mark 13 Old: CALL FO1CSF(A,LA,B,N,C) New: CALL sspmv('U', N, 1.0e0, A, B, 1, 0.0e0, C, 1) F01DAF Withdrawn at Mark 13 Old: FO1DAF(L,M,C1,IRA,ICB,A,IA,B,IB,N) New: C1 + sdot(M-L+1,A(IRA,L)IA,B(L,ICB),1)

F01DBF

```
Withdrawn at Mark 13
    Old: D = FO1DBF(L,M,C1,IRA,ICB,A,IA,B,IB,N)
    New: CALL XO3AAF(A(IRA,L),(M-L)*IA+1,B(L,ICB),M-L+1,IA,1,C1,0.0e0,D,
                      D2, TRUE, IFAIL)
(here D2 is a new real variable whose value is not used).
F01DCF
Withdrawn at Mark 13
     Old: CALL FOIDCF(L,M,CX,IRA,ICB,A,IA,B,IB,N,CR,CI)
    New: DX = CX - cdotu(M-L+1,A(IRA,L),IA,B(L,ICB),1)
          CR = real(DX)
          CI = imag(DX)
(here DX is a new complex variable).
F01DDF
Withdrawn at Mark 13
     Old: CALL FO1DDF(L,M,CX,IRA,ICB,A,IA,B,IB,N,CR,CI)
     New: CALL XO3ABF(A(IRA,L),(M-L)*IA+1,B(L,ICB),M-L+1,IA,1,-CX,DX,
                      .TRUE., IFAIL)
```

(here DX is a new complex variable).

CR = -real(DX)CI = -imag(DX)

F01DEF

Withdrawn at Mark 14

Old: FOIDEF(A,B,N)New: sdot(N,A,1,B,1)

F01LBF

Withdrawn at Mark 18

```
Old: CALL FO1LBF(N,M1,M2,A,IA,AL,IL,IN,IV,IFAIL)
New: CALL sgbtrf(N,N,M1,M2,A,IA,IN,IFAIL)
```

where the size of array A must now have a leading dimension IA of at least $2 \times M1+M2+1$. The array AL, its associated dimension parameter IL, and the parameter IV are not required for F07BDF (SGBTRF/DGBTRF) because this routine overwrites A by both the L and U factors. The scheme by which the matrix is packed into the array is completely different from that used by F01LBF; the relevant routine document should be consulted for details.

F01LZF

Withdrawn at Mark 15

```
Old: CALL FO1LZF(N,A,NRA,C,NRC,WANTB,B,WANTQ,WANTY,Y,NRY,LY,WANTZ,Z,

+ NRZ,NCZ,D,E,WORK1,WORK2,IFAIL)

New: CALL sgebrd(N,N,A,NRA,D,E(2),TAUQ,TAUP,WORK1,LWORK,INFO)

IF (WANTB) THEN

CALL sormbr('Q','L','T',N,1,NA,NRA,TAUQ,B,N,WORK1,LWORK,INFO)

ELSE IF (WANTQ) THEN

CALL sorgbr('Q',N,N,N,A,NRA,TAUQ,WORK,LWORK,INFO)

ELSE IF (WANTY) THEN

CALL sormbr('Q','R','N',LY,N,N,A,NRA,TAUQ,Y,NRY,WORK1,LWORK,

+ INFO)

ELSE IF (WANTZ) THEN

CALL sormbr('P','L','T',N,NCZ,N,A,NRA,TAUP,Z,NRZ,WORK1,LWORK,

+ INFO)

END IF
```

where TAUQ and TAUP are real arrays of length at least (N) and LWORK is the actual length of WORK1. The parameter WORK2 is no longer required.

REPLACE.22 [NP3390/19]

F01MAF

Withdrawn at Mark 19

Existing programs should be modified to call F11JAF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F01NAF

Withdrawn at Mark 17

```
Old: CALL FO1NAF(N,ML,MU,A,NRA,TOL,IN,SCALE,IFAIL)
New: CALL cgbtr f(N,N,ML,MU,A,NRA,IN,IFAIL)
```

where the parameter TOL and array SCALE are no longer required. The input matrix must be stored using the same scheme as for F01NAF, except in rows ML + 1 to $2 \times ML + MU + 1$ of A instead of rows 1 to ML + MU + 1. In F07BRF(CGBTRF/ZGBTRF), the value returned in IN(N) has no significance as an indicator of near-singularity of the matrix.

F01QAF

Withdrawn at Mark 15

```
Old: CALL FO1QAF(M,N,A,NRA,C,NRC,Z,IFAIL)

New: CALL sgeqrf(M,N,A,NRA,Z,WORK,LWORK,INFO)
```

where WORK is a real array of length at least (LWORK). The parameters C and NRC are no longer required.

Note that the representation of the matrix Q is not identical, but subsequent calls to routines F08AFF (SORGQR/DORGQR) and F08AGF (SORMQR/DORMQR) may be used to obtain Q explicitly and to transform by Q or Q^T respectively.

F01OBF

Withdrawn at Mark 15

```
Old: CALL FO1QBF(M,N,A,NRA,C,NRC,WORK,IFAIL)
New: CALL FO6QFF('General',M,N,A,NRA,C,NRC)
CALL FO1QJF(M,N,C,NRC,WORK,IFAIL)
```

The call to F06QFF simply copies the leading M by N part of A to C. This may be omitted if it is desired to use the same arrays for A and C. Note that the representation of the orthogonal matrix Q is not identical, but following F01QJF routine F01QKF may be used to form Q.

F01OCF

Withdrawn at Mark 18

```
Old: CALL FO1QCF(M,N,A,LDA,ZETA,IFAIL)
New: CALL sgeqrf(M,N,A,LDA,ZETA,WORK,LWORK,INFO)
```

where WORK is a real array of length at least (N), and LWORK is its actual length.

The subdiagonal elements of A and the elements of ZETA returned by F08AEF (SGEQRF/DGEQRF) are not the same as those returned by F01QCF. Subsequent calls to F01QDF or F01QEF must also be replaced by calls to F08AGF (SORMQR/DORMQR) or F08AFF (SORGQR/DORGQR) as shown below.

F01QDF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01QCF has been replaced by a call to F08AEF (SGEQRF/DGEQRF) as shown above. It also assumes that the 2nd argument of F01QDF (WHERET) is 'S', which is appropriate if the contents of A and ZETA have not been changed after the call of F01QCF.

```
Old: CALL FO1QDF(TRANS,'S',M,N,A,LDA,ZETA,NCOLB,B,LDB,WORK,IFAIL)
New: CALL sormqr('L',TRANS,M,NCOLB,N,A,LDA,ZETA,B,LDB,WORK,LWORK,INFO)
```

where LWORK is the actual length of WORK.

F01QEF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01QCF has been replaced by a call to F08AEF (SGEQRF/DGEQRF) as shown above. It also assumes that the 1st argument of F01QEF (WHERET) is 'S', which is appropriate if the contents of A and ZETA have not been changed after the call of F01QCF.

```
Old: CALL FO1QEF('S',M,N,NCOLQ,A,LDA,ZETA,WORK,IFAIL)
New: CALL sorgqr(M,NCOLQ,N,A,LDA,ZETA,WORK,LWORK,INFO)
```

where LWORK is the actual length of WORK.

F01QFF

Withdrawn at Mark 18

The following replacement assumes that the 1st argument of F01QFF (PIVOT) is 'C'. There is no direct replacement if PIVOT = 'S'.

```
Old: CALL F01QFF('C',M,N,A,LDA,ZETA,PERM,WORK,IFAIL)
New: D0 10 I = 1, N
          PERM(I) = 0
10 CONTINUE
        CALL sgeqpf(M,N,A,LDA,PERM,ZETA,WORK,INFO)
```

where WORK is a **real** array of length at least (3*N) (F01QFF only requires WORK to be of length (2*N)).

The subdiagonal elements of A and the elements of ZETA returned by F08BEF (SGEQPF/DGEQPF) are not the same as those returned by F01QFF. Subsequent calls to F01QDF or F01QEF must also be replaced by calls to F08AGF (SORMQR/DORMQR) or F08AFF (SORGQR/DORGQR) as shown above. Note also that the array PERM returned by F08BEF (SGEQPF/DGEQPF) holds details of the interchanges in a different form than that returned by F01QFF.

F01RCF

Withdrawn at Mark 18

```
Old: CALL FO1RCF(M,N,A,LDA,THETA,IFAIL)
New: CALL cgeqrf(M,N,A,LDA,THETA,WORK,LWORK,INFO)
```

where WORK is a complex array of length at least (N), and LWORK is its actual length.

The subdiagonal elements of A and the elements of THETA returned by F08ASF (CGEQRF/ZGEQRF) are not the same as those returned by F01RCF. Subsequent calls to F01RDF or F01REF must also be replaced by calls to F08AUF (CUNMQR/ZUNMQR) or F08ATF (CUNGQR/ZUNGQR) as shown below.

F01RDF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01RCF has been replaced by a call to F08ASF (CGEQRF/ZGEQRF) as shown above. It also assumes that the 2nd argument of F01RDF (WHERET) is 'S', which is appropriate if the contents of A and THETA have not been changed after the call of F01RCF.

```
Old: CALL FO1RDF(TRANS,'S',M,N,A,LDA,THETA,NCOLB,B,LDB,WORK,IFAIL)

New: CALL cunmqr('L',TRANS,M,NCOLB,N,A,LDA,THETA,B,LDB,WORK,LWORK,

+ INFO)
```

where LWORK is the actual length of WORK.

F01REF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F01RCF has been replaced by a call to F08ASF (CGEQRF/ZGEQRF) as shown above. It also assumes that the 1st argument of F01REF (WHERET) is 'S', which is appropriate if the contents of A and THETA have not been changed after the call of F01RCF.

REPLACE.24 [NP3390/19]

```
Old: CALL FO1REF('S',M,N,NCOLQ,A,LDA,THETA,WORK,IFAIL)
New: CALL cungqr(M,NCOLQ,N,A,LDA,THETA,WORK,LWORK,INFO)
```

where LWORK is the actual length of WORK.

F01RFF

Withdrawn at Mark 18

The following replacement assumes that the 1st argument of F01RFF (PIVOT) is 'C'. There is no direct replacement if PIVOT = 'S'.

```
Old: CALL FO1RFF('C',M,N,A,LDA,THETA,PERM,WORK,IFAIL)
New: DO 10 I = 1, N
          PERM(I) = 0
10 CONTINUE
        CALL cgeqpf(M,N,A,LDA,PERM,THETA,CWORK,WORK,INFO)
```

where CWORK is a complex array of length at least (N).

The subdiagonal elements of A and the elements of THETA returned by F08BSF (CGEPQF/ZGEPQF) are not the same as those returned by F01RFF. Subsequent calls to F01RDF or F01REF must also be replaced by calls to F08AUF (CUNMQR/ZUNMQR) or F08ATF (CUNGQR/ZUNGQR) as shown above. Note also that the array PERM returned by F08BSF (CGEPQF/ZGEPQF) holds details of the interchanges in a different form than that returned by F01RFF.

F02 – Eigenvalues and Eigenvectors

Notes:

- 1. Replacement routines require complex matrices to be stored in *complex* arrays, whereas most of the corresponding old routines require the real and imaginary parts to be stored separately in two *real* arrays.
- 2. Replacement routines for computing eigenvectors may scale the eigenvectors in a different manner from the old routines, and hence at first glance the eigenvectors may appear to disagree completely; they may indeed be different, but they are equally acceptable as eigenvectors; some replacement routines may also return the eigenvalues (and the corresponding eigenvectors) in a different order.
- 3. Replacement routines in Chapter F07 and Chapter F08 have a parameter INFO, which has a different specification to the usual NAG error-handling parameter IFAIL. See the F07 or F08 Chapter Introduction for details.

F02AAF

Withdrawn at Mark 18

```
Old: CALL FO2AAF(A,IA,N,R,E,IFAIL)

New: CALL FO2FAF('N','L',N,A,IA,R,WORK,LWORK,IFAIL)
```

where WORK is a real array of length at least (3*N) and LWORK is its actual length.

F02ABF

Withdrawn at Mark 18

```
Old: CALL FO2ABF(A,IA,N,R,V,IV,E,IFAIL)

New: CALL FO6QFF('L',N,N,A,IA,V,IV)

CALL FO2FAF('V','L',N,V,IV,R,WORK,LWORK,IFAIL)
```

where WORK is a *real* array of length at least (3*N) and LWORK is its actual length. If F02ABF was called with the same array supplied for V and A, then the call to F06QFF (which copies A to V) may be omitted.

F02ADF

Withdrawn at Mark 18

```
Old: CALL FO2ADF(A,IA,B,IB,N,R,DE,IFAIL)
New: CALL FO2FDF(1,'N','U',N,A,IA,B,IB,R,WORK,LWORK,IFAIL)
```

where WORK is a real array of length at least (3*N) and LWORK is its actual length.

Note that the call to F02FDF will overwrite the upper triangles of the arrays A and B and leave the subdiagonal elements unchanged, whereas the call to F02ADF overwrites the lower triangle and leaves the elements above the diagonal unchanged.

F02AEF

Withdrawn at Mark 18

```
Old: CALL FO2AEF(A,IA,B,IB,N,R,V,IV,DL,E,IFAIL)

New: CALL FO6QFF('U',N,N,A,IA,V,IV)

CALL FO2FDF(1,'V','U',N,V,IV,B,IB,R,WORK,LWORK,IFAIL)
```

where WORK is a real array of length at least (3*N) and LWORK is its actual length.

Note that the call to F02FDF will overwrite the upper triangle of the array B and leave the subdiagonal elements unchanged, whereas the call to F02ADF overwrites the lower triangle and leaves the elements above the diagonal unchanged. The call to F06QFF copies A to V, so A is left unchanged. If F02AEF was called with the same array supplied for V and A, then the call to F06QFF may be omitted.

FO2AFF

Withdrawn at Mark 18

```
Old: CALL FO2AFF(A,IA,N,RR,RI,INTGER,IFAIL)
New: CALL FO2EBF('N',N,A,IA,RR,RI,VR,1,VI,1,WORK,LWORK,IFAIL)
```

where VR and VI are dummy arrays of length (1) (not used in this call), WORK is a *real* array of length at least (4*N) and LWORK is its actual length; the iteration counts (returned by F02AFF in the array INTGER) are not available from F02EBF.

F02AGF

Withdrawn at Mark 18

```
Old: CALL FO2AGF(A,IA,N,RR,RI,VR,IVR,VI,IVI,INTGER,IFAIL)

New: CALL FO2EBF('V',N,A,IA,RR,RI,VR,IVR,VI,IVI,WORK,LWORK,IFAIL)
```

where WORK is a *real* array of length at least (4*N) and LWORK is its actual length; the iteration counts (returned by F02AGF in the array INTGER) are not available from F02EBF.

F02AJF

Withdrawn at Mark 18

where A is a *complex* array of dimension (IA,N), R is a *complex* array of dimension (N), V is a dummy *complex* array of length (1) (not used in this call), RWORK is a *real* array of length at least (2*N), WORK is a *complex* array of length at least (2*N) and LWORK is its actual length.

F02AKF

Withdrawn at Mark 18

REPLACE.26 [NP3390/19]

Replacement Calls

where A is a *complex* array of dimension (IA,N), R is a *complex* array of length (N), V is a *complex* array of dimension (IV,N), RWORK is a *real* array of length at least (2*N), WORK is a *complex* array of length at least (2*N) and LWORK is its actual length.

F02AMF

Withdrawn at Mark 18

```
Old: CALL FO2AMF(N,EPS,D,E,V,IV,IFAIL)

New: CALL ssteqr('V',N,D,E(2),V,IV,WORK,INFO)
```

where WORK is a **real** array of length at least (2*(N-1)).

F02ANF

Withdrawn at Mark 18

where H is a *complex* array of dimension (IH,N), R is a *complex* array of length (N), Z is a dummy *complex* array of length (1) (not used in this call), and WORK is a *complex* array of length at least (N).

FO2APF

Withdrawn at Mark 18

```
Old: CALL FO2APF(N,EPS,H,IH,RR,RI,ICNT,IFAIL)
New: CALL shseqr('E','N',N,1,N,H,IH,RR,RI,Z,1,WORK,1,INFO)
```

where Z is a dummy *real* array of length (1) (not used in this call), and WORK is a *real* array of length at least (N); the iteration counts (returned by F02APF in the array ICNT) are not available from F08PEF (SHSEQR/DHSEQR).

F02AQF

Withdrawn at Mark 18

```
Old: CALL FO2AQF(N,K,L,EPS,H,IH,V,IV,RR,RI,INTGER,IFAIL)

New: CALL shseqr('S','V',N,K,L,H,IH,RR,RI,V,IV,WORK,1,INFO)

CALL strevc('R','O',SELECT,N,H,IH,V,IV,V,IV,N,M,WORK,INFO)
```

where SELECT is a dummy logical array of length (1) (not used in this call), and WORK is a *real* array of length at least (N); the iteration counts (returned by F02AQF in the array INTGER) are not available from F08PEF (SHSEQR/DHSEQR); M is an integer which is set to N by F08QKF (STREVC/DTREVC).

F02ARF

Withdrawn at Mark 18

```
Old: CALL FO2ARF(N,K,L,EPS,INTGER,HR,IHR,HI,IHI,RR,RI,VR,IVR,VI,
                IVI, IFAIL)
New: DO 20 J = 1, N
        DO 10 I = 1, N
           H(I,J) = cmplx(HR(I,J),HI(I,J))
        CONTINUE
 10
 20 CONTINUE
     CALL chseqr('S','V',N,K,L,H,IH,R,V,IV,WORK,1,INFO)
     CALL ctrevc('R','O',SELECT,N,H,IH,V,IV,V,IV,N,M,WORK,INFO)
     DO 40 J = 1, N
        RR(J) = real(R(J))
        RI(J) = imag(R(J))
        DO 30 I = 1, N
           VR(I,J) = real(V(I,J))
           VI(I,J) = imag(V(I,J))
        CONTINUE
 30
 40 CONTINUE
```

where H is a *complex* array of dimension (IH,N), R is a *complex* array of length (N), V is a *complex* array of dimension (IV,N), WORK is a *complex* array of length at least (2*N) and RWORK is a *real* array of length at least (N); M is an integer which is set to N by F08QXF (CTREVC/ZTREVC).

If F02ARF was preceded by a call to F01AMF to reduce a full complex matrix to Hessenberg form, then the call to F01AMF must also be replaced by calls to F08NSF (CGEHRD/ZGEHRD) and F08NTF (CUNGHR/ZUNGHR).

F02AVF

Withdrawn at Mark 18

```
Old: CALL F02AVF(N,EPS,D,E,IFAIL)
New: CALL ssterf(N,D,E(2),INFO)
```

F02AWF

Withdrawn at Mark 18

where A is a *complex* array of dimension (IA,N), RWORK is a *real* array of length at least (3*N), WORK is a *complex* array of length at least (2*N) and LWORK is its actual length.

F02AXF

Withdrawn at Mark 18

REPLACE.28 [NP3390/19]

where A is a *complex* array of dimension (IA,N), V is a *complex* array of dimension (IV,N), RWORK is a *real* array of length at least (3*N), WORK is a *complex* array of length at least (2*N) and LWORK is its actual length. If F02AXF was called with the same arrays supplied for VR and AR and for VI and AI, then the call to F06TFF (which copies A to V) may be omitted.

F02AYF

Withdrawn at Mark 18

where V is a **complex** array of dimension (IV,N), and WORK is a **real** array of length at least (2*(N-1)).

F02BBF

Withdrawn at Mark 19

where R must have dimension (N), WORK is a **real** array of length at least (8*N), LWORK is its actual length, and IWORK is an integer array of length at least (5*N). Note that in the call to F02BBF R needs only to be of dimension (M).

F02BCF

Withdrawn at Mark 19

```
Old: CALL FO2BCF(A,IA,N,ALB,UB,M,MM,RR,RI,VR,IVR,VI,IVI,

+ INTGER,ICNT,C,B,IB,U,V,IFAIL)

New: CALL FO2ECF('Moduli',N,A,IA,ALB,UB,M,MM,RR,RI,VR,IVR,

+ VI,IVI,WORK,LWORK,ICNT,C,IFAIL)
```

where WORK is a real array of length at least (N*(N+4)) and LWORK is its actual length.

F02BDF

Withdrawn at Mark 19

```
Old: CALL FO2BDF(AR, IAR, AI, IAI, N, ALB, UB, M, MM, RR, RI, VR, IVR,
                  VI, IVI, INTGER, C, BR, IBR, BI, IBI, U, V, IFAIL)
New: DO 20 J = 1, N
        DO 10 I = 1, N
            A(I,J) = cmplx(AR(I,J),AI(I,J))
  10
        CONTINUE
  20 CONTINUE
     CALL FO2GCF('Moduli', N, A, IA, ALB, UB, M, MM, R, V, IV, WORK,
                    LWORK, RWORK, INTGER, C, IFAIL)
     DO 30 I = 1, N
         RR(I) = real(R(I))
        RI(I) = imag(R(I))
  30 CONTINUE
     DO 50 J = 1, MM
        DO 40 I = 1, N
            VR(I,J) = real(V(I,J))
```

```
VI(I,J) = imag(V(I,J))
40 CONTINUE
50 CONTINUE
```

where A is a *complex* array of dimension (IA,N), R is a *complex* array of dimension (N), V is a *complex* array of dimension (IV,M), WORK is a *complex* array of length at least (N*(N+2)), LWORK is its actual length, and RWORK is a *real* array of length at least (2*N).

F02BEF

Withdrawn at Mark 18

```
Old: CALL FO2BEF(N,D,ALB,UB,EPS,EPS1,E,E2,M,MM,R,V,IV,ICOUNT,X,C,

+ IFAIL)

New: CALL sstebz('V','B',N,ALB,UB,O,O,EPS1,D,E(2),MM,NSPLIT,R,IBLOCK,

+ ISPLIT,X,IWORK,INFO)

CALL sstein(N,D,E(2),MM,R,IBLOCK,ISPLIT,V,IV,X,IWORK,IFAILV,INFO)
```

where NSPLIT is an integer variable, IBLOCK, ISPLIT and IFAILV are integer arrays of length at least (N), and IWORK is an integer array of length at least (3*N).

F02BFF

Withdrawn at Mark 18

```
Old: CALL F02BFF(D,E,E2,N,M1,M2,MM12,EPS1,EPS,EPS2,IZ,R,WU)
New: CALL sstebz('I', 'E',N,0.0e0,0.0e0,M1,M2,EPS1,D,E(2),M,
+ NSPLIT,R,IBLOCK,ISPLIT,WORK,IWORK,INFO)
```

where M and NSPLIT are integer variables, IBLOCK and ISPLIT are integer arrays of length at least (N), WORK is a *real* array of length at least (4*N), and IWORK is an integer array of length at least (3*N).

F02BKF

Withdrawn at Mark 18

```
Old: CALL FO2BKF(N,M,H,IH,RI,C,RR,V,IV,B,IB,U,W,IFAIL)

New: CALL shsein('R','Q','N',C,N,H,IH,RR,RI,V,IV,V,IV,M,M2,B,IFAILR,

+ IFAILR,INFO)
```

where M2 is an integer variable, and IFAILR is an integer array of length at least (N).

Note that the array C may be modified by F08PKF (SHSEIN/DHSEIN) if there are complex conjugate pairs of eigenvalues.

F02BLF

Withdrawn at Mark 18

```
Old: CALL FO2BLF(N,M,HR,IHR,HI,IHI,RI,C,RR,VR,IVR,VI,IVI,BR,IBR,BI,
              IBI,U,W,IFAIL)
New: DO 20 J = 1, N
      R(J) = cmplx(RR(J),RI(J))
       DO 10 I = 1, N
         H(I,J) = cmplx(HR(I,J),HI(I,J))
 10
       CONTINUE
 20 CONTINUE
    IFAILR, IFAILR, INFO)
    DO 30 I = 1, N
       RR(I) = real(R(I))
 30 CONTINUE
    DO 50 J = 1, M
       DO 40 I = 1, N
          VR(I,J) = real(V(I,J))
          VI(I,J) = imag(V(I,J))
       CONTINUE
  40
  50 CONTINUE
```

REPLACE.30 [NP3390/19]

where H is a *complex* array of dimension (IH,N), R is a *complex* array of length (N), V is a *complex* array of dimension (IV,M), M2 is an integer variable, WORK is a *complex* array of length at least (N*N), RWORK is a *real* array of length at least (N), and IFAILR is an integer array of length at least (N).

F02SWF

Withdrawn at Mark 18

The following replacement ignores the triangular structure of A, and therefore references the subdiagonal elements of A; however on many machines the replacement code will be more efficient.

```
Old: CALL FO2SWF(N,A,LDA,D,E,NCOLY,Y,LDY,WANTQ,Q,LDQ,IFAIL)
New: DO 20 J = 1, N
        DO 10 I = J+1, N
           A(I,J) = 0.0e0
        CONTINUE
 10
 20 CONTINUE
     CALL sgebrd({	t N,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO})
     IF (WANTQ) THEN
        CALL FOGQFF('L', N, N, A, LDA, Q, LDQ)
        CALL sorgbr('Q',N,N,N,Q,LDQ,TAUQ,WORK,LWORK,INFO)
     END IF
     IF (NCOLY.GT.O) THEN
        CALL sormbr('Q','L','T',N,NCOLY,N,A,LDA,TAUQ,Y,LDY,
                     WORK, LWORK, INFO)
     END IF
```

where TAUQ, TAUP and WORK are *real* arrays of length at least (N), and LWORK is the actual length of WORK.

F02SXF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F02SWF has been replaced by a call to F08KEF as shown above.

```
Old: CALL F02SXF(N,A,LDA,NCOLY,Y,LDY,WORK,IFAIL)

New: IF (NCOLY.EQ.O) THEN

CALL sorgbr('P',N,N,N,A,LDA,TAUP,WORK,LWORK,INFO)

ELSE

CALL sormbr('P','L','T',N,NCOLY,N,A,LDA,TAUP,Y,LDY,WORK,

+ LWORK,INFO)

END IF
```

F02SYF

Withdrawn at Mark 18

```
Old: CALL FO2SYF(N,D,E,NCOLB,B,LDB,NROWY,Y,LDY,NCOLZ,Z,LDZ,WORK,

+ IFAIL)
New: CALL sbdsqr('U',N,NCOLZ,NROWY,NCOLB,D,E,Z,LDZ,Y,LDY,B,LDB,WORK,

+ INFO)
```

where WORK is a *real* array of length at least (4*(N-1)) unless NCOLB = NROWY = NCOLZ = 0.

F02SZF

Withdrawn at Mark 15

```
END IF
IF (WANTY) THEN
    NRU = LY
ELSE
    NRU = 0
END IF
IF (WANTZ) THEN
    NCVT = NCZ
ELSE
    NCVT = 0
END IF
CALL sbdsqr('U', N, NCVT, NRU, NCC, D, E(2), Z, NRZ, Y, NRY, B, N, WORK, INFO)
```

WORK must be a one-dimensional real array of length at least lwork given by:

```
lwork = 1 when WANTB, WANTY and WANTZ are all false; lwork = max(4 * (N - 1), 1) otherwise.
```

The parameters WORK1, WORK2 and WORK3 are no longer required.

F02UWF

Withdrawn at Mark 18

The following replacement ignores the triangular structure of A, and therefore references the subdiagonal elements of A; however on many machines the replacement code will be more efficient.

```
Old: CALL FO2UWF(N,A,LDA,D,E,NCOLY,Y,LDY,WANTQ,Q,LDQ,WORK,IFAIL)
New: DO 20 J = 1, N
        DO 10 I = J+1, N
           A(I,J) = 0.0e0
  10
        CONTINUE
  20 CONTINUE
     {\tt CALL} \ \ cgebrd({\tt N,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO})
     IF (WANTQ) THEN
        CALL FO6TFF('L', N, N, A, LDA, Q, LDQ)
        CALL cungbr('Q',N,N,N,Q,LDQ,TAUQ,WORK,LWORK,INFO)
     END IF
     IF (NCOLY.GT.O) THEN
        CALL cunmbr('Q','L','C',N,NCOLY,N,A,LDA,TAUQ,Y,LDY,
                      WORK, LWORK, INFO)
     END IF
```

where TAUQ and TAUP are complex arrays of length at least (N), and LWORK is the actual length of WORK.

F02UXF

Withdrawn at Mark 18

The following replacement is valid only if the previous call to F02UWF has been replaced by a call to F08KSF (CGEBRD/ZGEBRD) as shown above.

```
Old: CALL FO2UXF(N,A,LDA,NCOLY,Y,LDY,RWORK,CWORK,IFAIL)

New: IF (NCOLY.EQ.O) THEN

CALL cungbr('P',N,N,N,A,LDA,TAUP,CWORK,LWORK,INFO)

ELSE

CALL cunmbr('P','L','C',N,NCOLY,N,A,LDA,TAUP,Y,LDY,CWORK,

+ LWORK,INFO)

END IF
```

where LWORK is the actual length of CWORK.

REPLACE.32 [NP3390/19]

F02UYF

```
Withdrawn at Mark 18
```

```
Old: CALL F02UYF(N,D,E,NCOLB,B,LDB,NROWY,Y,LDY,NCOLZ,Z,LDZ,WORK,

+ IFAIL)
New: CALL cbdsqr('U',N,NCOLZ,NROWY,NCOLB,D,E,Z,LDZ,Y,LDY,B,LDB,WORK,

+ INFO)
```

where WORK is a *real* array of length at least (4*(N-1)) unless NCOLB = NROWY = NCOLZ = 0.

F02WAF

Withdrawn at Mark 16

RWORK must be a one-dimensional real array of length at least lwork given by:

```
lwork = max(3 \times (N-1), 1) when WANTB is false;
lwork = max(5 \times (N-1), 2) when WANTB is true.
```

If, in the call to F02WAF, LWORK satisfies these conditions then F02WEF may be called with RWORK as WORK.

F02WBF

Withdrawn at Mark 14

RWORK must be a one-dimensional real array of length at least lwork given by:

```
lwork = max(3 \times (M-1), 1) when M = N and WANTB is false;

lwork = max(5 \times (M-1), 1) when M = N and WANTB is true;

lwork = M^2 + 3 \times (M-1) when M < N and WANTB is false;

lwork = M^2 + 5 \times (M-1) when M < N and WANTB is true.
```

In the cases where WANTB is false F02WEF may be called with RWORK as WORK, but when WANTB is true the user should check that, in the call to F02WBF, LWORK satisfies the above conditions before replacing RWORK with WORK.

F02WCF

Withdrawn at Mark 14

```
Old: CALL FO2WCF(M,N,MINMN,A,NRA,Q,NRQ,SV,PT,NRPT,WORK,LWORK,

+ IFAIL)

New: IF (M.GE.N) THEN

CALL FO6QFF('General',M,N,A,NRA,Q,NRQ)

CALL FO2WEF(M,N,Q,NRQ,O,WORK,1,.TRUE.,WORK,1,SV,.TRUE.,

+ PT,NRPT,RWORK,IFAIL)

ELSE
```

```
CALL F06QFF('General',M,N,A,NRA,PT,NRPT)

CALL F02WEF(M,N,PT,NRPT,O,WORK,1,.TRUE.,Q,NRQ,SV,.TRUE.,

WORK,1,RWORK,IFAIL)

END IF
```

RWORK must be a one-dimensional real array of length at least lwork given by:

```
lwork = N^2 + 5 \times (N-1) when M \ge N;

lwork = M^2 + 5 \times (M-1) when M < N.
```

If, in the call to F02WCF, LWORK satisfies these conditions then F02WEF may be called with RWORK as WORK.

F03 - Determinants

F03AGF

Withdrawn at Mark 17

```
Old: CALL FO3AGF(N,M,A,IA,RL,IL,M1,D1,ID,IFAIL)
New: CALL spbtrf('Lower',N,M,A,IA,IFAIL)
```

where the array RL and its associated dimension parameter IL, and the parameters M1, D1 and ID are no longer required. In F07HDF (SPBTRF/DPBTRF), the array A holds the matrix packed using a different scheme to that used by F03AGF; see the routine document for details. F07HDF (SPBTRF/DPBTRF) overwrites A with the Cholesky factor L (without reciprocating diagonal elements) rather than returning L in the array RL. F07HDF (SPBTRF/DPBTRF) does not compute the determinant of the input matrix, returned as D1 \times 2.0^{ID} by F03AGF. If this is required, it may be calculated after the call of F07HDF (SPBTRF/DPBTRF) by code similar to the following. The code computes the determinant by multiplying the diagonal elements of the factor L, taking care to avoid possible overflow or underflow.

```
D1 = 1.0e0
  ID = 0
  DO 30 I = 1, N
     D1 = D1*A(1,I)**2
      IF (D1.GE.1.0e0) THEN
10
         D1 = D1*0.0625e0
         ID = ID + 4
         GO TO 10
      END IF
      IF (D1.LT.0.0625e0) THEN
20
         D1 = D1*16.0e0
         ID = ID - 4
         GO TO 20
      END IF
30 CONTINUE
```

F03AHF

Withdrawn at Mark 17

```
Old: CALL FO3AHF(N,A,IA,DETR,DETI,ID,RINT,IFAIL)
New: CALL cgetrf(N,N,A,IA,IPIV,IFAIL)
```

where IPIV is an INTEGER array of length N which holds the indices of the pivot elements, and the array RINT is no longer required. It may be important to note that after a call of F07ARF (CGETRF/ZGETRF), A is overwritten by the upper triangular factor U and the off-diagonal elements of the unit lower triangular factor L, whereas the factorization returned by F03AHF gives U the unit diagonal. F07ARF (CGETRF/ZGETRF) does not compute the determinant of the input matrix, returned as cmplx(DETR,DETI)×2.0^{ID} by F03AHF. If this is required, it may be calculated after a call of F07ARF (CGETRF/ZGETRF) by code similar to the following, where DET is a complex variable. The code computes the determinant by multiplying the diagonal elements of the factor U, taking care to avoid possible overflow or underflow.

REPLACE.34 [NP3390/19]

```
DET = cmplx(1.0e0, 0.0e0)
       ID = 0
       DO 30 I = 1, N
          IF (IPIV(I).NE.I) DET = -DET
          DET = DET*A(I,I)
          IF (MAX(ABS(real(DET)),ABS(imag(DET))).GE.1.0e0) THEN
    10
             DET = DET*0.0625e0
             ID = ID + 4
              GO TO 10
          END IF
          IF (MAX(ABS(real(DET)),ABS(imag(DET))).LT.0.0625e0) THEN
    20
             DET = DET*16.0e0
              ID = ID - 4
              GD TO 20
          END IF
    30 CONTINUE
       DETR = real(DET)
       DETI = imag(DET)
F03AMF
Withdrawn at Mark 17
    Old: CALL FO1BNF(N,A,IA,P,IFAIL)
         CALL FO3AMF(N,TEN,P,D1,D2)
    New: CALL cpotrf('Upper', N, A, IA, IFAIL)
         D1 = 1.0e0
         D2 = 0.0e0
         DO 30 I = 1, N
            D1 = D1*real(A(I,I))**2
      10
             IF (D1.GE.1.0e0) THEN
                D1 = D1*0.0625e0
                D2 = D2 + 4
                GD TO 10
             END IF
      20
             IF (D1.LT.0.0625e0) THEN
                D1 = D1*16.0e0
                D2 = D2 - 4
                GO TO 20
            END IF
      30 CONTINUE
          IF (TEN) THEN
             I = D2
             D2 = D2*LOG10(2.0e0)
             D1 = D1*2.0e0**(I-D2/L0G10(2.0e0))
          END IF
```

F03AMF computes the determinant of a Hermitian positive-definite matrix after factorization by F01BNF, and has no replacement routine. F01BNF has been superseded by F07FRF (CPOTRF/ZPOTRF). To compute the determinant of such a matrix, in the same form as that returned by F03AMF, code similar to the above may be used. The code computes the determinant by multiplying the (real) diagonal elements of the factor U, taking care to avoid possible overflow or underflow.

Note that before the call of F07FRF (CPOTRF/ZPOTRF), array A contains the upper triangle of the matrix rather than the lower triangle.

F04 – Simultaneous Linear Equations

F04AKF

Withdrawn at Mark 17

```
Old: CALL FO4AKF(N,IR,A,IA,P,B,IB)

New: CALL cgetrs('No Transpose',N,IR,A,IA,IPIV,B,IB,INFO)
```

It is assumed that the matrix has been factorized by a call of F07ARF (CGETRF/ZGETRF) rather than F03AHF; see the F03 Chapter Introduction for details. IPIV is an INTEGER array of length N, as returned by F07ARF (CGETRF/ZGETRF), and the array P is no longer required. INFO is an INTEGER diagnostic parameter; see the F07ASF (CGETRS/ZGETRS) routine document for details.

F04ALF

Withdrawn at Mark 17

```
Old: CALL F04ALF(N,M,IR,RL,IRL,M1,B,IB,X,IX)

New: CALL F06QFF('General',N,IR,B,IB,X,IX)

CALL spbtrs('Lower',N,M,IR,A,IA,X,IX,INFO)
```

It is assumed that the matrix has been factorized by a call of F07HDF (SPBTRF/DPBTRF) rather than F03AGF; see the F03 Chapter Introduction for details. A is the factorized matrix as returned by F07HDF (SPBTRF/DPBTRF). The array RL, its associated dimension parameter IRL, and the parameter M1 are no longer required. INFO is an INTEGER diagnostic parameter; see the F07HEF (SPBTRS/DPBTRS) routine document for details. If the original right-hand side matrix B is no longer required, the call to F06QFF is not necessary, and references to X and IX in the call of F07HEF (SPBTRS/DPBTRS) may be replaced by references to B and IB, in which case B will be overwritten by the solution.

F04ANF

Withdrawn at Mark 18

where Y must be the same real array as was used as the 7th argument in the previous call of F01AXF.

This replacement is valid only if the previous call to F01AXF has been replaced by a call to F08BEF (SGEQPF/DGEQPF) as shown above.

F04AQF

Withdrawn at Mark 16

may be replaced by calls to F06EFF (SCOPY/DCOPY), and F07GEF (SPPTRS/DPPTRS) or F07PEF (SSPTRS/DSPTRS), depending on whether the symmetric matrix has previously been factorized by F07GDF (SPPTRF/DPPTRF) or F07PDF (SSPTRF/DSPTRF) (see the description above of how to replace calls to F01BQF).

(a) where the symmetric matrix has been factorized by F07GDF (SPPTRF/DPPTRF)

```
Old: CALL F04AQF(N,M,RL,D,B,X)

New: CALL scopy(N,B,1,X,1)

CALL spptrs('Lower',N,1,RL,X,N,INFO)
```

(b) where the symmetric matrix has been factorized by F07PDF (SSPTRF/DSPTRF)

```
Old: CALL FO4AQF(N,M,RL,D,B,X)

New: CALL scopy(N,B,1,X,1)

CALL ssptrs('Lower',N,1,RL,IPIV,X,N,INFO)
```

In both (a) and (b), the array RL must be as returned by the relevant factorization routine. The INTEGER parameter INFO is a diagnostic parameter. The INTEGER array IPIV in (b) must be as returned by F07PDF (SSPTRF/DSPTRF). The dimension parameter M, and the array D, are no longer required. If the right-hand-side array B is not needed after solution of the equations, the call to F06EFF (SCOPY/DCOPY), which simply copies array B to X, is not necessary. References to X in the calls of F07GEF (SPPTRS/DPTRS) and F07PEF (SSPTRS/DSPTRS) may then be replaced by references to B, in which case B will be overwritten by the solution vector.

REPLACE.36 [NP3390/19]

F04AWF

Withdrawn at Mark 17

```
Old: CALL FO4AWF(N,IR,A,IA,P,B,IB,X,IX)

New: CALL FO6TFF('General',N,IR,B,IB,X,IX)

CALL cpotrs('Upper',N,IR,A,IA,X,IX,INFO)
```

It is assumed that the matrix has been factorized by a call of F07FRF (CPOTRF/ZPOTRF) rather than F01BNF; see the F01 Chapter Introduction for details. A is the factorized matrix as returned by F07FRF (CPOTRF/ZPOTRF). The array P is no longer required. INFO is an INTEGER diagnostic parameter; see the F07FSF (CPOTRS/ZPOTRS) routine document for details. If the original right-hand side array B is no longer required, the call to F06TFF is not necessary, and references to X and IX in the call of F07FSF (CPOTRS/ZPOTRS) may be replaced by references to B and IB, in which case B will be overwritten by the solution.

F04AYF

Withdrawn at Mark 18

```
Old: CALL FO4AYF(N,IR,A,IA,P,B,IB,IFAIL)
New: CALL sgetrs('No Transpose',N,IR,A,IA,IPIV,B,IB,IFAIL)
```

It is assumed that the matrix has been factorized by a call of F07ADF (SGETRF/DGETRF) rather than F01BTF. IPIV is an INTEGER array of length N, and the array P is no longer required.

F04AZF

Withdrawn at Mark 17

```
Old: CALL FO4AZF(N,IR,A,IA,P,B,IB,IFAIL)
New: CALL spotrs('Upper',N,IR,A,IA,B,IB,IFAIL)
```

It is assumed that the matrix has been factorized by a call of F07FDF (SPOTRF/DPOTRF) rather than F01BXF. The array P is no longer required.

F04LDF

Withdrawn at Mark 18

```
Old: CALL FO4LDF(N,M1,M2,IR,A,IA,AL,IL,IN,B,IB,IFAIL)
New: CALL sgbtrs('No Transpose',N,M1,M2,IR,A,IA,IN,B,IB,IFAIL)
```

It is assumed that the matrix has been factorized by a call of F07BDF (SGBTRF/DGBTRF) rather than F01LBF. The array AL and its associated dimension parameter IL are no longer required.

F04MAF

Withdrawn at Mark 19

Existing programs should be modified to call F11JCF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F04MBF

Withdrawn at Mark 19

If a user-defined preconditioner is required existing programs should be modified to call F11GAF, F11GBF and F11GCF. Otherwise F11JCF or F11JEF may be used. The interfaces for these routines are significantly different from that for F04MBF and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F04NAF

Withdrawn at Mark 17

```
Old: CALL F04NAF(JOB,N,ML,MU,A,NRA,IN,B,TOL,IFAIL)
New: JOB = ABS(JOB)
IF (JOB.EQ.1) THEN
        CALL cgbtrs('No Transpose',N,ML,MU,1,A,NRA,IN,B,N,IFAIL)
ELSE IF (JOB.EQ.2) THEN
        CALL cgbtrs('Conjugate Transpose',N,ML,MU,1,A,NRA,IN,B,N,IFAIL)
ELSE IF (JOB.EQ.3) THEN
        CALL ctbsv('Upper','No Transpose','Non-unit',N,ML+MU,A,NRA,B,1)
END IF
```

It is assumed that the matrix has been factorized by a call of F07BRF (CGBTRF/ZGBTRF) rather than F01NAF. The replacement routines do not have the functionality to perturb diagonal elements of the triangular factor U, as specified by a negative value of JOB in F04NAF. The parameter TOL is therefore no longer useful. If this functionality is genuinely required, please contact NAG.

F05 - Orthogonalisation

F05ABF

Withdrawn at Mark 14

```
Old: U = F05ABF(X,N)
New: U = snrm2(N,X,1)
```

F06 - Linear Algebra Support Routines

F06QGF

Withdrawn at Mark 16

C must be declared as CHARACTER*1, WORK1 as a *real* array of dimension (1) and WORK2 as a *real* array of dimension (N).

F06VGF

Withdrawn at Mark 16

C must be declared as CHARACTER*1, WORK1 as a real array of dimension (1) and WORK2 as a real array of dimension (N).

REPLACE.38 [NP3390/19]

F11 - Sparse Linear Algebra

F11BAF

```
Superseded at Mark 19
Scheduled for withdrawal at Mark 21
```

```
Old: CALL F11BAF(METHOD, PRECON, NORM, WEIGHT, ITERM, N, M, TOL, MAXITN,

+ ANORM, SIGMAX, MONIT, LWREQ, IFAIL)

New: CALL F11BDF(METHOD, PRECON, NORM, WEIGHT, ITERM, N, M, TOL, MAXITN,

+ ANORM, SIGMAX, MONIT, WORK, LWREQ, IFAIL)
```

F11BDF contains two additional parameters as follows:

```
WORK(LWORK) - real array.
LWORK - INTEGER.
```

See the routine document for further information.

F11RRF

Superseded at Mark 19 Scheduled for withdrawal at Mark 21

```
Old: CALL F11BBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11BEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)
```

WGT must be a one-dimensional **real** array of length at least n (the order of the matrix) if weights are to be used in the termination criterion, and 1 otherwise. Note that the call to F11BEF requires the weights to be supplied in WGT(1:n) rather than WORK(1:n). The minimum value of the parameter LWORK may also need to be changed.

F11BCF

Superseded at Mark 19

Scheduled for withdrawal at Mark 21

```
Old: CALL F11BCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,IFAIL)

New: CALL F11BFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWORK,IFAIL)
```

F11BFF contains two additional parameters as follows:

```
WORK(LWORK) - real array.
LWORK - INTEGER.
```

See the routine document for further information.

G01 - Simple Calculations on Statistical Data

G01BAF

```
Withdrawn at Mark 16
```

```
Old: P = G01BAF(IDF,T,IFAIL)
New: P = G01EBF('Lower-tail',T,real(IDF),IFAIL)
```

G01BBF

Withdrawn at Mark 16

```
Old: P = GO1BBF(I1,I2,A,IFAIL)
New: P = GO1EDF('Upper-tail',A,real(I1),real(I2),IFAIL)
```

G01BCI

Withdrawn at Mark 16

```
Old: P = G01BCF(X,N,IFAIL)
New: P = G01ECF('Upper-tail',X,real(N),IFAIL)
```

G01BDF Withdrawn at Mark 16 Old: P = GO1BDF(X,A,B,IFAIL) New: CALL GO1EEF(X,A,B,TOL,P,Q,PDF,IFAIL) where TOL is set to the accuracy required by the user and Q and PDF are additional output quantities. Note. The values of A and B must be $\leq 10^6$. G01CAF Withdrawn at Mark 16 Old: T = GO1CAF(P,N,IFAIL) New: T = G01FBF('Lower-tail',P,real(N),IFAIL) G01CBF Withdrawn at Mark 16 Old: F = GO1CBF(P,M,N,IFAIL) New: F = GO1FDF(P, real(M), real(N), IFAIL) G01CCF Withdrawn at Mark 16 Old: X = GO1CCF(P,N,IFAIL) New: X = GO1FCF(P, real(N), IFAIL) G01CDF Withdrawn at Mark 16 Old: X = GO1CDF(P,A,B,IFAIL) New: X = GO1FEF(P,A,B,TOL,IFAIL) where TOL is set to the accuracy required by the user. Note. The values of A and B must be $\leq 10^6$. G01CEF Withdrawn at Mark 18 Old: X = GO1CEF(P, IFAIL) New: X = GO1FAF('Lower-tail',P,IFAIL)

G02 - Correlation and Regression Analysis

G02CJF

```
Withdrawn at Mark 16
```

```
CALL GO2CJF(X,IX,Y,IY,N,M,IR,THETA,IT,SIGSQ,C,IC,IPIV,
Old:
                        WK1, WK2, IFAIL)
            set the first M elements of ISX to 1
New: C
            CALL FO6DBF(M,1,ISX,1)
     С
            THEN
            TOL = XO2AJF()
            CALL GO2DAF('Zero', 'Unweighted', N, X, IX, M, ISX, M, Y, WT,
                        RSS, IDF, THETA, SE, COV, RES, H, C, IC, SVD, IRANK,
                         P, TOL, WK, IFAIL)
            SIGSQ(1) = RSS/IDF
            there are two or more dependent variables,
     С
            i.e., IR is greater than or equal to 2 then:
            DO 20 I = 2, IR
               CALL GO2DGF('Unweighted', N, WT, RSS, IP, IRANK, COV, C, IC, SVD,
                            P,Y(1,I),THETA(1,I),SE,RES,WK,IFAIL)
               SIGSQ(I) = RSS/IDF
         20 CONTINUE
```

REPLACE.40 [NP3390/19]

For unweighted regression, as is used here, WT may be any *real* array and will not be referenced, e.g. SIGSQ could be used.

The array C no longer contains $(X^TX)^{-1}$; however, $(X^TX)^{-1}$ scaled by $\hat{\sigma}^2$ is returned in packed form in array COV. The upper triangular part of C will now contain a factorization of X^TX .

The **real** arrays SE(M), $COV(M^*(M+1)/2)$, RES(N), H(N), $P(M^*(M+2))$, the logical variable SVD and the INTEGER variable IRANK are additional outputs. There is also a single **real** workspace $WK(5^*(M-1)+M*M)$.

G04 - Analysis of Variance

G04ADF

Withdrawn at Mark 17

The arrays AMR, AMC and AMT contain the means of the rows, columns and treatments rather than the totals. The values equivalent to those returned in the array VAR of G04ADF are returned in the second column of the two-dimensional array TABLE starting at the second row, e.g., VAR(1) = TABLE(2,2). The two dimensional integer array LCODE (containing the treatment codes) has been replaced by the one-dimensional array IT. These arrays will be the equivalent if IA = N. The following additional declarations are required.

where NMAX is an integer such that NMAX $\geq N$.

G04AEF

Withdrawn at Mark 17

```
Old: CALL GO4AEF(Y,N,K,NOBS,GBAR,GM,SS,IDF,F,FP,IFAIL)

New: CALL GO4BBF(N,Y,O,K,IT,GM,BMEAN,GBAR,TABLE,4,C,KMAX,NOBS,

+ R,EF,O.0eO,O,WK,IFAIL)
```

The values equivalent to those returned by G04AEF in the arrays IDF and SS are returned in the first and second columns of TABLE starting at row 2 and the values equivalent to those returned in the scalars F and FP are returned in TABLE(2,4) and TABLE(2,5) respectively. NOBS is output from G04BBF rather than input. The groups are indicated by the array IT. The following code illustrates how IT can be computed from NOBS.

```
IJ = 0
DD 40 I = 1, K
DD 20 J = 1, NOBS(I)
IJ = IJ + 1
IT(IJ) = I
CONTINUE
40 CONTINUE
```

The following additional declarations are required.

```
real BMEAN(1),C(KMAX,KMAX),EF(KMAX),R(NMAX),TABLE(4,5),

WK(KMAX*KMAX+KMAX)

INTEGER IT(NMAX)
```

NMAX and KMAX are integers such that NMAX \geq N and KMAX \geq K.

G04AFF

Withdrawn at Mark 17

```
Old: CALL GO4AFF(Y,IY1,IY2,M,NR,NC,ROW,COL,CELL,ICELL,GM,SS,IDF,F,FP,

+ IFAIL)

New: CALL GO4CAF(M*NR*NC,Y1,2,LFAC,1,2,0,6,TABLE,ITOTAL,TMEAN,MAXT,E,

+ IMEAN,SEMEAN,BMEAN,R,IWK,IFAIL)
```

Where Y1 is a one-dimensional array containing the observations in the same order as Y, if IY1 = M and IY2 = NR then these are equivalent. LFAC is an integer array such that LFAC(1) = NC and LFAC(2) = NR. The following indicates how the results equivalent to those produced by G04AFF can be extracted from the results produced by G04CAF.

```
GO4CAF
GO4AFF
             TMEAN(IMEAN(1)+i), i = 1,2,...,NR
ROW(i)
             TMEAN(j), j = 1,2,...,NC
COL(i)
             TMEAN(IMEAN(2)+(j-1)*NR+i), i = 1,2,...,NR; j = 1,2,...,NC
CELL(i,j)
             BMEAN(1)
GM
             TABLE(3,2)
SS(1)
             TABLE(2,2)
SS(2)
SS(i)
             TABLE(4,2)
             TABLE(3,1)
IDF(1)
             TABLE(2,1)
IDF(2)
             TABLE(4,1)
IDF(i)
             TABLE(3,4)
F(1)
             TABLE(2,4)
F(2)
             TABLE(4,4)
F(3)
             TABLE(3,5)
FP(1)
             TABLE(2,5)
FP(2)
FP(3)
             TABLE(4,5)
```

Note how rows and columns have swapped.

The following additional declarations are required.

NMAX and MAXT are integers such that NMAX \geq M \times NR \times NC and MAXT \geq NR + NC + NR \times NC.

G05 - Random Number Generators

G05DGF

Withdrawn at Mark 16

```
Old: X = GO5DGF(G,H,IFAIL)
New: CALL GO5FFF(G,H,1,X(1),IFAIL)
```

where X must now be declared as an array of length at least 1.

G05DLF

Withdrawn at Mark 16

```
Old: X = GO5DLF(G,H,IFAIL)
New: CALL GO5FEF(G,H,1,X(1),IFAIL)
```

where X must now be declared as an array of length at least 1.

REPLACE.42 [NP3390/19]

G05DMF

Withdrawn at Mark 16

```
Old: X = GO5DMF(G,H,IFAIL)

New: CALL GO5FEF(G,H,1,X(1),IFAIL)

IF (X(1).LT.1.0e0) X(1) = X(1)/(1.0e0-X(1))
```

where X must now be declared as an array of length at least 1. If the value of X(1) returned by G05FEF is 1.0, appropriate action should be taken. Alternatively the ratio of gamma variates can be used i.e.,

```
CALL G05FFF(G,1.0e0,1,X(1),IFAIL1)
CALL G05FFF(H,1.0e0,1,Y(1),IFAIL2)
IF (Y(1).NE.0.0e0) X(1) = X(1)/Y(1)
```

where Y must be declared as an array of length at least 1.

G08 - Nonparametric Statistics

G08ABF

Withdrawn at Mark 16

W1 is a *real* work array of dimension (3*N). The *real* array W2 is no longer required. WNOR returns the normalized Wilcoxon test statistic. The *real* array Z, of dimension (N), contains the difference between the paired sample observations, and by setting the *real* variable XME to zero the routine may be used to test whether the medians of the two matched or paired samples are equal.

G08ADF

Withdrawn at Mark 16

The observations from the two independent samples must be stored in two separate real arrays, of dimensions N1 and N2, where N2 = N - N1, rather than consecutively in one array as in G08ADF.

UNOR returns the normalized Mann-Whitney U statistic. The LOGICAL parameter TIES indicates whether ties were present in the pooled sample or not and RANKS, a **real** array of dimension (N1+N2), returns the ranks of the pooled sample.

Both G08ADF and its replacement routine G08AHF return approximate tail probabilities for the test statistic. To compute exact tail probabilities G08AJF may be used if there are no ties in the pooled sample and G08AKF may be used if there are ties in the pooled sample.

G08CAF

Withdrawn at Mark 16

```
Old: CALL GOSCAF(N,X,NULL,NP,P,NEST,NTYPE,D,PROB,S,IND,IFAIL)
New: CALL GOSCBF(N,X,DIST,PAR,NEST,NTYPE,D,Z,PROB,S,IFAIL)
```

The following table indicates how existing choices for the null distribution, indicated through the INTEGER variable NULL in G08CAF, may be made in G08CBF using the character variable DIST.

null distribution	G08CAF - NULL	G08CBF - DIST
uniform	1	'U'
Normal	2	'N'
Poisson	3	'P'
exponential	4	' E'

PAR is a *real* array of dimension (1) for both the one and two parameter distributions, but only the first element of PAR is actually referenced (used) if the chosen null distribution has only one parameter. The input parameter NP is no longer required.

On exit S contains the sample observations sorted into ascending order. It no longer contains the sample cumulative distribution function but this may be computed from S.

G13 - Time Series Analysis

G13DAF

Withdrawn at Mark 17

Note that in G13DAF the NS series are stored in the columns of X whereas in G13DMF these series are stored in rows; hence it is necessary to transpose the data array.

The real array WMEAN must be of length NS, and on output stores the means of each of the NS series.

The diagonal elements of C0 store the variances of the series if covariances are requested, but the standard deviations if correlations are requested.

H - Operations Research

H02BAF

Withdrawn at Mark 15

```
CALL HO2BAF(A,MM,N1,M,N,200,L,X,NUMIT,OPT,IFAIL)
New: C M, N and MM must be set before these declaration statements
                   MAXDPT, LIWORK, LRWORK, ITMAX, MSGLVL, MAXNOD, INTFST
        INTEGER
        PARAMETER (LIWORK = (25+N+M)*MAXDPT + 5*N + M + 4)
        PARAMETER (LRWORK = MAXDPT*(N+2) + 2*N*N + 13*N + 12*M)
                   INTVAR(N), IWORK(LIWORK)
        INTEGER
                   BIGBND, TOLFES, TOLIV, ROPT
        real
                   RA(MM,N), RX(N), CVEC(N), BL(N+M), BU(N+M), RWORK(LRWORK)
        real
        DO 10 J = 1, N
           INTVAR(J) = 1
           CVEC(J) = A(1,J)
           RX(J) = 1.0e0
           DO 20 I = 1, M
              RA(I,J) = A(I+1,J)
    20
           CONTINUE
    10 CONTINUE
        BIGBND = 1.0e20
        DO 30 I = 1, N
           BL(I) = 0.0e0
```

REPLACE.44 [NP3390/19]

```
BU(I) = BIGBND
30 CONTINUE
    DO 40 I = N+1, N+M
       BU(I) = A(I-N+1,N+1)
       BL(I) = -BIGBND
40 CONTINUE
    ITMAX = 0
    MSGLVL = 0
    MAXNOD = 0
    INTFST = 0
    TOLIV = 0.0e0
    TOLFES = 0.0e0
    MAXDPT = 3*N/2
    IFAIL = 0
    CALL HO2BBF(ITMAX, MSGLVL, N, M, RA, MM, BL, BU, INTVAR, CVEC, MAXNOD,
                 INTFST, MAXDPT, TOLIV, TOLFES, BIGBND, RX, ROPT, IWORK,
                LIWORK, RWORK, LRWORK, IFAIL)
    L = 1
    IF (IFAIL.EQ.0) L = 0
    IF (IFAIL.EQ.4) L = 2
    IF (L.EQ.O) THEN
       DO 50 I = 1, N
          X(I) = RX(I)
       CONTINUE
50
       OPT = ROPT
    ENDIF
```

The code indicates the minimum changes necessary, but H02BBF has additional flexibility and users may wish to take advantage of new features. It is strongly recommended that users consult the routine document.

M01 - Sorting

M01AAF

Withdrawn at Mark 13

```
Old: CALL MO1AAF(A,M,N,IP,IST,IFAIL)
New: CALL MO1DAF(A(M),1,N-M+1,'A',IP(M),IFAIL)
```

The array IST is no longer needed.

M01ABF

Withdrawn at Mark 13

```
Old: CALL MO1ABF(A,M,N,IP,IST,IFAIL)

New: CALL MO1DAF(A(M),1,N-M+1,'D',IP(M),IFAIL)
```

The array IST is no longer needed.

M01ACF

Withdrawn at Mark 13

```
Old: CALL MO1ACF(IA,M,N,IP,IST,IFAIL)

New: CALL MO1DBF(IA(M),1,N-M+1,'A',IP(M),IFAIL)
```

The array IST is no longer needed.

M01ADF

Withdrawn at Mark 13

```
Old: CALL MO1ADF(IA,M,N,IP,IST,IFAIL)

New: CALL MO1DBF(IA(M),1,N-M+1,'D',IP(M),IFAIL)
```

The array IST is no longer needed.

M01AEF

Withdrawn at Mark 13

The real arrays T and TT are no longer needed, but a new integer array IRANK of length NR is required.

M01AFF

Withdrawn at Mark 13

The real arrays T and TT are no longer needed, but a new integer array IRANK of length NR is required.

M01AGF

Withdrawn at Mark 13

The integer arrays K and L are no longer needed, but a new integer array IRANK of length NR is required.

M01AHF

Withdrawn at Mark 13

The integer arrays K and L are no longer needed, but a new integer array IRANK of length NR is required.

M01AJF

Withdrawn at Mark 16

```
Old: CALL MO1AJF(A,W,IND,INDW,N,NW,IFAIL)

New: CALL MO1DAF(A,1,N,'A',IND,IFAIL)

CALL MO1ZAF(IND,1,N,IFAIL)

CALL MO1CAF(A,1,N,'A',IFAIL)
```

The arrays W and INDW are no longer needed.

REPLACE.46 [NP3390/19]

Introduction Replacement Calls

M01AKF

Withdrawn at Mark 16

```
Old: CALL MO1AKF(A,W,IND,INDW,N,NW,IFAIL)

New: CALL MO1DAF(A,1,N,'D',IND,IFAIL)

CALL MO1ZAF(IND,1,N,IFAIL)

CALL MO1CAF(A,1,N,'D',IFAIL)
```

The arrays W and INDW are no longer needed.

MO1 A L.F

Withdrawn at Mark 13

```
Old: CALL MO1ALF(IA,IW,IND,INDW,N,NW,IFAIL)

New: CALL MO1DBF(IA,1,N,'A',IND,IFAIL)

CALL MO1ZAF(IND,1,N,IFAIL)

CALL MO1CBF(IA,1,N,'A',IFAIL)
```

The arrays IW and INDW are no longer needed.

M01AMF

Withdrawn at Mark 13

```
Old: CALL MO1AMF(IA,IW,IND,INDW,N,NW,IFAIL)

New: CALL MO1DBF(IA,1,N,'D',IND,IFAIL)

CALL MO1ZAF(IND,1,N,IFAIL)

CALL MO1CBF(IA,1,N,'D',IFAIL)
```

The arrays IW and INDW are no longer needed.

M01ANF

Withdrawn at Mark 13

```
Old: CALL MO1ANF(A,I,J,IFAIL)
New: CALL MO1CAF(A,I,J,'A',IFAIL)
```

M01APF

Withdrawn at Mark 16

```
Old: CALL MO1APF(A,I,J,IFAIL)
New: CALL MO1CAF(A,I,J,'D',IFAIL)
```

M01AQF

Withdrawn at Mark 13

```
Old: CALL MO1AQF(IA,I,J,IFAIL)
New: CALL MO1CBF(IA,I,J,'A',IFAIL)
```

M01ARF

Withdrawn at Mark 13

```
Old: CALL MO1ARF(IA,I,J,IFAIL)
New: CALL MO1CBF(IA,I,J,'D',IFAIL)
```

The character-sorting routines M01BAF, M01BBF, M01BCF and M01BDF have no exact replacements, because they require the data to be stored in an integer array, whereas the new character-sorting routines require the data to be stored in a character array. The following advice assumes that calling programs are modified so that the data is stored in a character array CH instead of in an integer array IA; nchar denotes the machine-dependent number of characters stored in an integer variable. The new routines sort according to the ASCII collating sequence, which may differ from the machine-dependent collating sequence used by the old routines.

M01BAF

Withdrawn at Mark 13

```
Old: CALL MO1BAF(IA,I,J,IFAIL)
New: CALL MO1CCF(CH,I,J,1,nchar,'D',IFAIL)
```

[NP3390/19] REPLACE.47

Replacement Calls

Introduction

assuming that each element of the character array CH corresponds to one element of the integer array IA.

M01BBF

Withdrawn at Mark 13

```
Old: CALL MO1BBF(IA,I,J,IFAIL)
New: CALL MO1CCF(CH,I,J,1,nchar,'A',IFAIL)
```

assuming that each element of the character array CH corresponds to one element of the integer array IA.

M01BCF

Withdrawn at Mark 13

```
Old: CALL MO1BCF(IA,NR,NC,L1,L2,LC,IUC,IT,ITT,IFAIL)

New: CALL MO1CCF(CH,LC,IUC,(L1-1)*nchar-1,L2*nchar,'D',IFAIL)
```

provided that each element of the character array CH corresponds to a whole column of the integer array IA. The arrays IT and ITT are no longer needed. The call of M01CCF will fail if NR*nchar exceeds 255.

M01BDF

Withdrawn at Mark 13

```
Old: CALL MO1BDF(IA,NR,NC,L1,L2,LC,IUC,IT,ITT,IFAIL)

New: CALL MO1CCF(CH,LC,IUC,(L1-1)*nchar-1,L2*nchar,'A',IFAIL)
```

provided that each element of the character array CH corresponds to a whole column of the integer array IA. The arrays IT and ITT are no longer needed. The call of M01CCF will fail if NR*nchar exceeds 255

P01 - Error Trapping

P01AAF

Withdrawn at Mark 13

Existing programs should be modified to call P01ABF. Please consult the appropriate routine document.

X02 – Machine Constants

X02AAF

Withdrawn at Mark 16

Old: XO2AAF(X)
New: XO2AJF()

X02ABF

Withdrawn at Mark 16

Old: XO2ABF(X)
New: XO2AKF()

X02ACF

Withdrawn at Mark 16

Old: XO2ACF(X)
New: XO2ALF()

X02ADF

Withdrawn at Mark 14

Old: XO2ADF(X)

New: XO2AKF()/XO2AJF()

REPLACE.48 [NP3390/19]

Introduction Replacement Calls

X02AEF*

Withdrawn at Mark 14

Old: XO2AEF(X)
New: LOG(XO2AMF())

X02AFF*

Withdrawn at Mark 14

Old: XO2AFF(X)
New: -LOG(XO2AMF())

X02AGF*

Withdrawn at Mark 16

Old: XO2AGF(X)
New: XO2AMF()

X02BAF

Withdrawn at Mark 14

Old: XO2BAF(X)
New: XO2BHF()

X02BCF*

Withdrawn at Mark 14

Old: XO2BCF(X)

New: -LOG(X02AMF())/LOG(2.0)

X02BDF*

Withdrawn at Mark 14

Old: XO2BDF(X)

New: LOG(X02AMF())/LOG(2.0)

X02CAF

Withdrawn at Mark 17

This routine is no longer required.

Note. In the case of the routines marked with an asterisk (*), the replacement expressions may not return the same value, but the value will be sufficiently close, and safe, for the purposes for which it is used in the Library.

[NP3390/19] REPLACE.49 (last)

Indexes

Keywords in Context GAMS Index

Keywords in Context for the NAG Fortran 77 Library

```
Nonlinear convolution Volterra-Abel equation, first kind, weakly singular
Nonlinear convolution Volterra-Abel equation, second kind, weakly singular
Generate weights for use in solving weakly singular Abel-type equations
                                                                                                                                                                                                                                                                                                                                                                                                                                                           D05BDF
D05BYF
                                                                                                                         Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
                                                                                                                                                                                                                                                                                                                                                                                                                                                          D01BCF
D01BBF
                                              Robust estimation, median, median abscissae for Gaussian quadrature rules, general choice of rule Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule Pre-computed for the pre-computed for the pre-computed for the pre-computed for the pre-computed for rules and rules for rules for the pre-computed for rules for 
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO6UAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06UEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06UEF
F06UCF
F06UDF
F06UHF
F06UFF
F06UGF
F06UJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             FOSULF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06ULF
F06UKF
F06RBF
F06RAF
F06REF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06RCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06RDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06RDF
F06RJF
F06RLF
F06RKF
F06FLF
F06JLF
F06JMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06JKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06EKF
                                                                                                                                                                                                                 Acceleration of convergence of sequence, Shanks' transformation ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                             C06BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02CJF
                                                                                                                                                                         ODEs, IVP, Adams method, until function of solution is zero,...
ODEs, IVP, Adams method with root-finding (forward communication,...
ODEs, IVP, Adams method with root-finding (reverse communication,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02QGF
                                                                                                  One-dimensional quadrature, non-adaptive, finite interval, allowing for singularities at...

One-dimensional quadrature, adaptive, finite interval, allowing for singularities at...

One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker,...

One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker,...

One-dimensional quadrature, adaptive, finite interval, variant of DOIAJF efficient on...

One-dimensional quadrature, adaptive, finite interval, variant of DOIAJF efficient on...

One-dimensional quadrature, adaptive, finite interval, weight function 1/(x - c),...

One-dimensional quadrature, adaptive, finite interval, weight function...

One-dimensional quadrature, adaptive, finite interval, weight function...

One-dimensional quadrature, adaptive, finite interval, weight function...

One-dimensional quadrature, adaptive, finite interval with provision for indefinite...

One-dimensional quadrature, adaptive, finite interval with provision for indefinite...

One-dimensional quadrature, adaptive, finite interval with provision for indefinite...

One-dimensional quadrature, adaptive, infinite or semi-infinite interval, multiple...

One-dimensional quadrature, adaptive, semi-infinite interval, weight function...
                                                                                                                                                                                                                                                                                                                                                                                                                                                             DOLBDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                             DOTALF
DOTAKF
DOTAKF
DOTAHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             DOLAJE
                                                                                                                                                                                                                                                                                                                                                                                                                                                             DOIAJF
DOIATF
DOIAUF
DOIAQF
DOIANF
                                                                                                                                                                                                                                                                                                                                                                                                                                                             DOLAPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                             D01ARF
D01AMF
D01FCF
D01EAF
D01ASF
                                                                                                                                                                                                                  Add a new variable to a general linear regression model
Add scalar times complex sparse vector to complex sparse vector
Add scalar times complex vector to complex vector
Add scalar times real sparse vector to real sparse vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                             G02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO6GTF
                                                                                                                                                                                                                   Add scalar times real vector to real vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                             G02DCF
                                                                                                                                                                                                                  Add/delete an observation to/from a general linear regression model
                                        Real inner product added to initial value, basic/additional precision
Complex inner product added to initial value, basic/additional precision
                                                                                                                                                                                                                                                                                                                                                                                                                                                              X04ABF
                                                                                                               Return or set unit number for advisory messages
                                                                                                                                                                                                                                                                                                                                                                                                                                                               S17AGF
                                                                                                                                                                      Airy function Ai(x
                                                                                                                                                                      Airy function Ai'(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17AJF
                                                                                                                                Airy functions Ai(z) and Ai'(z), complex z
Airy functions Ai(z) and Ai'(z), complex z
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17DGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17AGF
                                                                                                                                                                                                                   Airy function Ai(x)
                                                                                                                                                                                                                    Airy function Ai'(x)
Airy function Bi(x)
Airy function Bi'(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17AJF
S17AHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17AKF
                                                                                                                                                                                                                   Airy functions \operatorname{Ai}(z) and \operatorname{Ai}'(z), complex z
Airy functions \operatorname{Bi}(z) and \operatorname{Bi}'(z), complex z
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17DGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                              S17DHF
                                                                                                                                                  Interpolated values, Aitken's technique, unequally spaced data, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                               E01AAF
                                                                                                                                                                         Basic Linear Algebra Subprograms
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02M-N
                                                                                                                                                                            Differential/algebraic equations
        Differential/Algebraic equations
...problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
Implicit/Algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)
Implicit/Algebraic ODEs, stiff IVP, full Jacobian (comprehensive)
Implicit/Algebraic ODEs, stiff IVP (reverse communication, comprehensive)
Implicit/Algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02NJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                D01APF
     ...finite interval, weight function with end-point singularities of algebraico-logarithmic type
                                                                                                                                                                                                                    Allocates observations to groups according to selected rules...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                G03DCF
                                                                                                                                     LU factorization of real almost block diagonal matrix Solution of real almost block diagonal simultaneous linear equations (coefficient...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                F04LHF
                                                                                                                  Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G13CEF
Performs principal component analysis
Performs canonical variate analysis
Performs canonical variate analysis
Performs canonical correlation analysis
...within-group covariance matrices and matrices for discriminant analysis
Hierarchical cluster analysis
K-means cluster analysis
Performs principal co-ordinate analysis, classical metric scaling
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G03AAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G03ACF
G03ADF
G03DAF
G03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G03EFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G03FAF
```

```
...maximum likelihood estimates of the parameters of a factor analysis model, factor loadings, communalities and...

Returns parameter estimates for the conditional analysis of stratified data

Analysis of variance, complete factorial design, treatment...

Analysis of variance, general row and column design, treatment...

Two-way analysis of variance, hierarchical classification, subgroups...

Friedman two-way analysis of variance on k matched samples

Kruskal-Wallis one-way analysis of variance on k samples of unequal size

Analysis of variance, randomized block or completely randomized...

Two-way contingency table analysis, with \chi^2/Fisher's exact test
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G03CAF
G11CAF
G04CAF
G04BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G04AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GOSAEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01AFF
                                                                                                                                                                                                                         Padé-approximants
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02RAF
                                                                                                                                                                                                                                Approximation L_1-approximation by general linear function \mathbb{L}_{\infty}-approximation by general linear function L_1-approximation by general linear function subject to linear... Approximation of special functions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02
E02GAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               S09ABF
S11ACF
S09AAF
S11ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SIIAAF
                                              Univariate time series, preliminary estimation, seasonal ARIMA model ries, state set and forecasts, from fully specified seasonal ARIMA model Multivariate time series, filtering (pre-whitening) by an ARIMA model Univariate time series, estimation, seasonal ARIMA model (comprehensive) Univariate time series, estimation, seasonal ARIMA model (easy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13ADF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13AJF
G13BAF
G13AEF
G13AFF
                                                                                 Set up reference vector for univariate ARMA time series model
Generate next term from reference vector for ARMA time series model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05EGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05EWF
                                                                                                                                                                              ODEs. IVP, error assessment diagnostics for D02PCF and D02PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02PZF
                                                                                                                                    Univariate time series, sample autocorrelation function
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13ABF
                                                          Univariate time series, partial autocorrelations from autocorrelations

Multivariate time series, multiple squared partial autocorrelations

Univariate time series, partial autocorrelations from autocorrelations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13DBF
G13ACF
                                                                                                                 Least-squares cubic spline curve fit, automatic knot placement
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02BEF
                                                                        Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02DDF
                                                                                                                               Multivariate time series, partial autoregression matrices
                                                                                                                               Calculates the zeros of a vector autoregressive (or moving average) operator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13DXF
                                     Moving average See ARMA Calculates the zeros of a vector autoregressive (or moving average) operator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G13DXF
                                                                                                                                                                                                                                          Balance complex general matrix
Balance real general matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F08NVF
F08NHF
Transform eigenvectors of real balanced matrix to those of original matrix supplied to FOSNVF

Transform eigenvectors of complex balanced matrix to those of original matrix supplied to FOSNVF

WALLIA TO Transform of real symmetric positive-definite band matrix

Matrix-vector product, real rectangular band matrix

Matrix-vector product, real symmetric band matrix

Solution of real symmetric band matrix

Linorm, co-norm, Frobenius norm, largest absolute element, real symmetric band matrix

...Frobenius norm, largest absolute element, real symmetric band matrix

Matrix-vector product, complex rectangular band matrix

Matrix-vector product, complex rectangular band matrix

Matrix-vector product, complex triangular band matrix

...Frobenius norm, largest absolute element, complex triangular band matrix

...Frobenius anorm, largest absolute element, complex triangular band matrix

...Frobenius norm, largest absolute element, complex triangular band matrix

...Frobenius norm, largest absolute olement, complex triangular band matrix

...Frobenius norm, largest absolute olement, complex triangular band matrix

...Frobenius norm, largest absolute olement, complex symmetric band matrix

...Foloelexy factorization of complex Hermitian band matrix

Cholesky factorization of complex Hermitian band matrix

...Cholesky factorization of complex Hermitian band matrix

...Cholesky factorization of complex Hermitian band matrix

Determinant of real symmetric positive-definite band matrix

...Cholesky factorization of complex Hermitian band matrix

Matrix-vector product, complex Hermitian band matrix to real symmetric positive-definite band matrix to real symmetric positive-definite band matrix

Matrix-vector product, complex Hermitian band matrix to real symmetric positive-definite band matrix to real symmetric positive-definite band matrix to real symmetric positive-d
                                                                                                                    Transform eigenvectors of real balanced matrix to those of original matrix supplied to F08NHF Transform eigenvectors of complex balanced matrix to those of original matrix supplied to F08NVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F08NWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06PBF
F06PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOSPGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06PKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06RLF
F06SBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO6SBF
FO6SBF
FO6SKF
FO6UBF
FO6UEF
FO6UHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06ULF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F07BDF
F07BRF
F07HDF
F07HRF
F08UFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F08UTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F08UTF
F03ACF
F07BGF
F07BUF
F07HGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F08HSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO8HSF
FO8LEF
FO8LSF
FO8HCF
FO8HQF
FO7BHF
FO7BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO7HHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07HVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO7BEF
FO7BSF
FO7HEF
FO7HSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07VGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07VUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07VEF
F07VHF
F07VSF
F07VVF
               Convert real matrix between packed banded and rectangular storage schemes Convert complex matrix between packed banded and rectangular storage schemes Reduction to standard form, generalized real symmetric-definite banded eigenproblem by inverse iteration Eigenvector of generalized real banded eigenproblem by inverse iteration Reduction of real symmetric-definite banded generalized eigenproblem Ax = \lambda Bx to standard form... Reduction of complex Hermitian-definite banded generalized eigenproblem Ax = \lambda Bx to standard form... Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)

Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)

ODEs, IVP, for use with D02M-N routines, banded Jacobian, linear algebra set-up Print real packed banded matrix (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F01ZCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F01ZCF
F01ZDF
F01BVF
F02SDF
F08UEF
F08USF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02NCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02NHF
```

KWIC.2 [NP3390/19]

```
Print complex packed banded matrix (comprehensive)
Print real packed banded matrix (casy-to-use)
Print complex packed banded matrix (casy-to-use)
All eigenvalues of generalised banded real symmetric-definite eigenproblem (Black Box)
Solution of real symmetric positive-definite banded simultaneous linear equations with multiple right-hand sides...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 X04DFF
X04CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   X04DEF
                                     ...to standard form Cy=\lambda y, such that C has the same bandwidth as A ...to standard form Cy=\lambda y, such that C has the same bandwidth as A
      LDL<sup>T</sup> factorization of real symmetric positive-definite variable-bandwidth matrix

Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already... F04MCF
  ...time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window ...time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
                                                                    Real inner product added to initial value, basic/additional precision
Complex inner product added to initial value, basic/additional precision
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 X03AAF
X03ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DOSNVE
                                                                                                                                                                          ODEs, IVP, BDF method, set-up for D02M-N routines
ODEs, stiff IVP, BDF method, until function of solution is zero,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SISCEE
                                                                                                                                                                                                     Modified Bessel function e^{-|x|}I_0(x)
                                                                                                                                                                                                   Modified Bessel function e^{-|x|}I_0(x) Modified Bessel function e^{-|x|}I_1(x) Modified Bessel function e^xK_0(x) Modified Bessel function e^xK_1(x) Modified Bessel function I_0(x) Modified Bessel function I_0(x) Modified Bessel function I_0(x) Modified Bessel function I_0(x) Bessel function I_0(x) Modified Bessel function K_0(x) Modified Bessel function K_1(x) Modified Bessel function K_1(x) Modified Bessel functions K_1(x) Figure K_1(x) Modified Bessel functions K_1(x) Figure K_1(x) Figur
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STACEE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S18CCF
S18CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SISAEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SISAFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S17AEF
S17AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S18ACF
S18ADF
S17ACF
S17ADF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SISDEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S17DCF
  ...lower tail probabilities and probability density function for the beta distribution

Computes deviates for the beta distribution

Computes probabilities for the non-central beta distribution

Generates a vector of pseudo-random numbers from a beta distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GOSFEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SIZAHE
                                                                                                                                                                                     Airy function Bi(x)
                                                                                                                                                                                       Airy function Bi (x)
                                                                                                                                             Airy functions \operatorname{Bi}(z) and \operatorname{Bi}'(z), complex z
Airy functions \operatorname{Bi}(z) and \operatorname{Bi}'(z), complex z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SIZDHE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   S17DHF
...nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB
...real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner (Black Box)
...real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, preconditioner computed by F11DAF...
...nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
...non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
...complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner...
...complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FIIBBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F11BBF
F11DEF
F11DCF
F11BEF
F11BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FIIDQF
                                                            Evaluation of fitted blouble spline at a mesh of points
Evaluation of fitted blouble spline at a vector of points
Interpolating functions, fitting blouble spline, data on rectangular grid
Least-squares surface fit, blouble splines
Sort two-dimensional data into panels for fitting blouble splines
Least-squares surface fit by blouble splines with automatic knot placement, data on...
Least-squares surface fit by blouble splines with automatic knot placement, scattered data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02DDF
         Orthogonal reduction of real general rectangular matrix to bidiagonal form
Unitary reduction of complex general rectangular matrix to bidiagonal form
Reduction of real rectangular band matrix to upper bidiagonal form
Reduction of complex rectangular band matrix to upper bidiagonal form
Generate orthogonal transformation matrices from reduction to bidiagonal form determined by F08KEF
Apply orthogonal transformations from reduction to bidiagonal form determined by F08KEF
Generate unitary transformation matrices from reduction to bidiagonal form determined by F08KSF
Apply unitary transformations from reduction to bidiagonal form determined by F08KSF
SVD of real bidiagonal matrix reduced from complex general matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORKEE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FO8KEF
FO8KSF
FO8LEF
FO8KSF
FO8KFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOSKGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F08KTF
F08KUF
                                                                                                                                                                                             SVD of real bidiagonal matrix reduced from real general matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G08ALF
G11SAF
     Performs the Cochran Q test on cross-classified binary data

Contingency table, latent variable model for binary data

...function, Bus and Dekker algorithm, from given starting value, binary search for interval

Binary search for interval containing zero of continuous function...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G05EDF
G05EEF
G07AAF
G01BJF
Set up reference vector for generating pseudo-random integers, binomial distribution ....reference vector for generating pseudo-random integers, negative binomial distribution Computes confidence interval for the parameter of a binomial distribution Binomial distribution function
                                                                                                         Fits a generalized linear model with binomial errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOAJJF
                     Selected eigenvalues of real symmetric tridiagonal matrix by bisection
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13CEF
G13CFF
G01HAF
  ...amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra
Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra
Computes probability for the bivariate Normal distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06
                                                                                                                                                                                              ODEs, IVP, Blend method, set-up for D02M-N routines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02NWF
                                                                                                                     LU factorization of real almost block diagonal matrix
Solution of real almost block diagonal simultaneous linear equations (coefficient matrix...
Analysis of variance, randomized block or completely randomized design, treatment means and...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F01LHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F04LHF
G04BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05DZF
                                                                                                                                                       Pseudo-random logical (boolean) value
                                                                                                                                                 nth-order linear ODEs, boundary value problem, collocation and least-squares
ODEs, boundary value problem, collocation and least-squares....
D021AF
ODEs, boundary value problem, collocation and least-squares....
D021BF
ODEs, general nonlinear boundary value problem, collocation and least-squares....
D021BF
ODEs, general nonlinear boundary value problem, collocation technique
ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
ODEs, general nonlinear boundary value problem, finite difference technique with deferred...
ODEs, boundary value problem, finite difference technique with deferred...
ODEs, boundary value problem, finite difference technique with deferred...
ODEs, general nonlinear boundary value problem, interpolation for D02TKF
ODEs, general nonlinear boundary value problem, interpolation for D02TKF
ODEs, general nonlinear boundary value problem, shooting and matching, boundary values...
ODEs, boundary value problem, shooting and matching, general parameters...
D02ABF
ODEs, boundary value problem, shooting and matching technique,...
D02ABF
ODEs, boundary value problem, shooting and matching technique,...
```

```
ODEs, boundary value problem, shooting and matching technique,...
ODEs, boundary value problem, shooting and matching, boundary values to be determined
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02SAF
D02HAF
   Error bounds for solution of complex band triangular system of linear...

Error bounds for solution of complex triangular system of linear...

Error bounds for solution of complex triangular system of linear...

Error bounds for solution of ceal band triangular system of linear...

Error bounds for solution of real band triangular system of linear...

Error bounds for solution of real band triangular system of linear...

Error bounds for solution of real triangular system of linear...

Computes bounds for solution of real triangular system of linear...

Refined solution with error bounds of complex Hermitian indefinite system of linear...

Refined solution with error bounds of complex Hermitian indefinite system of linear...

Refined solution with error bounds of complex Hermitian positive-definite band system...

Refined solution with error bounds of complex Hermitian positive-definite system of linear...

Refined solution with error bounds of complex symmetric system of linear equations,...

Refined solution with error bounds of complex symmetric system of linear equations,...

Refined solution with error bounds of complex symmetric system of linear equations,...

Refined solution with error bounds of real symmetric system of linear equations,...

Refined solution with error bounds of real symmetric indefinite system of linear...

Refined solution with error bounds of real symmetric indefinite system of linear...

Refined solution with error bounds of real symmetric positive-definite system of linear...

Refined solution with error bounds of real symmetric positive-definite system of linear...

Refined solution with error bounds of real symmetric positive-definite system of linear...

Refined solution with error bounds of real symmetric positive-definite system of linear...

Refined solution with error bounds of real symmetric positive-definite system of linear...

Refined solution with error bounds of real symmetric positive-definite system of linear...

Refined solution with error bounds of real symmetric p
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07VVF
F07TVF
F07UVF
                                                                                                                                                                                                         Error bounds for solution of complex band triangular system of linear ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07UVF
F07VHF
F07THF
F07UHF
G01EPF
G13CGF
F07BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07MVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOTMVF
FOTPVF
FOTFVF
FOTGVF
FOTOVF
FOTOVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07BHF
F07MHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7PHF
FO7HHF
FO7FHF
FO7GHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07GHF
F07AHF
G13CEF
G13CFF
E04LBF
E04LYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04KDF
E04KYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04JYF
                       Constructs a box and whisker plot

General system of first-order PDEs, method of lines, Keller box discretisation, one space variable
...of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, one space variable
...of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, remeshing, one space variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                D03PKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03PRF
                               ...finite interval, allowing for singularities at user-specified break-points
                                                                                                                                                                                                                                                                                                                                                                                                                                                               DOLALE
    ...finite/infinite range, eigenvalue only, user-specified break-points
...finite/infinite range, eigenvalue and eigenfunction, user-specified break-points
                                                                                                                                                                                                                          Broadcast scalar into complex vector
Broadcast scalar into integer vector
Broadcast scalar into real vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               Eng
                                                                                                                                                                                                                        Bunch-Kaufman factorization of complex Hermitian indefinite...
Bunch-Kaufman factorization of complex Hermitian indefinite...
Bunch-Kaufman factorization of complex symmetric matrix
Bunch-Kaufman factorization of complex symmetric matrix,...
Bunch-Kaufman factorization of real symmetric indefinite matrix
Bunch-Kaufman factorization of real symmetric indefinite matrix,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07MRF
F07PRF
F07NRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07ORF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07PDF
                                                                Zero of continuous function in given interval, Bus and Dekker algorithm

Zero of continuous function, Bus and Dekker algorithm, from given starting value,...

Zero in given interval of continuous function by Bus and Dekker algorithm (reverse communication)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               C05ADF
C05AGF
C05AZF
                                                                                                                                                                      Fresnel integral C(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               S20ADF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G03ADF
G03ACF
                                                                                                                                                                                           Performs canonical correlation analysis
Performs canonical variate analysis
                             Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
                                                Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates
                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03FAF
       Pseudo-random real numbers, Cauchy distribution ... quadrature, adaptive, finite interval, weight function 1/(x-c), Cauchy principal value (Hilbert transform)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               D01AQF
       ...for parameters of the Normal distribution from grouped and/or censored data
                                                                                                                                                                                                                                                                                                                                                                                                                                                               COTERE
                                                                                                                           Regression using ranks, right-censored data
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G08RBF
                       Computes probabilities for the non-central beta distribution Computes probabilities for the non-central \chi^2 distribution Computes lower tail probability for a linear combination of (central) \chi^2 variables Computes probabilities for the non-central F-distribution Computes probabilities for the non-central Student's t-distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01GDF
G01GBF
  ...sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
...sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR...
Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner...
...sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner...
Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner...
Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, preconditioner computed by F11DAF...
                                                                                                                                                                                                                                                                                                                                                                                                                                                              F11BEF
F11BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F11DSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               FIIDOF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               FUBBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                               FIIDCE
                                     Sort a vector, character data
Rank a vector, character data
Rearrange a vector according to given ranks, character data
Convert array of integers representing date and time to character string
Compare two character strings representing date and time
                                                                                                                                                                                                                                                                                                                                                                                                                                                               M01CCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               M01DCF
M01ECF
General system of parabolic PDEs, method of lines, Chebyshev C^0 collocation, one space variable General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C^0 collocation, one space variable Sum of a Chebyshev series

Derivative of fitted polynomial in Chebyshev series form Integral of fitted polynomial in Chebyshev series form Evaluation of fitted polynomial in one variable, from Chebyshev series form Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03PJF
C06DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                              E02AHF
E02AJF
E02AKF
E02AEF
                                                                                                                                                                                                                       Check initial grid data in DO3RBF
Check user's routine for calculating first derivatives
Check user's routine for calculating first derivatives of function
Check user's routine for calculating Hessian of a sum of squares
Check user's routine for calculating Jacobian of first derivatives
Check user's routine for calculating second derivatives of function
Check user's routines for calculating first derivatives of function...
Check validity of a permutation
                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03RYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               C05ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04HCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04YBF
E04YAF
E04HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               M01ZBF
                                                                                                      Univariate time series, diagnostic checking of residuals, following G13AEF or G13AFF Multivariate time series, diagnostic checking of residuals, following G13DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                               GISASE
                                                                                                                                                                                                                                                                                                                                                                                                                                                               GI3DSF
```

KWIC.4

```
Real sparse symmetric matrix, incomplete Cholesky factorization

Complex sparse Hermitian matrix, incomplete Cholesky factorization

Cholesky factorization of complex Hermitian positive-definite band...

Cholesky factorization of complex Hermitian positive-definite band...

Cholesky factorization of complex Hermitian positive-definite...

Cholesky factorization of complex Hermitian positive-definite...

Cholesky factorization of real symmetric positive-definite band...

Computes a split Cholesky factorization of real symmetric positive-definite band...

Cholesky factorization of real symmetric positive-definite matrix

Cholesky factorization of real symmetric positive-definite matrix
                                                                                                                                                                                                                                                                                                                                                                                                                            F11JNF
F07HRF
F08UTF
F07FRF
F07GRF
F07HDF
                                                                                                                                                                                                                                                                                                                                                                                                                              F08UFF
                                                                                                                                                                                                                                                                                                                                                                                                                              F07FDF
                                                                                                                                                                                                                                                                                                                                                                                                                              F07GDF
                                                                                                                                                                                                                                                                                                                                                                                                                              COSPKE
                                                                                                                                                                                                      Circular convolution or correlation of two complex vectors
Circular convolution or correlation of two real vectors, extra...
Circular convolution or correlation of two real vectors, no extra...
                                                                                                                                                                                                                                                                                                                                                                                                                             C06FKF
C06EKF
                                                                                                                                                                                                                                                                                                                                                                                                                             G03FAF
                                                                                Performs principal co-ordinate analysis, classical metric scaling
     Computes multiway table from set of classification factors using given percentile/quantile
Computes multiway table from set of classification factors using selected statistic
Two-way analysis of variance, hierarchical classification, subgroups of unequal size
Computes orthogonal polynomials or dummy variables for factor/classification variable
                                                                                                                                                                                                                                                                                                                                                                                                                             G11BBF
                                                                                                                                                                                                                                                                                                                                                                                                                               GIIBAF
                                                                                                                                                                                                                                                                                                                                                                                                                              G04AGF
                                                                                     Performs the Cochran Q test on cross-classified binary data
                                                                                                                                                                                                                                                                                                                                                                                                                              E01SAF
                                                             Interpolating functions, method of Renka and Cline, two variables
                                                                                                                                                                                                                                                                                                                                                                                                                              X04ADF
                                                                                                                                                                                                      Close file associated with given unit number
                                                                                                                                                                                                                                                                                                                                                                                                                              G03ECF
                                                                                                                                                                 Hierarchical cluster analysis
                                                                                                                                                                      nieraricuicai ciuster analysis
K-means cluster analysis
Computes cluster indicator variable (for use after G03ECF)
                                                                                                                                                                                                                                                                                                                                                                                                                               GOSEJF
                                                                                                                                                                                                                                                                                                                                                                                                                              S21CAF
                                                                                                            Jacobian elliptic functions an, en and dn
                                                                                                                                                              Performs the Cochran Q test on cross-classified binary data
                                                                                                                                                                                                                                                                                                                                                                                                                              G08DAF
                                            Correlation-like coefficients (about zero), all variables, casewise treatment...
Correlation-like coefficients (about zero), all variables, no missing values
Correlation-like coefficients (about zero), all variables, no missing values
Correlation-like coefficients (about zero), subset of variables, pairwise treatment...
Correlation-like coefficients (about zero), subset of variables, casewise...
Correlation-like coefficients (about zero), subset of variables, casewise...
Correlation-like coefficients (about zero), subset of variables, pairwise treatment...
Pearson product-moment correlation coefficients, all variables, casewise treatment...
Pearson product-moment correlation coefficients, all variables, pairwise treatment...
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values
Pearson product-moment correlation coefficients, casewise treatment of missing values, overwriting...
Kendall/Spearman non-parametric rank correlation coefficients (for use after G03CAF)
Korobov optimal coefficients for use in D01GCF or D01GDF, when number of...
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data
Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
Pearson product-moment correlation coefficients, subset of variables, casewise treatment of missing values
Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of missing values
Multiple linear regression, from correlation coefficients, without constant term
Multiple linear regression, from correlation-like coefficients, without constant term
                                                                                                                                                                         Kendall's coefficient of concordance
                                                                                                                                                                                                                                                                                                                                                                                                                              G02BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                G02BDF
                                                                                                                                                                                                                                                                                                                                                                                                                              G02BDF
G02BFF
G02BLF
G02BMF
G02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                G02BAF
G02BCF
                                                                                                                                                                                                                                                                                                                                                                                                                              G02BCF
G02BPF
G02BRF
G03CCF
D01GYF
D01GZF
                                                                                                                                                                                                                                                                                                                                                                                                                                G02BNF
                                                                                                                                                                                                                                                                                                                                                                                                                                G02BQF
                                                                                                                                                                                                                                                                                                                                                                                                                               G02BHF
G02BGF
G02BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                G02CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                G02CHF
                                                                                                                                                                                                                                                                                                                                                                                                                                G13CEF
                      Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra
nth-order linear ODEs, boundary value problem, collocation and least-squares
ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation
ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations
General system of parabolic PDEs, method of lines, Chebyshev C<sup>0</sup> collocation, one space variable
...parabolic PDEs, coupled DAEs, method of lines, Chebyshev C<sup>0</sup> collocation, one space variable
ODEs, general nonlinear boundary value problem, collocation technique
                                                                                                                                                                                                                                                                                                                                                                                                                                D02TGF
                                                                                                                                                                                                                                                                                                                                                                                                                                D02JAF
D02JBF
                                                                                                                                                                                                                                                                                                                                                                                                                                D03PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                D03PJF
D02TKF
                  Analysis of variance, general row and column design, treatment means and standard errors QR factorization of real general rectangular matrix with column pivoting QR factorization of complex general rectangular matrix with column pivoting
                                                                                                                                                                                                                                                                                                                                                                                                                                 G04BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                 F08BSF
          Print IP or LP solutions with user specified names for rows and columns
                                                                                                                                                                                                                                                                                                                                                                                                                                 H02BVF
                                                                                                                                                     mes for rows and columns.

Permute rows or columns, complex rectangular matrix, permutations represented by...

Permute rows or columns, complex rectangular matrix, permutations represented by...

Rank columns of a matrix, integer numbers

Rank columns of a matrix, real numbers

Permute rows or columns, real rectangular matrix, permutations represented by...

Permute rows or columns, real rectangular matrix, permutations represented by...
                                                                                                                                                                                                                                                                                                                                                                                                                                 M01DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                 F06QJF
             ... of the parameters of a factor analysis model, factor loadings, communalities and residual correlations
                                                                                                                                                                                                                                                                                                                                                                                                                                 G03CAF
                                                                                                                                                                                                         Compare two character strings representing date and time
                                                                                                                                                                                                                                                                                                                                                                                                                                 X05ACF
                                                                                                                                                                                                         Complement of cumulative normal distribution function Q(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                 SISACE
                                                                                                                                                          Scaled complex complement of error function, \exp(-z^2) erfc(-iz)

Complement of error function \operatorname{erfc}(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                 SISADE
                                                                                                                                           Analysis of variance, complete factorial design, treatment means and standard errors
                                                                                                                                                                                                                                                                                                                                                                                                                                 G04CAF
                                                                                                                                              QR factorisation of complex general rectangular matrix with column pivoting Solution of complex linear system involving incomplete Cholesky... Solution of complex linear system involving incomplete LU...
                                                                                                                                                                                                                                                                                                                                                                                                                                 FOSBSF
                                                                                                                                                                                                                                                                                                                                                                                                                                  FILIPF
                                                                                                                                                                                                                                                                                                                                                                                                                                 FIIDPF
                                                                                                                                                                                                                                                                                                                                                                                                                                 G08DAF
                                                                                                                                     Kendall's coefficient of concordance
                                                                                                                     Norm estimation (for use in condition estimation), complex matrix

Norm estimation (for use in condition estimation), real matrix

Estimate (condition number of complex band matrix, matrix already...

Estimate condition number of complex band matrix, matrix, matrix...

Estimate condition number of complex Hermitian indefinite matrix, matrix...

Estimate condition number of complex Hermitian positive-definite band...

Estimate condition number of complex Hermitian positive-definite matrix,...

Estimate condition number of complex Hermitian positive-definite matrix,...

Estimate condition number of complex Hermitian positive-definite matrix,...

Estimate condition number of complex matrix already...

Estimate condition number of complex symmetric matrix, matrix already...

Estimate condition number of complex triangular matrix

Estimate condition number of complex triangular matrix, packed storage

Estimate condition number of real band matrix, matrix already...

Estimate condition number of real band triangular matrix

Estimate condition number of real band triangular matrix

Estimate condition number of real band triangular matrix

Estimate condition number of real band triangular matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                 F04ZCF
F04YCF
F07BUF
                                                                                                                                                                                                                                                                                                                                                                                                                                   F07VUF
                                                                                                                                                                                                                                                                                                                                                                                                                                    F07MUF
                                                                                                                                                                                                                                                                                                                                                                                                                                  FO7PUF
FO7HUF
FO7FUF
FO7GUF
                                                                                                                                                                                                                                                                                                                                                                                                                                   F07AUF
                                                                                                                                                                                                                                                                                                                                                                                                                                    FOTNUE
                                                                                                                                                                                                                                                                                                                                                                                                                                   F07QUF
F07TUF
F07UUF
                                                                                                                                                                                                                                                                                                                                                                                                                                    F07BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                    F07VGF
```

```
Estimate condition number of real symmetric indefinite matrix, matrix...

Estimate condition number of real symmetric positive-definite band matrix,...

Estimate condition number of real symmetric positive-definite matrix,...

Estimate condition number of real symmetric positive-definite matrix,...

Estimate condition number of real symmetric positive-definite matrix,...
                                                                                                                                                                                                                                                                                                                                                                                                                         F07PGF
                                                                                                                                                                                                                                                                                                                                                                                                                          F07HGF
                                                                                                                                                                                                                                                                                                                                                                                                                         F07FGF
F07GGF
F07TGF
F07UGF
                                                                                                                                                                           Estimate condition number of real triangular matrix, packed storage
                                                                                          Returns parameter estimates for the conditional analysis of stratified data
                                                                                                                                                                                                                                                                                                                                                                                                                         G11CAF
                                                                                                               Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several ...
                                                                                                                                                                                                                                                                                                                                                                                                                         E04DGE
                ...for a difference in means between two Normal populations, confidence interval

Computes confidence interval for the parameter of a binomial distribution

Computes confidence interval for the parameter of a Poisson distribution

Computes confidence intervals for differences between means computed...

Robust confidence intervals, one-sample

Robust confidence intervals, two-sample
                                                                                                                                                                                                                                                                                                                                                                                                                         G07CAF
G07AAF
G07ABF
G04DBF
                                                                                                                                                                                                                                                                                                                                                                                                                          G07EBF
                                   Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several variables using...

Real sparse symmetric linear systems, pre-conditioned conjugate gradient or Lanczos
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or SSOR...
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR...
Solution of ceal sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed...
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed...
Complex conjugate of complex sequence
Complex conjugate of Hermitian sequence
Complex conjugate of multiple Hermitian sequences
                                                                                                                                                                                                                                                                                                                                                                                                                         E04DGF
                                                                                                                                                                                                                                                                                                                                                                                                                         F11GBF
F11JEF
F11JSF
                                                                                                                                                                                                                                                                                                                                                                                                                          F11JCF
F11JQF
                                                                                                                                                                                                                                                                                                                                                                                                                          C06GCF
                                                                                                                                                                                                                                                                                                                                                                                                                          C06GBF
                   ...equation AX + XB = C, A and B are upper triangular or conjugate-transposes
                                                                                                                                                                                                                                                                                                                                                                                                                          F06GBF
                                                                 Dot product of two complex vectors, conjugated
Dot product of two complex sparse vector, conjugated
Rank-1 update, complex rectangular matrix, conjugated vector
                                                                                                                                                                                                                                                                                                                                                                                                                         F06SNF
General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme Roe's approximate Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF Osher's approximate Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF Modified HLL Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF Exact Riemann Solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using...
                                                                                                                                                                                                                                                                                                                                                                                                                          D03PLF
                                                                                                                                                                                                                                                                                                                                                                                                                          D03PLF
D03PSF
D03PUF
D03PVF
D03PWF
                                                                                                                                                                                                                                                                                                                                                                                                                          D03PFF
                                                                                                                    Provides the mathematical constant \gamma (Euler's Constant)
Provides the mathematical constant \pi
                                                                                                                                                          Machine Constants
Mathematical Constants
                    Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points
Equality-constrained complex linear least-squares problem
Convex QP problem or linearly-constrained linear least-squares problem (dense)
Equality-constrained real linear least-squares problem
                                                                                                                                                                                                                                                                                                                                                                                                                          E02AGF
                                                                                                                                                                                                                                                                                                                                                                                                                          FOAKME
     ...by general linear function subject to linear inequality constraints
...user's routines for calculating first derivatives of function and constraints
...of parameters of a general linear regression model for given constraints
...of parameters of a general linear model for given constraints
Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and...
...function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives...
...function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives...
                                                                                                                                                                                                                                                                                                                                                                                                                          E02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                          E04ZCF
                                                                                                                                                                                                                                                                                                                                                                                                                          G02DKF
                                                                                                                                                                                                                                                                                                                                                                                                                          GOOGKE
                                                                                                                                                                                                                                                                                                                                                                                                                           E04UNF
                                                                                                                                                                                                                                                                                                                                                                                                                          E04UCF
E04UFF
                                                                                                                                                                                                                                                                                                                                                                                                                          GIIAAF
                                                                                                                          \chi^2 statistics for two-way contingency table
                                                                                                                                                                        Two-way contingency table analysis, with \chi^2/Fisher's exact test Contingency table, latent variable model for binary data
                                                                                                                                                                                                                                                                                                                                                                                                                          G01AFF
         ODEs, IVP, set-up for continuation calls to integrator, for use with D02M-N routines ...problem, finite difference technique with deferred correction, continuation facility ODEs, general nonlinear boundary value problem, continuation facility for D02TKF

Zero of continuous function, continuation method, from a given starting value
Zero of continuous function by continuation method, from given starting value...
                                                                                                                                                                                                                                                                                                                                                                                                                          D02NZF
                                                                                                                                                                                                                                                                                                                                                                                                                          D02RAF
D02TXF
C05AJF
                                                                                                                                                                                                                                                                                                                                                                                                                          COSAXE
                                                Performs the \chi^2 goodness of fit test, for standard continuous distributions

Zero of continuous function, Bus and Dekker algorithm, from given...

Zero in given interval of continuous function by Bus and Dekker algorithm (reverse...

Zero of continuous function by continuation method, from given starting value...

Zero of continuous function, continuation method, from a given starting value C05AJF

Zero of continuous function in given interval, Bus and Dekker algorithm

Binary search for interval containing sero of continuous function (reverse communication)

G08CGF

C05AGF

C05AGF

C05AJF

C05ADF

C05ADF
                                                                                                               Computes sum of squares for contrast between means
                                                                                                                                                                                                                                                                                                                                                                                                                          G04DAF
                                                                                                                                               General system of convection-diffusion PDEs with source terms in conservative form,...
General system of convection-diffusion PDEs with source terms in conservative form,...
General system of convection-diffusion PDEs with source terms in conservative form,...
                                                                                                                                                                                                                                                                                                                                                                                                                          DO3PLE
                                                                                                                                                                                                                                                                                                                                                                                                                          D03PSF
D03PFF
                                                                                                                                                                                                    Convert array of integers representing date and time to character...

Convert complex matrix between packed banded and rectangular...

Convert complex matrix between packed triangular and square...

Convert Hermitian sequences to general complex sequences

Convert real matrix between packed banded and rectangular...

Convert real matrix between packed triangular and square...
                                                                                                                                                                                                                                                                                                                                                                                                                          X05ABF
F01ZDF
F01ZBF
                                                                                                                                                                                                                                                                                                                                                                                                                            COGGSE
                                                                                                                                                                                                                                                                                                                                                                                                                           FOIZAF
                                                                                                                                                                                                      Convex QP problem or linearly-constrained linear least-squares ...
                                                                                                                                                                                                                                                                                                                                                                                                                          E04NCF
                                                                                                                                             Nonlinear Volterra convolution equation, second kind
Circular convolution or correlation of two complex vectors
Circular convolution or correlation of two real vectors, extra workspace...
Circular convolution or correlation of two real vectors, no extra workspace
Nonlinear convolution Volterra-Abel equation, first kind, weakly singular
Nonlinear convolution Volterra-Abel equation, second kind, weakly singular
                                                                                                                                                                                                                                                                                                                                                                                                                          D05BAF
                                                                                                                                                                                                                                                                                                                                                                                                                          C06PKF
C06FKF
C06EKF
C05BEF
D05BDF
                                                                                                                                                                               Matrix copy, complex rectangular or trapezoidal matrix
Copy complex vector
Copy integer vector
Matrix copy, real rectangular or trapezoidal matrix
Copy real vector
Copy real vector to complex vector
                                                                                                                                                                                                                                                                                                                                                                                                                           F06TFF
                                                                                                                                                                                                                                                                                                                                                                                                                            FOSGEE
                                                                                                                                                                                                                                                                                                                                                                                                                          F06QFF
F06QFF
F06EFF
F06KFF
                           ...value problem, finite difference technique with deferred correction, continuation facility
...value problem, finite difference technique with deferred correction, general linear problem
...value problem, finite difference technique with deferred correction, simple nonlinear problem
                                                                                                                                                                                                                                                                                                                                                                                                                            D02RAF
                                                                                                                                                                                                                                                                                                                                                                                                                            D02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                           D02GAF
                                                                                                       Performs canonical correlation analysis

Computes (optionally weighted) correlation and covariance matrices

Pearson product-moment correlation coefficients, all variables, casewise treatment of missing...

Pearson product-moment correlation coefficients, all variables, no missing values
                                                                                                                                                                                                                                                                                                                                                                                                                            G03ADF
```

KWIC.6 [NP3390/19]

```
Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing...

Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values,...

Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving input data Kendall/Spearman non-parametric rank correlation coefficients, subset of variables, casewise treatment of...

Pearson product-moment correlation coefficients, subset of variables, no missing values Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of...

Multiple linear regression, from correlation coefficients, subset of variables, pairwise treatment of...

Multivariate time series, sample partial lag correlation matrics, x² statistics and significance levels

Computes random correlation matrix from a sum of squares matrix

Calculates a robust estimation of a correlation matrix, user-supplied weight function

Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives

Circular convolution or correlation of two complex vectors

Circular convolution or correlation of two complex vectors

Circular convolution or correlation of two real vectors, extra workspace for greater speed Circular convolution or correlation of two real vectors, no extra workspace

Multivariate time series, sample cross-correlation—in cross-covariance matrices
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOORCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02BCF
G02BPF
G02BRF
G02BQF
G02BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOORGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BJF
G02CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GISDNE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13DNF
G05GBF
G02BWF
G02HKF
G02HMF
G02HLF
C06PKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06FKF
C06EKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GI3DMF
                                                                                                                                       Correlation-like coefficients (about zero), all variables, casewise...
Correlation-like coefficients (about zero), all variables, no missing...
Correlation-like coefficients (about zero), all variables, pairwise...
Correlation-like coefficients (about zero), subset of variables,...
Correlation-like coefficients (about zero), subset of variables,...
Correlation-like coefficients (about zero), subset of variables,...
Multiple linear regression, from correlation-like coefficients, without constant term
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BEF
G02BDF
G02BFF
G02BLF
G02BKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02BMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02CHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G03CAF
G13BCF
                       ...analysis model, factor loadings, communalities and residual correlations

Multivariate time series, cross-correlations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GO2BYF
                     Computes partial correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by G02BXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X02AHF
                                                                                       The largest permissible argument for sin and cos
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STOACE
Generate complex plane rotation, storing tangent, real cosine
Recover cosine and sine from given complex tangent, real cosine
...sequence of plane rotations, complex rectangular matrix, real cosine and real sine
...sequence of plane rotations, complex rectangular matrix, real cosine and sine
...sequence of plane rotations, complex rectangular matrix, real cosine and sine
Recover cosine and sine from given complex tangent, real cosine
Recover cosine and sine from given complex tangent, real sine
Recover cosine and sine from given real tangent
Cosine integral Ci(x)
Compute cosine of angle between two real vectors
Discrete cosine transform
Discrete cosine transform
Discrete cosine transform (easy-to-use)
Discrete quarter-wave cosine transform (easy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06CAF
F06CCF
F06TXF
F06TYF
F06VXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06CCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSBCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S13ACF
F06FAF
C06HBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C06HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          COSRBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C06RDF
                                                                             General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C<sup>0</sup> collocation,...

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing,...

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation,...

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation,...

D03PJF

D03PFF

D03PF
  ...one iteration of Kalman filter, time-varying, square root covariance filter
...one iteration of Kalman filter, time-invariant, square root covariance filter
Computes (optionally weighted) correlation and covariance matrices
Multivariate time series, sample cross-correlation or cross-covariance matrices
Computes test statistic for equality of within-group covariance matrices and matrices for discriminant analysis
...Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after G03DAF)
Normal scores, approximate variance-covariance matrix
...correlation/variance-covariance matrix from correlation/variance-covariance matrix following G02BXF
Robust regression, variance-covariance matrix for linear least-squares problems, m real...
Covariance matrix for nonlinear least-squares problem...
Covariance matrix from correlation/variance-covariance matrix...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GISEBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G02BXF
G13DMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G03DAF
G03DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G01DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02BYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOZHFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G02BYF
                                                                                                        Creates the risk sets associated with the Cox proportional hazards model for fixed covariates

Fits Cox's proportional hazard model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G12ZAF
G12BAF
                                                                                                                                                                                                                          Return the CPU time
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          XOSBAF
                              Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate...
...squared coherency, bounds, univariate and bivariate (cross) spectra
...time series, gain, phase, bounds, univariate and bivariate (cross) spectra
Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parxen lag...
Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13CEF
G13CEF
G13CFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G08ALF
                                                                                                                                          Performs the Cochran Q test on cross-classified binary data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13DMF
                                                                                                                                           Multivariate time series, sample cross-correlation or cross-covariance matrices
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13BCF
                                                                                                                                                                       Multivariate time series, cross-correlations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G13DMF
                                                               Multivariate time series, sample cross-correlation or cross-covariance matrices
                                                                                                                                                               Inverse Laplace transform, Crump's method
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COSLAF
                                    Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E01 BEF
                                                                                                                                                                        city-preserving, piecewise cubic Hermite, one variable

Fit cubic smoothing spline, smoothing parameter estimated

Fit cubic smoothing spline, smoothing parameter given

Least-squares cubic spline, definite integral

Least-squares curve cubic spline, definite integral

Least-squares curve cubic spline fit (including interpolation)

Evaluation of fitted cubic spline, function and derivatives

Evaluation of fitted cubic spline, function only

Interpolating functions, cubic spline interpolant, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G10ACF
G10ABF
E02BEF
E02BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E02BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E02BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E01BAF
                                                                                                                                                                                                                                                                       Cumulants and moments of quadratic forms in Normal variables
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G01NAF
                                                                                                                      Set up reference vector from supplied cumulative distribution function or probability distribution function Cumulative normal distribution function P(x) Complement of cumulative normal distribution function Q(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G05EXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              S15ABF
S15ACF
                                                                                                                                                                Least-squares curve cubic spline fit (including interpolation)
Least-squares cubic spline curve fit, automatic knot placement
Minimax curve fit by polynomials
Least-squares curve fit, by polynomials, arbitrary data points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E02BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E02BEF
E02ACF
E02ADF
```

```
General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C<sup>0</sup> collocation, one space variable
General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
General system of first-order PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, one space variable
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretization, remeshing,...
D3PFF
D3PFF
...PDEs with source terms in conservative form, coupled DAEs, method of lines, keller box discretization, remeshing,...
D3PFF
D3PFF
...PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux...
D03PSF
                                            ...using spectral smoothing by the trapezium frequency (Daniell) window ...using spectral smoothing by the trapezium frequency (Daniell) window
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G13CBF
G13CDF
                                                                                                                                                                                                                  ODEs, IVP, DASSL method, set-up for D02M-N routines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D02MVF
                                                                                           Compare two character strings representing date and time
Return date and time as an array of integers
Convert array of integers representing date and time to character string
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    X05ACF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    X05ABF
                                                                                                                                                                                                                   Mood's and David's tests on two samples of unequal size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G08BAF
                                                                                                                                                                                                                                                                 Dawson's integral
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SISAFF
                                                                                                                                                                The maximum number of decimal digits that can be represented
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   X02BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   M01ZCF
                                                                                                                                                                                                                                                                 Decompose a permutation into cycles
               ...boundary value problem, finite difference technique with deferred correction, continuation facility ODEs, boundary value problem, finite difference technique with deferred correction, general linear problem ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D02GAF
  ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem.

**OLOILATUT** In a contraction of real symmetric positive-definite band matrix
Cholesky factorization of complex Hermitian positive-definite band matrix
Determinant of real symmetric positive-definite band matrix
Determinant of real symmetric positive-definite band matrix. Determinant of real symmetric positive-definite band matrix, matrix already factorized by F07HRF Bestimate condition number of complex Hermitian positive-definite band matrix, matrix already factorized by F07HRF Refined solution with error bounds of real symmetric positive-definite band system of linear equations, multiple right-hand sides.

**Solution of real symmetric positive-definite band system of linear equations, multiple right-hand sides.**

**Solution of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides.**

**Reduction to standard form, generalized real symmetric-definite band system of linear equations, multiple right-hand sides,...*

**Reduction to standard form of complex Hermitian-definite banded simultaneous linear equations with multiple...*

**All eigenvalues of generalized banded real symmetric-definite banded simultaneous linear equations with multiple...*

**Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or...*

**Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or...*

**Reduction to standard form of real symmetric-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or...*

**Reduction to standard form of real symmetric-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or...*

**Reduction to standard form of real symmetric-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or...*

**Reduction to standard form of real symmetric-definite generalized problem (Black Box)

**Evaluation of fitted cubic spline, definite integral, one va
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FOIBUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F07HDF
F07HRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F03ACF
F07HGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F07HUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F07HHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FO7HVF
FO7HEF
FO7HSF
FO1BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F04ACF
F02FHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FORSSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F08SSF
F08SEF
F08TSF
F08TEF
F02FDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F02HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02BDF
Interpolated values, interpolated positive-definite integral, one variable
Inverse of real symmetric positive-definite matrix

Cholesky factorization of real symmetric positive-definite matrix
Cholesky factorization of complex Hermitian positive-definite matrix
...tridiagonal matrix, reduced from real symmetric positive-definite matrix
...tridiagonal matrix, reduced from real symmetric positive-definite matrix
...tridiagonal matrix, reduced from complex Hermitian positive-definite matrix
Determinant of real symmetric positive-definite matrix, matrix already factorized by FOTFDF
Inverse of real symmetric positive-definite matrix, matrix already factorized by FOTFDF
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by FOTFDF
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by FOTFDF
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by FOTFDF
Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by FOTGDF, packed storage
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by FOTGDF, packed storage
Inverse of complex Hermitian positive-definite matrix, matrix already factorized by FOTGDF, packed storage
Cholesky factorization of complex Hermitian positive-definite matrix, matrix already factorized by FOTGDF, packed storage
Cholesky factorization of complex Hermitian positive-definite matrix, matrix already factorized by FOTGDF, packed storage
Cholesky factorization of complex Hermitian positive-definite matrix, matrix already factorized by FOTGDF, packed storage
Cholesky factorization of complex Hermitian positive-definite matrix, packed storage
Cholesky factorization of real symmetric positive-definite matrix, packed storage
Cholesky factorization of real symmetric positive-definite simultaneous linear equations, confight-hand sides.
Solution of real symmetric positive-definite symmetric positive-definite symmetric positive-definite system of linear eq
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E01BHF
F01ADF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F03AEF
F07FDF
F07FRF
F08JGF
F08JUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F03ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FO7FGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F07FJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07FJF
F07FUF
F07FWF
F07GGF
F07GJF
F07GUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07GUF
F07GWF
F07GDF
F07GRF
F01ABF
F04AGF
F04ASF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F04ASF
F04ABF
F07FHF
F07FVF
F07FEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F07FSF
F07GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F07GSF
F07GHF
F07GVF
F04MEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FO4FEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FO4MFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FO4FFF
FO8JUF
FO8JGF
FO4FAF
                                                                            LDL<sup>T</sup> factorization of real symmetric positive-definite variable-bandwidth matrix

Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F01MCF
F04MCF
                                                                                                                                                                                                                                                                Degenerate symmetrised elliptic integral of 1st kind R_C(x, y)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S21BAF
                                       Zero of continuous function in given interval, Bus and Dekker algorithm

Zero of continuous function, Bus and Dekker algorithm, from given starting value, binary search for interval

Zero in given interval of continuous function by Bus and Dekker algorithm (reverse communication)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COSADE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    COSAZE
                                                                                                                                                                                                                                                                 Delete a variable from a general linear regression model
                                                                                                                                                                                                                                             Add/delete an observation to/from a general linear regression model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G02DCF
                                                                                                                                                                                                                     Constructs dendrogram (for use after G03ECF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G03EHF
                        Kernel density estimate using Gaussian kernel Computes upper and lower tail probabilities and probability density function for the beta distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GIOBAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GOIEEF
   Minimum, function of one variable, using first derivative
Derivative of fitted polynomial in Chebyshev series form
...values, interpolant computed by E01BEF, function and first derivative, one variable
Interpolating functions, polynomial interpolant, data may include derivative values, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E04BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E01BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E01AEF
                                                     Check user's routine for calculating first derivatives
Evaluation of fitted cubic spline, function and derivatives
Check user's routine for calculating Jacobian of first derivatives
correlation matrix, user-supplied weight function plus derivatives
Solution of system of nonlinear equations using first derivatives (comprehensive)
...algorithm, function of several variables using first derivatives (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C05ZAF
E02BCF
E04YAF
G02HLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E04DGF
```

KWIC.8 [NP3390/19]

```
...Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive)
...Gauss-Newton and modified Newton algorithm, using first derivatives (comprehensive)
...Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)
...Newton algorithm, simple bounds, using first derivatives
...lagorithm, simple bounds, using first and second derivatives (comprehensive)
...method, using function values and optionally first derivatives (comprehensive)
...method, using function values and optionally first derivatives (comprehensive)
...Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)
...Gauss-Newton and modified Newton algorithm using first derivatives (easy-to-use)
...Gauss-Newton algorithm, simple bounds, using first derivatives (easy-to-use)
...quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)
...quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)
...lagorithm, simple bounds, using first derivatives (easy-to-use)
...constraints, using function values and optionally first derivatives
...constraints, using function values and optionally first derivatives of function
Check user's routine for calculating second derivatives of function
Check user's routines for calculating first derivatives of function
Check user's routines for calculating first derivatives of function
Check user's routines for calculating first derivatives of function
Check user's routines for calculating first derivatives of function
Check user's routines for calculating first derivatives of function of check user's routines for calculating first derivatives (reverse communication)
...constraints, using function values and optionally first derivatives (reverse communication, comprehensive)
Numerical differentiation, derivatives (reverse communication on one real variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FO4GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E04GBF
E04GDF
E04HEF
E04KDF
E04LBF
E04UNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C05PBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E04GYE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E04GYF
E04GZF
E04HYF
E04KYF
E04KZF
E04LYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E04UCF
E02AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E04HCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E04HDF
E04ZCF
S14ADF
C05PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E04UFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D04AAF
Analysis of variance, general row and column design, treatment means and standard errors
Analysis of variance, randomized block or completely randomized design, treatment means and standard errors
Analysis of variance, complete factorial design, treatment means and standard errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOARCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F03ADF
                                                                                                                                                                                                                                                                                                          Determinant of complex matrix (Black Box)
                                                                                                                                                                                                      LU factorization and determinant of real matrix

Determinant of real matrix (Black Box)

Determinant of real symmetric positive-definite band matrix...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F03AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO3AAF
                                                                                                                                                                                               LL<sup>T</sup> factorization and determinant of real symmetric positive-definite matrix

Determinant of real symmetric positive-definite matrix...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F03AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO3ABF
                                                                                                                                                                                                                                                         Computes deviates for Student's t-distribution Computes deviates for the beta distribution Computes deviates for the \chi^2 distribution Computes deviates for the F-distribution Computes deviates for the gamma distribution Computes deviates for the standard Normal distribution Computes deviates for the Studentized range statistic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COLFRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOIFEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G01FCF
                                                   ...median, median absolute deviation, robust standard deviation
Robust estimation, median, median absolute deviation, robust standard deviation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G07DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G07DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13AUF
                                          Computes quantities needed for range-mean or standard deviation-mean plot
                                                                                     Univariate time series, diagnostic checking of residuals, following G13AEF or G13AFF
Multivariate time series, diagnostic checking of residuals, following G13DCF
Real sparse nonsymmetric linear systems, diagnostic for F11BBF
Real sparse nonsymmetric linear systems, diagnostic for F11BEF
Complex sparse non-Hermitian linear systems, diagnostic for F11BSF
Real sparse symmetric linear systems, diagnostic for F11BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13ASF
G13DSF
F11BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F11GCF
                                                                   Second-order ODEs, IVP, diagnostics for D02LAF
ODEs, IVP, integration diagnostics for D02PCF and D02PDF
ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
ODEs, IVP, diagnostics for D02QFF and D02QGF
ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF
ODEs, general nonlinear boundary value problem, diagnostics for D02TKF
ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M-N routines
ODEs, IVP, integrator diagnostics, for use with D02M-N routines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DOSLVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D02PYF
D02PZF
D02QXF
D02QYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D02TZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D02NXF
                                                                                                                               LU factorization of real almost block diagonal matrix
Multiply real vector by diagonal matrix
Multiply complex vector by complex diagonal matrix
Multiply complex vector by real diagonal matrix
Solution of real almost block diagonal simultaneous linear equations (coefficient matrix already...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06HCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F04LHF
                                          Elliptic PDE, solution of finite difference equations by a multigrid technique
Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule,...
Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule,...
Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional...
Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional...
Computes f-test statistic for a difference equations by SIP, seven-point three-dimensional...

Sum or difference of two complex matrices, optional scaling and transposition
Sum or difference of two complex matrices, optional scaling and transposition for the seven-point sev
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DOSEDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D03EBF
D03UAF
D03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D03UBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D03UBF
G07CAF
F01CWF
F01CTF
D02RAF
D02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D02GAF
                    Multivariate time series, differences and/or transforms (for use before G13DCF)
Computes confidence intervals for differences between means computed by G04BBF or G04BCF
General system of parabolic PDEs, method of lines, finite differences, one space variable
...parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable
...parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region
General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectilinear region
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13DLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G04DBF
D03PCF
D03PHF
D03PPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D03RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D03RBF
                                                                            Univariate time series, seasonal and non-seasonal differencing
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13AAF
                                                                                                                                                                                    Numerical differentiation, derivatives up to order 14, function of one real...
Estimate (using numerical differentiation) gradient and/or Hessian of a function
                                                                                                                                                                       General system of convection-diffusion PDEs with source terms in conservative form,...
General system of convection-diffusion PDEs with source terms in conservative form,...
General system of convection-diffusion PDEs with source terms in conservative form,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D03PLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D03PFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HOSADE
                                                                                                                                                                                                    Shortest path problem, Dijkstra's algorithm
                                                                                                                                                 Discrete cosine transform
Discrete cosine transform
Discrete cosine transform
Discrete cosine transform
Two-dimensional complex discrete Fourier transform
Three-dimensional complex discrete Fourier transform, complex data format
Two-dimensional complex discrete Fourier transform, complex data format
Three-dimensional complex discrete Fourier transform, complex data format
Single one-dimensional real discrete Fourier transform, complex data format
Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
Single one-dimensional complex discrete Fourier transform, extra workspace for greater speed
Single one-dimensional real discrete Fourier transform, no extra workspace Single one-dimensional Hermitian discrete Fourier transform, no extra workspace
Single one-dimensional complex discrete Fourier transform, no extra workspace
One-dimensional complex discrete Fourier transform of multi-dimensional data
Multi-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C06HBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CO6HBF
CO6FUF
CO6FXF
CO6PCF
CO6PVF
CO6FXF
CO6FBF
CO6FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C06FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C06EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C06EBF
```

```
Multi-dimensional complex discrete Fourier transform of multi-dimensional data...

Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex data format for...

Multiple one-dimensional Hermitian discrete Fourier transforms

Multiple one-dimensional complex discrete Fourier transforms

Multiple one-dimensional complex discrete Fourier transforms using complex data format

Multiple one-dimensional complex discrete Fourier transforms using complex data format and...

Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format...

Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format...

Discrete quarter-wave cosine transform (easy-to-use)

Discrete quarter-wave cosine transform (easy-to-use)

Discrete sine transform

Discrete sine transform

Discrete sine transform

Discrete sine transform

Discrete sine transform (easy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COSPIE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C06PJF
C06PAF
C06FPF
C06FRF
C06PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C06PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C06PPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C06PQF
C06HDF
C06RDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C06HCF
C06RCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C06RAF
                                                                                                                                                                                                                                         Discretize a second-order elliptic PDE on a rectangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D03EEF
                                                 ...within-group covariance matrices and matrices for discriminant analysis
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G03DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOS
                                                                                                                                                                                                                                         Dispersion tests
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G03EAF
   Computes Mahalanobis squared distances for group or pooled variance-covariance
Computes probabilities for the standard Normal distribution
Computes probabilities for Student's I-distribution
Computes probabilities for X distribution
Computes probabilities for X-distribution
Computes probabilities for Y-distribution
Computes probabilities for the group of the Student's I-distribution
Computes probabilities for the group of the Student's I-distribution
Computes probabilities for the wo-sample Kolmogorov-Smirnov distribution
Computes probabilities for the two-sample Kolmogorov-Smirnov distribution
Computes probabilities for the standard Normal distribution
Computes deviates for the X-distribution
Computes deviates for the X-distribution
Computes deviates for the X-distribution
Computes probabilities for the gamm distribution
Computes probabilities for the gamm distribution
Computes probabilities for the non-central X-distribution
Computes probabilities for the multivariate Normal distribution
Pseudo-random real numbers, (negative) exponential distribution
Pseudo-random real numbers, Normal distribution
Office generating pseudo-random integer, Pseuson distribution
Office generating pseudo-random integers, pension distribution
Office generat
                                                                                                                                                                                                    Computes distance matrix
                                                                                                                          Computes Mahalanobis squared distances for group or pooled variance-covariance matrices...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G03DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIECE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01ECF
G01EEF
G01EFF
G01ERF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01EYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIEZE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIFAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIFBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G01FBF
G01FDF
G01FEF
G01FFF
G01GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01GCF
G01GDF
G01GEF
G01HAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIHBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G05DCF
G05DDF
G05DEF
G05DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G05DHF
G05DJF
G05DKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05DPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05DRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05DRF
G05DYF
G05EAF
G05EBF
G05ECF
G05EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOSEEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOSEEF
GOSEFF
GOSEFF
GOSEFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05FEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G05FEF
G05FSF
G07AAF
G07ABF
G07BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G08CCF
G07BBF
                                                          likelihood estimates for parameters of the Normal distribution from grouped and/or censored data Binomial distribution function Poisson distribution function Hypergeometric distribution function unction ...cumulative distribution function or probability distribution function or probability distribution function or probability distribution function or Cumulative normal distribution function P(x) Complement of cumulative normal distribution function Q(x) Pseudo-random real numbers, uniform distribution over (0,1) Pseudo-random real numbers, uniform distribution over (0,1) Gaussian distribution See Normal distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIBIE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIBKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01BLF
G05EXF
G05EXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S15ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SISACE
       Performs the one-sample Kolmogorov-Smirnov test for standard distributions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G08CBF
                  Performs the \chi^2 goodness of fit test, for standard continuous distributions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G08CGF
                                                                                                    Jacobian elliptic functions sn, cn and dn
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     S21CAF
                                                            ...finite interval, strategy due to Piessens and de Doncker, allowing for badly-behaved integrands
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D01AJF
                                                                                                                                                                                                                                         Dot product of two complex sparse vector, conjugated Dot product of two complex sparse vector, unconjugated Dot product of two complex vectors, conjugated Dot product of two complex vectors, unconjugated
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06GSF
                                                                                                                                                                                                                                         Dot product of two real sparse vectors
Dot product of two real vectors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06EAF
                                                                                                                                 Performs the runs up or runs down test for randomness
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G08EAF
                                                                                    Computes bounds for the significance of a Durbin-Watson statistic

Computes Durbin-Watson test statistic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01EPF
                                                                       ... system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02KEF
...form, generalized real symmetric-definite banded elgenproblem
...form of complex Hermitian-definite generalized elgenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x,...

Reduction to standard form of real symmetric-definite generalized elgenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x,...

Reduction of real symmetric-definite banded generalized elgenproblem Ax = \lambda Bx to standard form Cy = \lambda y,...

Reduction of complex Hermitian-definite banded generalized elgenproblem Ax = \lambda Bx to standard form Cy = \lambda y,...

...form of complex Hermitian-definite generalized elgenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x,...

Reduction to standard form of real symmetric-definite generalized elgenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x,...

All eigenvalues of generalized banded real symmetric-definite elgenproblem (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F01BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F08SSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FOSSEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FOSUEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO&USF
FO&TSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F02FHF
```

KWIC.10 [NP3390/19]

```
Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)

Eigenvector of generalized real banded eigenproblem by inverse iteration

All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ algorithm (Black Box)

All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ algorithm, real matrices (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOOFIF
                                           ...regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points

Compute eigenvalue of 2 by 2 real symmetric matrix

...Sturm-Liouville problem, regular system, finite range, eigenvalue only

...regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D02KEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06BPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO2KAF
                                                                                        All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
All eigenvalues and eigenvectors of real symmetric matrix.

Selected eigenvalues and eigenvectors of complex Hermitian matrix...
All eigenvalues and eigenvectors of complex Hermitian matrix...

All eigenvalues and eigenvectors of complex Hermitian-definite...
Selected eigenvalues and eigenvectors of complex upper triangular matrix
All eigenvalues and eigenvectors of complex upper triangular matrix
All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
Selected eigenvalues and eigenvectors of real symmetric matrix (Black Box)
All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
Selected eigenvalues and eigenvectors of real symmetric positive-definite...
All eigenvalues and eigenvectors of real symmetric positive-definite...
All eigenvalues and eigenvectors of real symmetric tridiagonal matrix...
All eigenvalues and eigenvectors of real symmetric tridiagonal matrix...
All eigenvalues and eigenvectors of real symmetric tridiagonal matrix...
All eigenvalues and eigenvectors of real symmetric tridiagonal matrix...
All eigenvalues and eigenvectors of real symmetric tridiagonal matrix...
All eigenvalues and eigenvectors of real symmetric definite eneralised...
All eigenvalues and optionally all eigenvectors of complex Hermitian...
All eigenvalues and optionally all eigenvectors of complex Hermitian...
All eigenvalues and optionally all eigenvectors of real symmetric...
All eigenvalues and optionally all eigenvectors of real symmetric...
All eigenvalues and optionally all eigenvectors of real symmetric...
All eigenvalues and optionally all eigenvectors of real symmetric...
All eigenvalues and optionally all eigenvectors of real symmetric...
All eigenvalues and Schur factorixation of omelpex mereral...
Eigenvalues and Schur factorixation of oreal generalment...
Eigenvalues and Schur factorixation of oreal pereralment...
All eigenvalues of real symmetr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D02KDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F02HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F02GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FOROYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F08QYF
F02EBF
F02ECF
F02FAF
F02FCF
F08JUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSJGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOAJSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FORIEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F02FDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08QLF
F02FJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F08HQF
F08GQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSFOF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSHCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F08HCF
F08GCF
F08FCF
F08JCF
F02GJF
F02BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F02GAF
F08PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F08PSF
F02EAF
F08PEF
F02FHF
F08JJF
F08JFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F08QGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSQUE
                                                            Eigenvector of generalized real banded eigenproblem by inverse...

...tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
...tridiagonal matrix by inverse iteration, storing eigenvectors of complex balanced matrix to those of original...

All eigenvalues and optionally all eigenvectors of complex general matrix (Black Box)

All eigenvalues and optionally all eigenvectors of complex Hermitian matrix (Black Box)

Selected eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)

All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, packed storage,...

All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, packed storage,...

All eigenvalues and eigenvectors of complex Hermitian matrix, packed storage,...

Selected eigenvalues and eigenvectors of complex Hermitian matrix, packed storage,...

Selected eigenvalues and eigenvectors of complex Hermitian matrix, packed storage,...

Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)

Selected eigenvalues and eigenvectors of complex upper triangular matrix

All eigenvalues and optionally eigenvectors of complex upper triangular matrix

All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ...

All eigenvalues and optionally eigenvectors of real selected eigenproblem by QZ algorithm,...

Transform eigenvectors of real selected eigenproblem by QZ algorithm,...

All eigenvalues and optionally all eigenvectors of real symmetric (Black Box)

Selected eigenvalues and eigenvectors of real symmetric band matrix,...

All eigenvalues and optionally all eigenvectors of real symmetric matrix (Black Box)

Selected eigenvalues and eigenvectors of real symmetric matrix (Black Box)

All eigenvalues and optionally all eigenvectors of real symmetric tridiagonal matrix by inverse...

Selected eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F02SDF
                                                                                                                                                                                                                                                                                                                       Eigenvector of generalized real banded eigenproblem by inverse...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F08JKF
F08NWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08HQF
F02HAF
F02HCF
F08GQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F08FQF
F02HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F02GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSPYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F02BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08NJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F02EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F08HCF
F02FAF
F02FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F08GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSFCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FORTUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FO8JUF
FO8JUF
FO8JUF
FO8JUF
FO8JUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FOAJEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FOAJCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F02FDF
F08PKF
F08QKF
F08QLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F02FJF
                                                                                                                                                                                                                                  Generate complex elementary reflection
Apply complex elementary reflection
Generate real elementary reflection, LINPACK style
Apply real elementary reflection, LINPACK style
Generate real elementary reflection, NAG style
Apply real elementary reflection, NAG style
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06HRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FO6FTF
                                                                                                                                                                                                                                                                            Gaussian elimination See LU factorization
                                                                                                                                                                                               Jacobian elliptic functions sn, cn and dn

Degenerate symmetrised elliptic integral of 1st kind R_C(x,y)

Symmetrised elliptic integral of 2st kind R_D(x,y,z)

Symmetrised elliptic integral of 2nd kind R_D(x,y,z)

Symmetrised elliptic integral of 3rd kind R_D(x,y,z)

Symmetrised elliptic integral of 3rd kind R_D(x,y,z)

Elliptic PDE, Helmholts equation, three-dimensional...

Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain Discretise a second-order elliptic PDE on a rectangle Elliptic PDE, solution of finite difference equations by SIP,...

Elliptic PDE, solution of finite difference equations by SIP,...

Elliptic PDE, solution of finite difference equations by SIP,...

Elliptic PDE, solution of finite difference equations by SIP,...

Elliptic PDE, solution of finite difference equations by SIP,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S21CAF
S21BAF
S21BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S21BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S21BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03FAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D03EAF
D03EEF
D03EDF
D03EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03UAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03UBF
                                                                                                                                                                                                                                   ODEs, IVP, resets and of range for D02PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02PWF
                                                                                                 adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type
                                                      ...convergence of sequence, Shanks' transformation and epsilon algorithm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C06BAF
                                                              ...general linear regression model and its standard error
...of a generalized linear model and its standard error
...bounds, impulse response function and its standard error
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13CGF
```

```
ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
Error bounds for solution of complex band triangular system...
Error bounds for solution of complex triangular system...
Error bounds for solution of complex triangular system...
Error bounds for solution of real band triangular system...
Error bounds for solution of real triangular system...
Error bounds for solution of real triangular system...
Error bounds for solution of real triangular system...
Refined solution with error bounds of complex band system of linear equations,...
Refined solution with error bounds of complex Hermitian indefinite system...
Refined solution with error bounds of complex Hermitian positive-definite band system...
Refined solution with error bounds of complex Hermitian positive-definite system...
Refined solution with error bounds of complex Hermitian positive-definite system...
Refined solution with error bounds of complex symmetric system of linear equations,...
Refined solution with error bounds of complex symmetric system of linear equations,...
Refined solution with error bounds of complex system of linear equations,...
Refined solution with error bounds of real band system of linear equations,...
Refined solution with error bounds of real symmetric indefinite system of linear equations,...
Refined solution with error bounds of real symmetric indefinite system of linear equations,...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system...
Refined solution with error bounds of real symmetric positive-definite system
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D02PZF
F07VVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07TVF
F07UVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FO7VHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07PVF
F07HVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7HVF
FO7FVF
FO7GVF
FO7NVF
FO7QVF
FO7AVF
FO7BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07MHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7MHF
FO7PHF
FO7HHF
FO7GHF
FO7AHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO2ZAF
                                                                                                                Scaled complex complement of error function, \exp(-z^2) \operatorname{erfc}(-iz) Complement of error function \operatorname{erfc}(z) \operatorname{Complement} of error function \operatorname{erfc}(z) \operatorname{Error} function \operatorname{erf}(z) Return value of error indicator/terminate with error message Return or set unit number for error messages
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S15DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S15ADF
S15AEF
                                                                                                                                   Fits a generalized linear model with Normal errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G02GAF
                           Fits a generalized linear model with Normal errors
Fits a generalized linear model with binomial errors
Fits a generalized linear model with Poisson errors
Fits a generalized linear model with gamma errors
...randomized design, treatment means and standard errors
...and column design, treatment means and standard errors
...factorial design, treatment means and standard errors
Multivariate time series, forecasts and their standard errors
Multivariate time series, forecasts and their standard errors

Estimates and standard errors of parameters of a general linear model...
Estimates and standard errors of parameters of a general linear regression model...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G02GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G02GCF
G02GDF
G04BBF
G04BCF
G04CAF
G13DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G13DKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G02GKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G02DKF
                                                                                                                                                                                                                                                                                                                                Computes estimable function of a general linear regression model...
Computes estimable function of a generalized linear model...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G02DNF
G02GNF
                                                                                                                                            Estimate condition number of complex band matrix,...

Estimate condition number of complex Hermitian indefinite matrix,...

Estimate condition number of complex Hermitian indefinite matrix,...

Estimate condition number of complex Hermitian positive-definite...

Estimate condition number of complex Hermitian positive-definite...

Estimate condition number of complex Hermitian positive-definite...

Estimate condition number of complex Mermitian positive-definite...

Estimate condition number of complex matrix,...

Estimate condition number of complex symmetric matrix,...

Estimate condition number of complex symmetric matrix,...

Estimate condition number of complex triangular matrix,...

Estimate condition number of real band matrix,...

Estimate condition number of real band triangular matrix

Estimate condition number of real symmetric indefinite matrix,...

Estimate condition number of real symmetric positive-definite...

Estimate condition number of real triangular matrix

Estimate condition number of real triangular matrix, packed storage

ODEs, IVP, weighted norm of local error estimate for DO2M-N routines

Kernel density estimate using Gaussian kernel

Estimate (using numerical differentiation) gradient and/or...
                                                                                                                                                                                                                                                                                                                                                                                             Estimate condition number of complex band matrix,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F07BUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FO7MUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07PUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07PUF
F07HUF
F07FUF
F07GUF
F07AUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07QUF
F07TUF
F07UUF
F07BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F07VGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07AGF
F07MGF
F07PGF
F07FGF
F07GGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07UGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D027AF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G10BAF
E04XAF
Robust regression, standard M-estimates

Estimates and standard errors of parameters of a general linear...

Estimates and standard errors of parameters of a general linear...

Robust estimation, M-estimates for location and scale parameters, standard weight functions Robust estimation, M-estimates for location and scale parameters, standard weight functions Gomputes maximum likelihood estimates for parameters of the Normal distribution from grouped...

Computes maximum likelihood estimates of parameters of the Weibull distribution Estimates of linear parameters and general linear regression model...

...invariant subspace for selected eigenvalues, with estimates of sensitivities

Estimates of sensitivities of selected eigenvalues and eigenvectors...

Estimates of sensitivities of selected eigenvalues and eigenvectors...

Computes Kaplan-Meier (product-limit) estimates of the parameters of a factor analysis model,...

Computes a trimmed and winsorized mean of a single sample with estimates of their variance

Huber estimates See Robust
                                                                                                                                                                                                          Robust regression, standard M-estimates
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G02HAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G02GKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G02DKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G07DBF
G07DCF
G07BBF
G07BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOROGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F08QUF
F08QYF
F08QLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G12AAF
G03CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G07DDF
                                                                                                                                                                Norm estimation (for use in condition estimation), complex matrix

Norm estimation (for use in condition estimation), complex matrix

Norm estimation (for use in condition estimation), real matrix

Robust estimation, median, median absolute deviation,...

Robust estimation, M-estimates for location and scale parameters,...

Robust estimation, M-estimates for location and scale parameters,...

Calculates a robust estimation of a correlation matrix, Huber's weight function

Calculates a robust estimation of a correlation matrix, user-supplied weight function

Calculates a robust estimation of a correlation matrix, user-supplied weight function...

Multivariate time series, estimation of multi-input model

Multivariate time series, preliminary estimation of transfer function model

Multivariate time series, estimation of VARMA model

Norm estimation (for use in condition estimation), real matrix

Univariate time series, perliminary estimation, seasonal ARIMA model

Univariate time series, estimation, seasonal ARIMA model (comprehensive)

Univariate time series, estimation, seasonal ARIMA model (casy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F04ZCF
F04ZCF
F04YCF
G07DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G07DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G07DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G07DCF
G02HKF
G02HMF
G02HLF
G13BEF
G13BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G13DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F04YCF
G13ADF
G13AEF
G13AFF
                                                                                                                                                                                                                                                                               Compute Euclidean norm from scaled form
Compute Euclidean norm of complex vector
Update Euclidean norm of complex vector in scaled form
Compute Euclidean norm of real vector
Compute Weighted Euclidean norm of real vector
Update Euclidean norm of real vector in scaled form
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06BMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06KJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06EJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FO6FKI
FO6FJF
                                                                                                                                                                    Roe's approximate Riemann solver for Buler equations in conservative form,...
sher's approximate Riemann solver for Buler equations in conservative form,...
Modified HLL Riemann solver for Buler equations in conservative form,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D03PWF
```

KWIC.12 [NP3390/19]

```
Exact Riemann Solver for Euler equations in conservative form,...
Provides the mathematical constant 7 (Euler's Constant)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D03PXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    XOLABE
                                                                                                                                                        Interpolated values, evaluate interpolant computed by E01SAF, two variables interpolated values, evaluate interpolant computed by E01SEF, two variables Evaluate inverse Laplace transform as computed by C06LBF interpolated values, evaluate rational interpolant computed by E01RAF, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   EDISBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E01SFF
C06LCF
                                                                                                                                                                                                                           Evaluation of fitted bicubic spline at a mesh of points
Evaluation of fitted bicubic spline at a vector of points
Evaluation of fitted cubic spline, definite integral
Evaluation of fitted cubic spline, function and derivatives
Evaluation of fitted cubic spline, function only
Evaluation of fitted polynomial in one variable from...
Evaluation of fitted polynomial in one variable from...
Evaluation of fitted polynomial in two variables
Evaluation of fitted rational function as computed by E02RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E02DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E02BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E02BBF
E02AKF
E02AEF
E02CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E02RBF
                                                                                                                                                        Interpolated values, Everett's formula, equally spaced data, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E01ABF
                                     Computes the exact probabilities for the Mann-Whitney U statistic, no ties... Computes the exact probabilities for the Mann-Whitney U statistic, ties... Two-way contingency table analysis, with \chi^2/Fisher's exact test
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G08AJF
G08AKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G01AFF
                                                                                                                                                                                                                             Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)
Explicit ODEs, stiff IVP, full Jacobian (comprehensive)
Explicit ODEs, stiff IVP (reverse communication, comprehensive)
Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D02NCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D02NBF
D02NMF
D02NDF
                       Pseudo-random real numbers, (negative) exponential distribution Generates a vector of random numbers from an (negative) exponential distribution Complex exponential, e^2 Exponential integral E_1(x) Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G05FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SOIEAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DOSRZE
                                                                                                                                                                                                                             Extract grid data from D03RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G01ALF
                                          Computes a five-point summary (median, hinges and extremes)
                                                                           Computes probabilities for F-distribution
Computes deviates for the F-distribution
Computes probabilities for the non-central F-distribution
Pseudo-random real numbers, F-distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GOLEDE
     Computes maximum likelihood estimates of the parameters of a factor analysis model, factor loadings, communalities...
...of the parameters of a factor analysis model, factor loadings, communalities and residual correlations
Computes factor score coefficients (for use after G03CAF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G03CCF
Compute orthogonal polynomials or dummy variables for factor/classification variable.

Analysis of variance, complete factorizations

Real sparse non-Hermitica linear systems, incomplete factorizations

Final parse years (marking accomplete for factorizations)

Final parse sparse fermitica matrix, incomplete Cheleby factorizations

Complex sparse fermitica matrix, incomplete Cheleby factorization and determinant of real matrix

LU factorization and determinant of real matrix

FOAFF

Operations with orthogonal matrice, form rows of Q. Rev. RO factorization by PEQUIPF

Operations with variaty matrice, form rows of Q. Rectorization by requence of place rotations, complex upper...

OR Rectorization by requence of place rotations, complex upper...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization by requence of place rotations, canaly update of...

OR Rectorization of control of place rotations, real upper...

POGOFF

Form all or part of unitary Q from Q Rectorization determined by POALF or POBDEF

Form all or part of unitary Q from Q Rectorization determined by POALF or POBDEF

Form all or part of unitary Q from Q Rectorization of complex general rectangular matrix

PORTER

Form all or part of unitary Q from Q Rectorization of c
                         Computes orthogonal polynomials or dummy variables for factor/classification variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G04EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G04CAF
                                                                                                                     Analysis of variance, complete factorial design, treatment means and standard errors
```

```
QR factorization of UZ or RQ factorization of ZU, U real upper triangular,... QR factorization, possibly followed by SVD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06QTF
F02WDF
                                                                                                                                                                                                                                    Failures
       ...filter, time-varying, square root covariance filter
...filter, time-invariant, square root covariance filter
Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter
Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G13EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13BBF
G13BAF
                                                                                                                                                 Multivariate time series, filtering by a transfer function model
Multivariate time series, filtering (pre-whitening) by an ARIMA model
                                                                                                     ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02QYF
ODEs, IVP, Adams method with root-finding (forward communication, comprehensive)

ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)

Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional...

Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional...

Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional...

Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional...

Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional...

ODEs, boundary value problem, finite difference equations by SIP, seven-point three-dimensional...

ODEs, boundary value problem, finite difference technique with deferred correction,...

ODEs, boundary value problem, finite difference technique with deferred correction,...

General system of parabolic PDEs, method of lines, finite differences, one space variable

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable

General system of second-order PDEs, method of lines, finite differences, remeshing, one space variable

General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region

General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region

General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region

General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region

General system of second-order PDEs, method of lines, finite interval, allowing for singularities at user-specified break-points

One-dimensional quadrature, adaptive, finite interval, with substitute of oscillating functions

One-dimensional quadrature, adaptive, finite interval, with for oscillating functions

One-dim
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D02OGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DOSEDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D03EBF
D03UAF
D03ECF
D03UBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D02RAF
D02GBF
D02GAF
D03PCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D03PHF
D03PPF
D03RAF
D03RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DOJARF
DOJARF
DOJALF
DOJAKF
DOJAKF
DOJAHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DOTAFF
DOTAFF
DOTAFF
DOTAFF
DOTAFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D01APF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D01ARF
            Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction,...
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D02KDF
                                                                          Two-way contingency table analysis, with \chi^2/Fisher's exact test
                                                                                                                    Least-squares cubic spline curve fit, automatic knot placement
Least-squares surface fit, bicubic splines
Least-squares surface fit by bicubic splines
Least-squares surface fit by bicubic splines with automatic knot placement,...
Least-squares surface fit by polynomials
Minimax curve fit by polynomials, action lines
Least-squares curve fit, by polynomials, action lines
Fit cubic smoothing spline, smoothing parameter estimated
Fit cubic smoothing spline, smoothing parameter given
Least-squares curve cubic spline fit (including interpolation)
Least-squares polynomial fit, special data points (including interpolation)
Performs the \( \frac{2}{2} \) goodness of fit test, for standard continuous distributions
Goodness of fit tests
Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02DAF
E02DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02ACF
E02ADF
E02CAF
G10ACF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GIOABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G08CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02AGF
                                                                                                                                                                                                                                   Fits a general linear regression model for new dependent variable
Fits a general (multiple) linear regression model
Fits a generalised linear model with binomial errors
Fits a generalised linear model with gamma errors
Fits a generalised linear model with Normal errors
Fits a generalised linear model with Poisson errors
Fits a linear regression model by forward selection
Fits a Cox's proportional hazard model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G02DGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G02DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOZGDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02GDF
G02GAF
G02GCF
G02EEF
G12BAF
                                                                                                                                                                                   Evaluation of fitted bicubic spline at a mesh of points
Evaluation of fitted bicubic spline at a vector of points
Evaluation of fitted cubic spline, definite integral
Evaluation of fitted cubic spline, function and derivatives
Evaluation of fitted cubic spline, function only
Derivative of fitted polynomial in Chebyshev series form
Integral of fitted polynomial in Chebyshev series form
Evaluation of fitted polynomial in one variable, from Chebyshev series form
Evaluation of fitted polynomial in one variable from Chebyshev series form...
Evaluation of fitted polynomial in two variables
Evaluation of fitted rational function as computed by E02RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     E02BDF
E02BCF
E02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02AHF
E02AJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02AKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02AEF
                                                                                       Interpolating functions, fitting bicubic spline, data on rectangular grid Sort two-dimensional data into panels for fitting bicubic splines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E01DAF
E02ZAF
                             Computes a five-point summary (median, hinges and extremes)
Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, iterate to convergence
Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, one iteration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOLALF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D03UAF
                                                             ...method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variab
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D03PFF
                                                          ...method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable
...method of lines, upwind scheme using numerical flux function based on Riemann solver, remeshing, one space variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D03PSF
                                                                            Univariate time series, update state set for forecasting
Multivariate time series, update state set for forecasting from multi-input model
Univariate time series, forecasting from state set
Multivariate time series, forecasting from state set of multi-input model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GISAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13AHF
G13BHF
                                                                                                   Multivariate time series, forecasts and their standard errors
Multivariate time series, updates forecasts and their standard errors
Multivariate time series, state set and forecasts from fully specified multi-input model
Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13DKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GISAJF
                                                                        ODEs, IVP, Adams method with root-finding (forward communication, comprehensive)

Fits a linear regression model by forward selection
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02QFF
G02EEF
                                                                                                                 Two-dimensional complex discrete Fourier transform
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06FUF
```

KWIC.14 [NP3390/19]

```
Three-dimensional complex discrete Fourier transform

Single one-dimensional complex discrete Fourier transform, complex data format

CO6PCF

Two-dimensional complex discrete Fourier transform, complex data format

CO6PCF

Three-dimensional complex discrete Fourier transform, complex data format

CO6PCF

Three-dimensional complex discrete Fourier transform, complex data format

CO6PCF

Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed

Single one-dimensional complex discrete Fourier transform, extra workspace for greater speed

Single one-dimensional complex discrete Fourier transform, no extra workspace

Single one-dimensional Hermitian discrete Fourier transform, no extra workspace

Single one-dimensional complex discrete Fourier transform, no extra workspace

Single one-dimensional complex discrete Fourier transform of multi-dimensional data

CO6FOF

One-dimensional complex discrete Fourier transform of multi-dimensional data

CO6FOF

Multi-dimensional complex discrete Fourier transform of multi-dimensional data

CO6FOF

Multiple one-dimensional real discrete Fourier transform of multi-dimensional data (using complex data type)

Multiple one-dimensional Hermitian discrete Fourier transforms

Multiple one-dimensional Hermitian discrete Fourier transforms

Multiple one-dimensional complex discrete Fourier transforms using complex data format for Hermitian...

CO6POF

Multiple one-dimensional complex discrete Fourier transforms using complex data format for Hermitian...

CO6POF

Multiple one-dimensional complex discrete Fourier transforms, using complex data format for Hermitian...

CO6POF

Multiple one-dimensional complex discrete Fourier transforms, using complex data format for Hermitian...

CO6POF

Linear non-singular F
                                                                                                                                                                                                                                                  Linear non-singular Fredholm integral equation, second kind, smooth kernel
Linear non-singular Fredholm integral equation, second kind, split kernel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D05ABF
                         Frequency count for G11SAF
...spectrum using spectral smoothing by the trapezium frequency (Daniell) window
...spectrum using spectral smoothing by the trapezium frequency (Daniell) window
Mean, variance, skewness, kurtosis, etc, one variable, from frequency table
Frequency table from raw data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GUISBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOLAEF
                                                                                                                                                                                                                                                                                                                                                                    Fresnel integral C(x)
Fresnel integral S(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SOADE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G08AEF
                                                                                                                                                                                                                                                                                                                                                                  Friedman two-way analysis of variance on k matched samples
                                                                                                                                                                                                                                                              Friedman two-way analysis of variance on k matched samples

1-norm, co-norm, Frobenius norm, largest absolute element, complex band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex general matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hermitian...

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hermitian...

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hermitian...

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hermitian...

1-norm, co-norm, Frobenius norm, largest absolute element, complex symmetric...

1-norm, co-norm, Frobenius norm, largest absolute element, complex symmetric...

1-norm, co-norm, Frobenius norm, largest absolute element, complex triangular...

1-norm, co-norm, Frobenius norm, largest absolute element, complex triangular...

1-norm, co-norm, Frobenius norm, largest absolute element, real band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real general matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real iriangular...

1-norm, co-norm, Frobenius norm, largest absolute element, real triangular...

1-norm, co-norm, Frobenius norm, largest absolute element, real iriangular...

1-norm, co-norm, Frobenius norm, largest absolute element, real triangular...

1-norm, co-norm, Frobenius norm, largest absolute element, real iriangular...

1-norm, co-norm, Frobenius norm, largest absolute element, real iriangular...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06UAF
F06UEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06UCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO6UDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSUME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06UMF
F06UFF
F06UGF
F06UJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06ULF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSUKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06RDF
                                                                                                                                                                                                                        Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G13CFF
                                                      Computes probabilities for the gamma distribution
Computes deviates for the gamma distribution
Generates a vector of pseudo-random numbers from a gamma distribution
Fits a generalized linear model with gamma errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G01EFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOIFFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              GOSFFF
                                                                                                                                                                                                                                                                                                 Gamma function Log Gamma function Incomplete Gamma functions P(a,x) and Q(a,x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S14BAF
                                                                                                                                                        Provides the mathematical constant \gamma (Euler's Constant)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X01ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOSEDE
                                                                                                                                                                                                                                                                                          Performs the gaps test for randomness
                                                                                                                                                                                                                                                                                                                                                                      Gather and set to zero complex sparse vector
                                                                                                                                                                                                                                                                                                                                                                    Gather and set to zero real sparse vector
Gather complex sparse vector
Gather real sparse vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06EUF
                                                                                                                                 Kernel density estimate using Gaussian kernel
One-dimensional Gaussian quadrature
Multi-dimensional Gaussian quadrature over hyper-rectangle
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GIOBAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D01BBF
                                                                                                                                                                                                                                                                   Real general Gauss-Markov linear model (including weighted least-squares)
Complex general Gauss-Markov linear model (including weighted least-squares)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F04JLF
                                            Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm,...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm,...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm...
Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           E04GDF
E04GZF
E04FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E04HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E04HYF
All eigenvalues of generalized banded real symmetric-definite eigenproblem (Black Box)
All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ algorithm (Black Box)
Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = ABx, ABx = \( \text{a} \) to BAx = \lambda x_1...

Reduction to standard form of real symmetric-definite banded generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x_1...

Reduction of omplex Hermitian-definite banded generalized eigenproblem Ax = \lambda Bx, abx = \( \text{a} \) to standard form Cy = \lambda y_1...

Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = \lambda Bx to standard form Cy = \lambda y_1...

Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = \lambda Bx to standard form Cy = \lambda y_1...

FORTSF Reduction to standard form of real symmetric-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x_1...

FORTSF Reduction to standard form of real symmetric-definite generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x_1...

FORTSF POSTSF All eigenvalues and optionally eigenvectors of generalized eigenproblem Ax = \lambda Bx, ABx = \lambda x or BAx = \lambda x_1...

FORTSF POSTSF POS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G02GDF
G02GAF
G02GCF
```

```
Generate complex elementary reflection
Generate complex plane rotation, storing tangent, real cosine
Generate complex plane rotation, storing tangent, real sine
Generate complex plane rotation, storing tangent, real sine
Generate orthogonal transformation matrices from reduction...
Generate orthogonal transformation matrix from reduction...
Generate orthogonal transformation matrix from reduction...
Generate orthogonal transformation matrix from reduction...
Generate real elementary reflection, LINPACK style
Generate real elementary reflection, NAG style
Generate real Jacobi plane rotation
Generate real plane rotation
Generate real plane rotation, storing tangent
Generate sequence of complex plane rotations
Generate unitary transformation matrices from reduction...
Generate unitary transformation matrix from reduction...
Generate unitary transformation matrix from reduction...
Generate unitary transformation matrix from reduction...
Generate weights for use in solving Volterra equations
Generates a realisation of a multivariate time series from...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06HRF
F06CAF
F06CBF
G05EWF
F08KFF
F08NFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FORFFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO8GFF
FO6FSF
FO6FRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06AAF
F06BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06BAF
F06HQF
F06FQF
F08KTF
F08NTF
F08FTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D05BWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05HDF
G05FEF
G05FFF
                                                                                                                                                                                                                              Generates a realisation of a multivariate time series from...
                                                                                                                                                                                                                            Generates a realisation of a multivariate time series from...
Generates a vector of pseudo-random numbers from...
Generates a vector of pseudo-random variates from...
Generates a vector of random numbers from a Normal distribution
Generates a vector of random numbers from a uniform distribution
Generates a vector of random numbers from a uniform distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05FSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GOSFDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G05FBF
                                                                                                            Set up reference vector for generating pseudo-random integers, binomial distribution
Set up reference vector for generating pseudo-random integers, hypergeometric distribution
Set up reference vector for generating pseudo-random integers, negative binomial distribution
Set up reference vector for generating pseudo-random integers, Poisson distribution
Set up reference vector for generating pseudo-random integers, uniform distribution
Save state of random number generating routines
Restore state of random number generating routines
Initialise random number generating routines to give non-repeatable sequence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G05EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05EFF
G05EEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G05ECF
G05EBF
G05CFF
G05CCF
G05CBF
                                                       ...integration of function defined by data values, Gill-Miller method
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D01GAF
                                                                                                                                                                  Performs the \chi^2 goodness of fit test, for standard continuous distributions Goodness of fit tests
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G08CGF
G08
Unconstrained minimum, pre-conditioned conjugate gradient algorithm, function of several variables using...

Estimate (using numerical differentiation) gradient and/or Hessian of a function
Real sparse symmetric linear systems, pre-conditioned conjugate gradient or Lanczos
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04DGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F11GBF
       Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box) F11JEF
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box) F11JSF
Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JAF...
F11JCF
Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JNF...
F11JQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F05AAF
                                                                                                                                                                                                                           Gram-Schmidt orthogonalisation of n vectors of order m
                                                                                                                                                                             Extract grid data from D03RBF
Check initial grid data in D03RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03RZF
D03RYF
                                                                    Computes test statistic for equality of within-group covariance matrices and matrices for discriminant analysis
Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after G03DAF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G03DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G03DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G07BBF
                                                     ...for parameters of the Normal distribution from grouped and/or censored data
                                                                                                                                      Allocates observations to groups according to selected rules (for use after G03DAF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G03DCF
                                                                                                                                                                                                                            Hankel functions H_{\nu+a}^{(j)}(z), j=1,2, real a \geq 0,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               S17DLF
                                                                                                                                                                                                                            Hard fail
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G12BAF
                                                                                                                                            Fits Cox's proportional hazard model
                        Creates the risk sets associated with the Cox proportional hazards model for fixed covariates
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G12ZAF
                                                                                                                                                                            Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03FAF
                    Matrix-vector product, complex Hermitian band matrix
....Frobenius norm, largest absolute element, complex Hermitian band matrix
Unitary reduction of complex Hermitian band matrix
Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
All eigenvalues and optionally all eigenvectors of complex Hermitian band matrix, using divide and conquer
Single one-dimensional real and Hermitian complex discrete Fourier transform, using...
Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using...
Multiple one-dimensional Hermitian discrete Fourier transforms, using...
Single one-dimensional Hermitian discrete Fourier transforms, extra workspace...
Single one-dimensional Hermitian discrete Fourier transforms extra workspace.
Multiple one-dimensional Hermitian discrete Fourier transforms one workspace.
Multiple one-dimensional Hermitian indefinite matrix, matrix already factorised by FOTMRF
Bunch-Kaufman factorisation of complex Hermitian indefinite matrix, matrix already factorised by FOTMRF
Inverse of complex Hermitian indefinite matrix, matrix already factorised by FOTPRF....
Inverse of complex Hermitian indefinite matrix, matrix already factorised by FOTPRF....
Bunch-Kaufman factorisation of complex Hermitian indefinite matrix, matrix already factorised by FOTPRF....
Solution of complex Hermitian indefinite system of linear equations...
Solution of complex Hermitian indefinite system of linear equations...
Solution of complex Hermitian indefinite system of linear equations...
Solution of complex sparse Hermitian linear system of linear equations...
Solution of complex sparse Hermitian linear system of linear equations...
Solution of complex sparse Hermitian matrix
Matrix-vector product, complex Hermitian matrix
Rank-1 update of complex Hermitian matrix
Rank-2 update, complex Hermitian matrix
Rank-2 update of complex Hermitian matrix
Rank-3 update of complex Hermitian matrix
Rank-4 update of complex Hermitian matrix
Unitary similarity transformation of Hermitian 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E01BEF
Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06UEF
F08HSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FOSHOF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C06EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C06EBF
C06FQF
F07MRF
F07MUF
F07PUF
F07PUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOTPRF
FOTMVF
FOTMSF
FOTPSF
FOTPVF
F11JSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F11JQF
F06CHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06SCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F06SPF
F06SRF
F06UCF
F06ZPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F06ZRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FILIRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F06TMF
F02HAF
F02HCF
F11JNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06ZCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06UDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F08GQF
F11ZPF
```

KWIC.16 [NP3390/19]

```
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage

All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, using implicit QL or QR
Complex sparse Hermitian matrix, using implicit QL or QR

Matrix-vector product, complex Hermitian packed matrix
Rank-1 update, complex Hermitian packed matrix

Rank-2 update, complex Hermitian packed matrix

Cholesky factorization of complex Hermitian positive-definite band matrix

Computes a split Cholesky factorization of complex Hermitian positive-definite band matrix.

Estimate condition number of complex Hermitian positive-definite band matrix...

Refined solution with error bounds of complex Hermitian positive-definite band system of linear equations,...

Solution of complex Hermitian positive-definite matrix

Estimate condition number of complex Hermitian positive-definite matrix

Estimate condition number of complex Hermitian positive-definite matrix...

Inverse of complex Hermitian positive-definite matrix,...

Estimate condition number of complex Hermitian positive-definite matrix,...

Cholesky factorization of complex Hermitian positive-definite matrix,...

Inverse of complex Hermitian positive-definite matrix,...

Cholesky factorization of complex Hermitian positive-definite matrix,...

Solution of complex Hermitian positive-definite system of linear equations,...

Solution of complex Hermitian positive-definite system of linear equations,...

Solution of complex Hermitian positive-definite system of linear equations,...

Complex conjugate of multiple Hermitian sequences

Complex conjugate of multiple Hermitian sequences

Convert Hermitian sequences

Convert Hermitian sequences to general complex sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOSFSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FOAGSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOSFQF
FOSJSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F08JSF
F11XSF
F06SEF
F06SQF
F06SSF
F07HRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOSUTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FO7HIIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOTHVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO7HVF
FO7HSF
FO7FRF
FO8JUF
FO7FUF
FO7FWF
FO7GUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F07GUF
F07GWF
F07GRF
F07FVF
F07FSF
F07GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F07GVF
C06GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         C06GQF
                                                                                                 Reduction of complex Hermitian-definite banded generalized eigenproblem Ax = \lambda Bx...
Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = \lambda Bx...
Reduction to standard form of complex Hermitian-definite generalized eigenproblem Ax = \lambda Bx...
All eigenvalues and eigenvectors of complex Hermitian-definite generalized problem (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOSTSF
FO2HDF
Orthogonal reduction of real general matrix to upper Hessenberg form
Unitary reduction of complex general matrix to upper Hessenberg form
Unitary reduction of complex general matrix to upper Hessenberg form
Generate orthogonal transformation matrix from reduction to Hessenberg form determined by FOSNEF
Apply orthogonal transformation matrix from reduction to Hessenberg form determined by FOSNEF
Generate unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF
Apply unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF
Apply unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF
Apply unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF
Apply unitary transformation matrix from reduction to Hessenberg form determined by FOSNEF
Apply unitary transformation matrix from reduction to Hessenberg matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real Hessenberg matrix

...by sequence of plane rotations, complex upper Hessenberg matrix

Selected right and/or left eigenvectors of call upper Hessenberg matrix by inverse iteration
Selected right and/or left eigenvectors of complex upper Hessenberg matrix by sequence of plane rotations,...

Compute upper Hessenberg matrix by sequence of plane rotations,...

Compute upper Hessenberg matrix reduced from complex general matrix

Eigenvalues and Schur factorisation of real upper Hessenberg matrix reduced from complex general matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FORNEE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO8NEF
FO8NSF
FO8NFF
FO8NGF
FO8NTF
FO8NUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06QRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FOSRME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06QVF
                                    Estimate (using numerical differentiation) gradient and/or Hessian of a function

Check user's routine for calculating Hessian of a sum of squares
                                                                                                                                                           Two-way analysis of variance, hierarchical classification, subgroups of unequal size
Hierarchical cluster analysis
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G04AGF
G03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D01AQF
                                                           ... weight function 1/(x-c). Cauchy principal value (Hilbert transform)
                                                                                                            Computes a five-point summary (median, hinges and extremes)
                                                                                                                                                                                                                                        Lineprinter histogram of one variable
                                                                                                                                                                                                                                                   Modified HLL Riemann solver for Euler equations in conservative form,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D03PWF
                                                     Calculates a robust estimation of a correlation matrix, Huber's weight function
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02HKF
                  Set up reference vector for generating pseudo-random integers, hypergeometric distribution
Hypergeometric distribution function
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOSEFF
                                                                                               Multi-dimensional Gaussian quadrature over hyper-rectangle
Multi-dimensional adaptive quadrature over hyper-rectangle
Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
Multi-dimensional adaptive quadrature over hyper-rectangle, multiple integrands
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D01GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DOIEAF
                                                                ...matrix, reduced from real symmetric matrix using implicit QL or QR ...reduced from complex Hermitian matrix, using implicit QL or QR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSJEF
                                                                                                                                                                                                                                                                                           Implicit/algebraic ODEs, stiff IVP, banded Jacobian...
                                                                                                                                                                                                                                                                                           Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive)

D02NGF

Implicit/algebraic ODEs, stiff IVP (reverse communication,...

D02NNF

Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)

D02NJF
                                                                            Multivariate time series, noise spectrum, bounds, impulse response function and its standard error
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G13CGF
                                                                                      Real sparse symmetric matrix, incomplete Cholesky factorization
Complex sparse Hermitian matrix, incomplete Cholesky factorization
Solution of linear system involving incomplete Cholesky preconditioning matrix generated by F11JAF
Solution of complex linear system involving lacomplete Cholesky preconditioning matrix generated by F11JNF
Incomplete Gamma functions P(\alpha, x) and Q(\alpha, x)
Real sparse nonsymmetric linear systems, incomplete LU factorization
Complex sparse non-Hermitian linear systems, incomplete LU factorization
Solution of linear system involving incomplete LU preconditioning matrix generated by F11DAF
Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F11JBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F11JPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S14BAF
F11DAF
F11DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F11DBF
F11DPF
                                        Bunch-Kaufman factorization of real symmetric indefinite matrix

Bunch-Kaufman factorization of complex Hermitian indefinite matrix

Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07MDF

Inverse of real symmetric indefinite matrix, matrix already factorized by F07MDF

Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07MDF

Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07MRF

Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07MRF

Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07PDF,...

Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07PDF,...

Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07PRF,...

Bunch-Kaufman factorization of real symmetric indefinite matrix, matrix already factorized by F07PRF,...

Bunch-Kaufman factorization of complex Hermitian indefinite matrix, packed storage

Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides,...

Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides,...

Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides,...

Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides,...

Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides,...

Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides,...

Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides,...

Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07MDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07MRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07MGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FO7MGF
FO7MJF
FO7MUF
FO7MWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07PGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07PJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FO7PUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FOTDWE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F07PDF
F07PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F07MHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F07MVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F07MEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07MEF
F07MSF
F07PEF
F07PSF
F07PHF
F07PVF
                                                                                                                                                                                                                                                                                           Index, complex vector element with largest absolute value
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06JMF
```

```
Index, real vector element with largest absolute value
                                                                                                                                                                                                                                                                                                                                                                                              FOS ILF
                                                                                                                                  Computes cluster indicator variable (for use after G03ECF)
                                                                                                                                                                                                                                                                                                                                                                                              G03EJF
                                                                                                                                                                                                                                                                                                                                                                                              POLARE
                                                                                                                       Return value of error indicator/terminate with error message
                                                                                                                                                                                                                                                                                                                                                                                              E02GBF
      L_1-approximation by general linear function subject to linear inequality constraints
             One-dimensional quadrature, adaptive, infinite or semi-infinite interval
One-dimensional quadrature, adaptive, infinite or semi-infinite interval
One-dimensional quadrature, adaptive, semi-infinite interval, weight function \cos(\omega x) or \sin(\omega x)
D01ASF
One-dimensional quadrature, adaptive, infinite or semi-infinite interval
One-dimensional quadrature, adaptive, infinite or semi-infinite interval
One-dimensional quadrature, adaptive, infinite or semi-infinite interval
Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points
O02KDF
                                                                                                                                                                                                                                                                                                                                                                                              D01AMF
D01AMF
                                                                                                                                                                                                                                                                                                                                                                                              DOLAME
                                                                         Bounded Influence See Robust
Calculates standardized residuals and influence statistics
                                                                                                                                                                                                                                                                                                                                                                                              G02FAF
                                                                                       Real inner product added to initial value, basic/additional precision
Complex inner product added to initial value, basic/additional precision
                                                                                                                                                                                                                                                                                                                                                                                              X03AAF
                                                                                                                                                                                                                                                                                                                                                                                              YOSARF
                                                                                                                                                              Matrix initialisation, complex rectangular matrix
Matrix initialisation, real rectangular matrix
                                                                                                                                                                                                                                                                                                                                                                                              FOSTHE
                                                                                                                                                                                                                                                                                                                                                                                                F06QHF
                                                                                                                                                                                                                                                                                                                                                                                              G05CCF
G05CBF
                                                                                                                                                                                   Initialise random number generating routines to give non-repeatable...
                                                                                                                                                                                     Initialise random number generating routines to give repeatable...
                                                                                                                                                         Real inner product added to initial value, basic/additional precision Complex inner product added to initial value, basic/additional precision
                                                                                                                                                                                                                                                                                                                                                                                                X03AAF
X03ABF
            Multivariate time series, estimation of multi-input model
...series, update state set for forecasting from multi-input model
Multivariate time series, forecasting from state set of multi-input model
...set and forecasts from fully specified multi-input model
Input output utilities
                                                                                                                                                                                                                                                                                                                                                                                               GISBEE
                                                                                                                                                                                                                                                                                                                                                                                                G13BGF
G13BHF
                                                                                                                                                                                                                                                                                                                                                                                                G13BJF
                           The largest representable integer
...rectangular matrix, permutations represented by an integer array
...rectangular matrix, permutations represented by an integer array
...rectangular matrix, permutations represented by an integer LP problem (dense)
Integer LP problem (dense)
Pseudo-random integer, Poisson distribution
Integer programming solution, supplies further information on...
                                                                                                                                                                                                                                                                                                                                                                                               X 04
                                                                                                                                                                                                                                                                                                                                                                                               XOZBBE
                                                                                                                                                                                                                                                                                                                                                                                               H02BZF
Evaluation of fitted cubic spline, definite integral Dawson's integral Fresnel integral C(x)

Exponential integral E_1(x)

Linear non-singular Fredholm integral equation, second kind, smooth kernel Linear non-singular Fredholm integral equation, second kind, split kernel Degenerate symmetrised elliptic integral of 1st kind R_D(x, y)

Symmetrised elliptic integral of 1st kind R_D(x, y, z)

Symmetrised elliptic integral of 3rd kind R_D(x, y, z)

Symmetrised elliptic integral of 3rd kind R_D(x, y, z)

Symmetrised elliptic integral of 3rd kind R_D(x, y, z)

Integral of fitted polynomial in Chebyshev series form Interpolated values, interpolant computed by E01BEF, definite integral, one variable Cosine integral Ci(x)

Sine integral Si(x)

Fresnel integral S(x)
                                                                                                                                                                                                                                                                                                                                                                                               E02BDF
                                                                                                                                                                                                                                                                                                                                                                                               S20ADF
S13AAF
D05ABF
D05AAF
                                                                                                                                                                                                                                                                                                                                                                                                S21BAF
                                                                                                                                                                                                                                                                                                                                                                                                521 BBF
                                                                                                                                                                                                                                                                                                                                                                                                SZIBCE
                                                                                                                                                                                                                                                                                                                                                                                               S21BDF
E02AJF
E01BHF
                                                                                                                                                                                                                                                                                                                                                                                                SISACE
                                                                                                                                                                                                                                                                                                                                                                                                SISADE
                                                                                                                                                                                                                                                                                                                                                                                                D01ARF
                                                       ...finite interval with provision for indefinite integrals
                                                                                 Numerical integration
ODEs, IVP, integration diagnostics for D02PCF and D02PDF
One-dimensional quadrature, integration of function defined by data values, Gill-Miller method
ODEs, IVP, Runge-Kutta method, integration over one step
d, until function of solution is zero, integration over range with intermediate output (simple driver)
ODEs, IVP, Runge-Kutta method, integration over range with output
                                                                                                                                                                                                                                                                                                                                                                                                D01
                                                                                                                                                                                                                                                                                                                                                                                                D02PYF
                                                                                                                                                                                                                                                                                                                                                                                                D01GAF
                  ...Runge-Kutta method
                                                          ODEs, IVP, integrator diagnostics, for use with D02M-N routines ODEs, IVP, set-up for continuation calls to integrator, for use with D02M-N routines
                                                                                                                                                                                                                                                                                                                                                                                                D02NYF
                                                                                                                                                                                                                                                                                                                                                                                                D02NZF
                           ...problem, shooting and matching technique, allowing interior matching point, general parameters to be determined
                                                                                                                                                                                                                                                                                                                                                                                               D02AGF
                       ODEs, IVP, interpolation for D02M-N routines, natural interpolant
                                                                                                                                                                                                                                                                                                                                                                                                D02MZF
                     ODEs, IVP, interpolation for D02M-N routines, natural interpolant
ODEs, IVP, interpolation for D02M-N routines, C1 interpolant
ODEs, IVP, interpolation for D02M-N routines, C2 interpolant
ODEs, IVP, interpolation for D02M-N routines, C3 interpolant
Interpolated values, interpolant computed by E01BEF, definite integral, one variable
Interpolated values, evaluate interpolant computed by E01BEF, function and first derivative,...
Interpolated values, evaluate interpolant computed by E01BEF, function only, one variable
Interpolated values, evaluate interpolant computed by E01SAF, two variables
Interpolating functions, polynomial interpolant, data may include derivative values, one variable
Interpolating functions, rational interpolant, one variable
Interpolating functions, rational interpolant, one variable
                                                                                                                                                                                                                                                                                                                                                                                                D02XJF
D02XKF
E01BHF
                                                                                                                                                                                                                                                                                                                                                                                                E01BGF
E01BFF
                                                                                                                                                                                                                                                                                                                                                                                                E01RBF
                                                                                                                                                                                                                                                                                                                                                                                                E01SBF
E01SFF
E01AEF
                                                                                                                                                                                                                                                                                                                                                                                                 E01BAF
                                                                                                                                                                                                                                                                                                                                                                                                 E01RAF
                                                                                                                                                                                    Interpolated values, Aitken's technique, unequally spaced data....
Interpolated values, evaluate interpolant computed by E01SAF,...
Interpolated values, evaluate interpolant computed by E01SEF,...
Interpolated values, evaluate rational interpolant computed by...
Interpolated values, Everett's formula, equally spaced data,...
Interpolated values, interpolant computed by E01BEF,...
Interpolated values, interpolant computed by E01BEF,...
Interpolated values, interpolant computed by E01BEF,...
                                                                                                                                                                                                                                                                                                                                                                                                E01AAF
E01SBF
E01SFF
E01RBF
                                                                                                                                                                                                                                                                                                                                                                                                 E01ABF
E01BHF
                                                                                                                                                                                                                                                                                                                                                                                                E01BFF
                                                                                                                                                                                     Interpolating functions, cubic spline interpolant, one variable Interpolating functions, fitting bicubic spline, data on rectangular... Interpolating functions, method of Renka and Cline, two variables Interpolating functions, modified Shepard's method, two variables Interpolating functions, modified Shepard's method, two variables Interpolating functions, monotonicity-preserving, piecewise cubic... Interpolating functions, polynomial interpolating data... Interpolating functions, rational interpolant, one variable
                                                                                                                                                                                                                                                                                                                                                                                                E01BAF
E01DAF
E01SAF
E01SEF
                                                                                                                                                                                                                                                                                                                                                                                                  E01SGF
                                                                                                                                                                                                                                                                                                                                                                                                 E01BEF
E01AEF
E01RAF
            Least-squares polynomial fit, special data points (including interpolation)

Least-squares curve cubic spline fit (including interpolation)

Second-order ODEs, IVP, interpolation for D02LAF

ODEs, IVP, interpolation for D02M-N routines, C<sub>1</sub> interpolant

ODEs, IVP, interpolation for D02M-N routines, natural interpolant

ODEs, IVP, interpolation for D02M-N routines, natural interpolant

ODEs, IVP, interpolation for D02PDF

ODEs, IVP, interpolation for D02PDF

ODEs, IVP, interpolation for D02QFF or D02QGF

ODEs, general nonlinear boundary value problem, interpolation with D03PCF, D03PFF, D03PFF, D03PHF,...

PDEs, spatial interpolation with D03PDF or D03PJF
                                                                                                                                                                                                                                                                                                                                                                                                 E02AFF
                                                                                                                                                                                                                                                                                                                                                                                                  E02BAF
                                                                                                                                                                                                                                                                                                                                                                                                 D02LZF
                                                                                                                                                                                                                                                                                                                                                                                                 D02XKF
                                                                                                                                                                                                                                                                                                                                                                                                  D02MZF
D02MZF
D02XJF
D02PXF
                                                                                                                                                                                                                                                                                                                                                                                                  D02QZF
D02TYF
```

KWIC.18 [NP3390/19]

```
...update, one iteration of Kalman filter, time-invariant, square root covariance filter
...real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues,...
..complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F08QGF
F08QUF
      ...real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues,...

Pseudo-inverse and rank of real m by n matrix (m ≥ n)

Inverse distributions

Eigenvector of generalized real banded eigenproblem by inverse iteration
...eigenvectors of real upper Hessenberg matrix by inverse iteration
...eigenvectors of complex upper Hessenberg matrix by inverse iteration, storing eigenvectors in complex array

Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array

Evaluate inverse Laplace transform as computed by CO6LBF

Inverse Laplace transform, Crump's method
Inverse of complex Hermitian indefinite matrix,...
Inverse of complex Hermitian indefinite matrix,...
Inverse of complex Hermitian positive-definite matrix,...
Inverse of complex symmetric matrix, matrix already factorized by FO7ARF
Inverse of complex symmetric matrix, matrix already factorized ...
Inverse of complex triangular matrix
Inverse of real symmetric indefinite matrix,...
Inverse of real symmetric indefinite matrix,...
Inverse of real symmetric positive-definite matrix...
Inverse of real triangular matrix, packed storage

Inverse of real triangular matrix, packed storage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F01BLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G01F
F02SDF
F08PKF
F08PXF
F08JXF
F08JKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C06LCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C06LCF
C06LAF
C06LBF
F07MWF
F07PWF
F07FWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FOTGWF
FOTAWF
FOTNWF
FOTTWF
FOTTWF
FOTAJF
FOTMJF
FOTPJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07PJF
F01ADF
F07FJF
F07GJF
F01ABF
F07TJF
F07UJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            M01ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              H02BFF
                                                                                                                                                         Interpret MPSX data file defining IP or LP problem, optimize and print solution

Convert MPSX data file defining IP or LP problem to format required by H02BBF or E04MFF

Print IP or LP solutions with user specified names for rows and columns
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              H02BVF
                                                                         ...by SIP, five-point two-dimensional molecule, Iterate to convergence ...SIP for seven-point three-dimensional molecule, Iterate to convergence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D03UAF
                                                                                             SIP, five-point two-dimensional molecule, one iteration
...SIP, five-point two-dimensional molecule, one iteration
...SIP, seven-point three-dimensional molecule, one iteration
Eigenvector of generalized real banded eigenproblem by inverse iteration
...eigenvectors of real upper Hessenberg matrix by inverse iteration
...of complex upper Hessenberg matrix by inverse iteration
Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter
Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
...real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
...real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F02SDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F08PKF
F08PXF
G13EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOSJKF
                        Inverse of real symmetric positive-definite matrix using lterative refinement
...equations with multiple right-hand sides using iterative refinement (Black Box)
...equations with multiple right-hand sides using iterative refinement (Black Box)
F04ABF
...in n unknowns, rank = n, m ≥ n using iterative refinement (Black Box)
F04ABF
...simultaneous linear equations, one right-hand side using iterative refinement (Black Box)
F04ASF
...simultaneous linear equations, one right-hand side using iterative refinement (Black Box)
F04AFF
Solution of real simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AEF)
F04AFF
                                                                                                                                                                       ultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AEF) ultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AFF)

ODEs, IVP, Adams method, until function of solution is zero,...

ODEs, IVP, Adams method with root-finding (reward communication,....

Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)

Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)

ODEs, IVP, BDF method, set-up for D02M-N routines

ODEs, IVP, BDF method, until function of solution is zero,...

ODEs, IVP, BDF method, set-up for D02M-N routines

ODEs, IVP, DASSL method, set-up for D02M-N routines

ODEs, IVP, diagnostics for D02LAF

ODEs, IVP, diagnostics for D02LAF

ODEs, IVP, for use with D02M-N routines, banded Jacobian,...

ODEs, IVP, for use with D02M-N routines, fall Jacobian...

ODEs, IVP, for use with D02M-N routines, fall Jacobian...

ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

DES, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

DES, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

ODEs, IVP, integration diagnostics for D02PDF

ODEs, IVP, integration diagnostics, for use with D02M-N routines

Second-order ODEs, stiff IVP, full Jacobian (comprehensive)

ODEs, IVP, interpolation for D02LAF

ODEs, IVP, interpolation for D02LAF

ODEs, IVP, interpolation for D02M-N routines, natural interpolant

ODEs, IVP, interpolation for D02PDF

ODEs, IVP, Runge-Kutta method, integration over range with output

ODEs, IVP, Runge-Kutta method, integration over range with output

ODEs, IVP, Runge-Kutta method, integration over range with output

ODEs, IVP, Runge-Kutta method, until function of solution is zero,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02QFF
D02QGF
D02NCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02NCF
D02NHF
D02NVF
D02EJF
D02NVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02LYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02QXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02PZF
D02NTF
D02NSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02NRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02NUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02NUF
D02NBF
D02NGF
D02PYF
D02NYF
D02LZF
D02XKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02MZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DO2X IF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02XJF
D02PXF
D02QZF
D02PWF
D02NMF
D02NNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02QYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02PDF
D02PCF
D02BJF
D02BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02LAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02NZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02NZF
D02LXF
D02PVF
D02QWF
D02NDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02NJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02ZAF
                  ...linear system, RGMRES, CGS or Bi-CGSTAB method, Jacobl or SSOR preconditioner (Black Box)
...system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobl or SSOR preconditioner (Black Box)
...linear system, conjugate gradient/Lancsos method, Jacobl or SSOR preconditioner (Black Box)
...linear system, conjugate gradient/Lancsos method, Jacobl or SSOR preconditioner (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F11DEF
F11DSF
F11JEF
F11JSF
                                                                                                                                                                                                                                                                       Generate real Jacobi plane rotation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F06BEF
                                                                                                                               Explicit ODEs, stiff IVP, full Jacobian (comprehensive)
Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)
Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive)
Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02NBF
```

```
Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)
Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)

ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine

ODEs, IVP, for use with D02M-N routines, full Jacobian, linear algebra diagnostics, for use with D02M-N routines, full Jacobian, linear algebra set-up

ODEs, IVP, for use with D02M-N routines, banded Jacobian, linear algebra set-up

ODEs, IVP, for use with D02M-N routines, sparse Jacobian, linear algebra set-up

Check user's routine for calculating Jacobian of first derivatives
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DOONHE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D02NHF
D02NJF
S21CAF
D02NRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D02NXF
D02NSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DOSNTE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DOSNUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G03EFF
                                                                                                                                                                                                                          K-means cluster analysis
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13EBF
                              Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter
Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13EAF
                                                                                                                                                                                          Computes Kaplan-Meier (product-limit) estimates of survival probabilities
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G12AAF
                                                                                                                                                                                                    Bunch-Kaufman factorization of complex Hermitian indefinite matrix Bunch-Kaufman factorization of complex Hermitian indefinite matrix,... Bunch-Kaufman factorization of complex symmetric matrix Bunch-Kaufman factorization of complex symmetric matrix,... Bunch-Kaufman factorization of real symmetric indefinite matrix Bunch-Kaufman factorization of real symmetric indefinite matrix,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FO7MRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F07MRF
F07PRF
F07NRF
F07QRF
F07MDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F07PDF
General system of first-order PDEs, method of lines, Keller box discretisation, one space variable
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, one space variable
General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, remeshing, one space variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D03PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D03PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S19ABF
                                                                                                                                                                                                                              Kelvin function bei x
Kelvin function ber x
Kelvin function kei x
Kelvin function ker x
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SISACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G08DAF
                                                                                                                                                                                                                              Kendall's coefficient of concordance
                                                                                                                                                                                                                              Kendall/Spearman non-parametric rank correlation coefficients,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02BPF
G02BRF
G02BNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G02BQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D05AAF
D05ABF
   Linear non-singular Fredholm integral equation, second kind, split kernel
...Fredholm integral equation, second kind, smooth kernel
Kernel density estimate using Gaussian kernel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G10BAF
G10BAF
                                                                                                                                                                                                                              Kernel density estimate using Gaussian kernel
                           Least-squares cubic spline curve fit, automatic knot placement

Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid

Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E02BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E02DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            E02DDF
                                                                                 Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
Computes probabilities for the two-sample Kolmogorov-Smirnov distribution
Performs the two-sample Kolmogorov-Smirnov test
Performs the one-sample Kolmogorov-Smirnov test for a user-supplied distribution
Performs the one-sample Kolmogorov-Smirnov test for standard distributions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GOIEVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G01EZF
G08CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G08CBF
                                                                                                                                                                                                                              Korobov optimal coefficients for use in D01GCF or D01GDF,...
Korobov optimal coefficients for use in D01GCF or D01GDF,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DOLGVE
                                                                                                                                                                                                                              Kruskal-Wallis one-way analysis of variance on k samples ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G08AFF
                                                                                                                                        Mean, variance, skewness, kurtosis, etc, one variable, from frequency table
Mean, variance, skewness, kurtosis, etc, one variable, from raw data
Mean, variance, skewness, kurtosis, etc, two variables, from raw data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G01ADF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G01AAF
G01ABF
                                                                                                                ODEs, IVP, Runge-Kutta method, integration over one step
ODEs, IVP, Runge-Kutta method, integration over range with output
ODEs, IVP, Runge-Kutta method, until function of solution is zero,...
ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value...
ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero...
Second-order ODEs, IVP, Runge-Kutta-Nystrom method
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DOSEDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            D02PCF
D02BJF
D02BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02LAF
                                                                    Multivariate time series, sample partial lag correlation matrices, \chi^2 statistics and significance levels ...using rectangular, Bartlett, Tukey or Parsen lag window ...using rectangular, Bartlett, Tukey or Parsen lag window
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G13DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G13CAF
G13CCF
                                                                                    All zeros of complex polynomial, modified Laguerre method
All zeros of real polynomial, modified Laguerre method
                                             ...sparse symmetric linear system, conjugate gradient/Lancuos method, Jacobi or SSOR preconditioner (Black Box)
...sparse Hermitian linear system, conjugate gradient/Lancuos method, Jacobi or SSOR preconditioner (Black Box)
...sparse symmetric linear system, conjugate gradient/Lancuos method, preconditioner computed by F11JAF (Black Box)
...sparse Hermitian linear system, conjugate gradient/Lancuos method, preconditioner computed by F11JNF (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F11JEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F11JSF
F11JCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F11JQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F07/F08
                                                                                                                                                                                                                              LAPACK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C06LCF
                                                                                                                                                                       Evaluate inverse Laplace transform as computed by C06LBF
Inverse Laplace transform, Crump's method
Inverse Laplace transform, modified Weeks' method
Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C06LAF
C06LBF
                                                                                                       Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain

1-norm, co-norm, Frobenius norm, largest absolute element, complex band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex general matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hermitian band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hermitian matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex Hersenitian matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex symmetric band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex symmetric band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage

1-norm, co-norm, Frobenius norm, largest absolute element, complex triangular band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex triangular band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage

1-norm, co-norm, Frobenius norm, largest absolute element, real band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real general matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric band matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage

1-norm, co-norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage

1-norm, co-norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix

1-norm, co-norm, Frobenius norm, largest absolute element, real trapezoidal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D03EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FOSUBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06UBF
F06UAF
F06UEF
F06UCF
F06UDF
F06UMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06UHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO6UFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06UFF
F06UJF
F06ULF
F06UKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FOGRAF
FOGRAF
FOGREF
FOGREF
FOGREF
FOGREF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO6RLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOSRKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO6JLF
FO6JMF
FO6FLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X02AHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X02ALF
```

KWIC.20 [NP3390/19]

```
X02BBF
                                                                                                                                                                                                                                                                                               The largest representable integer
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GIISAF
                                                                                                                                                                                                                               Contingency table, latent variable model for binary data
                                                                                                                                                                                                                                                                                                                  LDLT factorization of real symmetric positive-definite ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GOLARE
                                                                                                                                                                                                             Constructs a stem and leaf plot
                  nth-order linear ODEs, boundary value problem, collocation and least-squares
Real general Gauss-Markov linear model (including weighted least-squares)
Complex general Gauss-Markov linear model (including weighted least-squares)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02TGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F04JLF
F04KLF
E02BEF
E02BAF
E02ADF
F04JGF
                                                                                   Tal Gauss-Markov linear model (including weighted least-squares)
ral Gauss-Markov linear model (including weighted least-squares)

Least-squares curve cubic spline curve fit, automatic knot placement Least-squares curve fit, by polynomials, arbitrary data points Least-squares (if rank = n) or minimal least-squares. (if rank = n) or minimal least-squares.

Least-squares (if rank = n) or minimal least-squares (if rank = n) or minimal least-squares.

Least-squares polynomial fit, special data points...

Least-squares polynomial fit, values and derivatives may be...

Equality-constrained complex linear least-squares problem

Convex QP problem or linearly-constrained linear least-squares problem (dense)

Sparse linear least-squares problem (dense)

Covariance matrix for nonlinear least-squares problem (unconstrained)

Covariance matrix for linear least-squares problems, m real equations in n unknowns

ODEs, boundary value problem, collocation and least-squares solution of m real equations in n unknowns,...

Minimal least-squares solution of m real equations in n unknowns,...

Minimal least-squares solution of m real equations in n unknowns,...

Least-squares surface fit, bicubic splines with automatic...

Least-squares surface fit by bicubic splines with automatic...

Least-squares surface fit by bicubic splines with automatic...

Least-squares surface fit by polynomials, data on lines

ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F04JGF
E02AFF
E02AGF
F04JMF
F04KMF
E04NCF
F04QAF
E04YCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F04YAF

F04YAF

F04AMF

F04JAF

F04JDF

E02DAF

E02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DOLIBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G13DNF
                                                                                                                            ...matrices, x2 statistics and significance levels
                                                                                                                                                                                                                       Computes maximum likelihood estimates for parameters of the Normal distribution...
Computes maximum likelihood estimates for parameters of the Weibull distribution
Computes maximum likelihood estimates of the parameters of a factor analysis model,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G07BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G03CAF
                                                                                                                                                            Computes Kaplan-Meier (product-limit) estimates of survival probabilities
                                        ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M-N routines ODEs, IVP, for use with D02M-N routines, full Jacobian, linear algebra set-up ODEs, IVP, for use with D02M-N routines, banded Jacobian, linear algebra set-up ODEs, IVP, for use with D02M-N routines, sparse Jacobian, linear algebra set-up Basic Linear Algebra Subprograms
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D02NXF
ODE, 1VP, for use with DOZM-N routines, full acchoine, linear algebra estup
ODE, 1VP, for use with DOZM-N routines, space Basic Linear Agiches actup
ODE, 1VP, for see with DOZM-N routines, space Basic Linear Agiches actup
ODE, 1VP, for see with DOZM-N routines, space Basic Linear Agiches Subprogram
Computes probability for a positive ileaer combination of (central) 2 variables
Computes probability for a positive ileaer combination of x variables
Collected and destroquers, more fluttedger linear equations
Collected and papers similitates and search of the control of the 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02NSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02NTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DOSNUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01JCF
D02JAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02JBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D02JBF
F04AXF
F04LEF
F04LHF
F04MCF
F04AGF
F07AVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO7BHF
FO7BVF
FO7FHF
FO7FVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F07HHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO7HHF
FO7HVF
FO7MHF
FO7NVF
FO7TEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO7THF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F07TSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F07TSF
F07TVF
F07VEF
F07VHF
F07VVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F07VVF
F07AEF
F07ASF
F07BEF
F07FEF
F07FSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F07GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F07GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO7HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO7HEF
FO7HEF
FO7MEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F07NSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F07PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F07PSF
F07QSF
F07GHF
F07PHF
F07PVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F07QVF
F07UEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F07UHF
F07USF
F07UVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F04ARF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F04EAF
F04FAF
F04ASF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FO4ATF
FO4AFF
FO4AHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F04AAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E02GCF
```

KWIC.21 [NP3390/19]

```
L1-approximation by general linear function subject to linear inequality constraints

L1-approximation by general equality-constrained real linear inequality constraints

Equality-constrained complex linear least-squares problem

Convex Op problem or inearly-constrained linear least-squares problem

Convex Op problem or inearly-constrained linear least-squares problem.

Course of the conversal linear model and its standard error.

Computes estimable function of a general linear model and its standard error.

Estimates and standard errors of parameters of a general linear model in for given constraints.

Complex general general linear model in the standard error.

Fits a generalized linear model with binomial error.

Fits a generalized linear model with points errors.

Fits a generalized linear parameters and general linear regression conditions.

**alborder linear ODEs, boundary value problem, collocation and least-squares between the control of the 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02GBF
E02GBF
F04JMF
F04KMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F04KMF
E04NCF
F04QAF
F04YAF
G02GNF
G02GKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F04JLF
F04KLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G02GDF
G02GAF
G02GCF
D05ABF
D05AAF
D02TGF
G02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02DDF
D02GBF
G02CGF
G02CHF
G02DAF
G02DCF
G02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GOODEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02DFF
G02DNF
G02EEF
G02DKF
G02DGF
G02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02CFF
G02CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G02CEF
G02CCF
G02CAF
G02CBF
G02EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FIIDSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FIIDEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F11DEF
F11JEF
F11JSF
F11JCF
F11JQF
F11JBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F11JBF
F11JPF
F11DBF
F11DPF
F11JRF
F11DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F11JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F11JDF
F11DQF
F11DCF
F11BCF
F11BTF
F11GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FIIDAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FIIDAF
FIIGBF
FIIBEF
FIIBSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F11BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F11BAF
F11BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F11BRF
F11GAF
                                                                                                                                            Convex QP problem or linearly-constrained linear least-squares problem (dense)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04NCF
                                                                                                                                                                                                                               Lineprinter histogram of one variable
Lineprinter scatterplot of one variable against Normal scores
Lineprinter scatterplot of two variables
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G01AJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G01AGF
Least-squares surface fit by polynomials, data on lines

General system of parabolic PDEs, method of lines, Chebyshev C<sup>0</sup> collocation, one space variable

General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C<sup>0</sup> collocation, one space variable

General system of parabolic PDEs, method of lines, finite differences, one space variable

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable

General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables,...

General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables,...

General system of first-order PDEs, method of lines, Keller box discretisation, one space variable

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, one space variable

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, remeshing, one space variable

...ource terms in conservative form, method of lines, weller box discretisation, remeshing, one space variable

...in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on...

...in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E02CAF
                                              Least-squares surface fit by polynomials, data on lines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D03PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03PJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D03PCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D03PHF
D03PPF
D03RAF
D03RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D03PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D03PKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D03PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D03PFF
D03PLF
D03PSF
                                                                                              Generate real elementary reflection, LINPACK style
Apply real elementary reflection, LINPACK style
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F06FSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F06FUF
                                                                                                                                                      Second-order Sturm-Liouville problem, regular system, finite range, eigenvalue only Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range,... Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D02KAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G03BAF
                                                                                                   Computes orthogonal rotations for loading matrix, generalized orthomax criterion
                                                       ...parameters of a factor analysis model, factor loadings, communalities and residual correlations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G03CAF
                                                                                                                      ODEs, IVP, weighted norm of local error estimate for D02M-N routines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D02ZAF
                                                                                                 Robust estimation, M-estimates for location and scale parameters, standard weight functions
Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G07DBF
                                                                                                                                                                                                                                Location tests
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S14ABF
                                                                                                                                                                                                                                Log Gamma function
                                      ...function with end-point singularities of algebraico-logarithmic type
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D01APF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GOSDCF
                                                                                                                       Pseudo-random real numbers, logistic distribution
                                                                                                                      Pseudo-random real numbers, log-normal distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G05DEF
```

KWIC.22 [NP3390/19]

```
Computes upper and lower tail probabilities and probability density function for... G01EEF Computes lower tail probability for a linear combination of (central) \chi^2 variables G01JDF
                                                                                                                                                                                                                                                                                                                                               GOIFFF
                                                               LP or QP problem (sparse)
Integer LP or QP problem (sparse)
Converts MPSX data file defining LP or QP problem to format required by E04NKF
LP problem (dense)
Integer LP problem (dense)
Integer LP problem (dense)
Interpret MPSX data file defining IP or LP problem postimize and print solution
Convert MPSX data file defining IP or LP problem to format required by H02BBF or E04MFF
Print IP or LP solutions with user specified names for rows and columns
                                                                                                                                                                                                                                                                                                                                               E04NKF
                                                                                                                                                                                                                                                                                                                                                E04MZF
E04MFF
                                                                                                                                                                                                                                                                                                                                                H02BBF
                                                                                                                                                                                                                                                                                                                                                H02BFF
                                                                                                                                                                                                                                                                                                                                                H02BUF
                                                                                                                                                                                                                                                                                                                                               H02BVF
                                                                   Form all or part of orthogonal Q from LQ factorization determined by F08AHF Form all or part of unitary Q from LQ factorization determined by F08AVF LQ factorization of complex general rectangular matrix LQ factorization of real general rectangular matrix
                                                                                                                                                                                                                                                                                                                                               F08AJF
F08AWF
F08AVF
F08AHF
                   Real sparse nonsymmetric linear systems, incomplete LU factorization

Complex sparse non-Hermitian linear systems, incomplete LU factorization

LU factorization and determinant of real matrix

LU factorization of complex m by n band matrix

LU factorization of complex m by n matrix

LU factorization of real almost block diagonal matrix

LU factorization of real m by n band matrix

LU factorization of real m by n band matrix

LU factorization of real m by n matrix

LU factorization of real sparse matrix with known sparsity pattern

LU factorization of real sparse matrix with known sparsity pattern

LU factorization of real sparse matrix generated by F11DAF

Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF
                                                                                                                                                                                                                                                                                                                                               F11DAF
F11DNF
F03AFF
                                                                                                                                                                                                                                                                                                                                                F07BRF
                                                                                                                                                                                                                                                                                                                                                FOTARF
                                                                                                                                                                                                                                                                                                                                                F07BDF
F07ADF
F01BRF
                                                                                                                                                                                                                                                                                                                                                F01BSF
                                                                                                                                                                                                                                                                                                                                                F01LEF
                                                                                                                                                                                                                                                                                                                                                FIIDPF
                                                                                                                                                                                                                                                                                                                                               X02
X02AJF
                                                                                                                                                     Machine Constants
The machine precision
                                                                                                                                                                                                                                                                                                                                               G03DBF
                                                                                                                                      Computes Mahalanobis squared distances for group or pooled...
                                                             Computes the exact probabilities for the Mann-Whitney U statistic, no ties in pooled sample Computes the exact probabilities for the Mann-Whitney U statistic, ties in pooled sample Performs the Mann-Whitney U test on two independent samples
                                                                                                                                                                                                                                                                                                                                               GOSAJF
                                                                                                                                       Computes marginal tables for multiway table computed by G11BAF or G11BBF G11BCF
                                                                                                     Real general Gauss-Markov linear model (including weighted least-squares)
Complex general Gauss-Markov linear model (including weighted least-squares)
                                                                                                                                                                                                                                                                                                                                               F04KLF
                                                      Performs the Wilcoxon one-sample (matched pairs) signed rank test Friedman two-way analysis of variance on k matched samples
                                                                                                                                                                                                                                                                                                                                                G08AGF
                                                                                                                                                                                                                                                                                                                                                GOSAEF
                                    ODEs, boundary value problem, shooting and matching, boundary values to be determined ODEs, boundary value problem, shooting and matching, general parameters to be determined ...shooting and matching technique, allowing interior matching point, general parameters to be determined ODEs, boundary value problem, shooting and matching technique, allowing interior matching point,...
ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations,...
                                                                                                                                                                                                                                                                                                                                               DOSHAR
                                                                                                                                                                                                                                                                                                                                                D02HBF
D02AGF
                                                                                                                                                                                                                                                                                                                                                D02AGF
D02SAF
                                                                                                                                                                Mathematical Constants
                                                                                                                                                                                                                                                                                                                                                X O 1
                                                                                                                                                                                                                                                                                                                                                E04/H02
                                                                                                                                                                Maximization
                                                                                                                                       Computes maximum likelihood estimates for parameters of the Normal...
Computes maximum likelihood estimates for parameters of the Weibull...
Computes maximum likelihood estimates of the parameters of a factor...
The maximum number of decimal digits that can be represented
                                                                                                                                                                                                                                                                                                                                                G07BBF
                                                                                                                                                                                                                                                                                                                                                G07BEF
G03CAF
                                                                                                                                                                                                                                                                                                                                                X02BEF
Computes a trimmed and winsorized mean of a single sample with estimates of their variance
Computes quantities needed for range-mean or standard deviation-mean plot

Mean, variance, skewness, kurtosis, etc, one variable,...
Mean, variance, skewness, kurtosis, etc, one variable, from raw data
Mean, variance, skewness, kurtosis, etc, two variables, from raw data
                                                                                                                                                                                                                                                                                                                                                G07DDF
                                                                                                                                                                                                                                                                                                                                                G13AUF
G13AUF
G01ADF
                                                                                                                                                                                                                                                                                                                                                G01ABF
      Computes sum of squares for contrast between means

Analysis of variance, general row and column design, treatment means and standard errors

...block or completely randomized design, treatment means and standard errors

Analysis of variance, complete factorial design, treatment means and standard errors

Computes f-test statistic for a difference in means between two Normal populations, confidence interval

K-means cluster analysis

Computes confidence intervals for differences between means computed by G04BBF or G04BCF
                                                                                                                                                                                                                                                                                                                                                G04DAF
                                                                                                                                                                                                                                                                                                                                                G04DAF
G04BCF
G04BBF
G04CAF
G07CAF
G03EFF
                                                                                                                                                                                                                                                                                                                                                G04DBF
                                                                                                                                      Combined measurement and time update, one iteration of Kalman filter,...
Combined measurement and time update, one iteration of Kalman filter,...
                                                                                                                                                                                                                                                                                                                                                GISEBE
                                          Robust estimation, median, median absolute deviation, robust standard deviation
Computes a five-point summary (median, hinges and extremes)
Robust estimation, median, median absolute deviation, robust standard deviation
Compute smoothed data sequence using running median smoothers
Median test on two samples of unequal size
                                                                                                                                                                                                                                                                                                                                                G07DAF
G01ALF
G07DAF
                                                                                                                                                                                                                                                                                                                                                 GIOCAF
                                                                                                                                                                                                                                                                                                                                                GOSACE
                                                                                                                    Computes Kaplan-Meier (product-limit) estimates of survival probabilities
                                                                                                ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) D02BGF ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple driver) D02BHF
                                                                  Evaluation of fitted bicubic spline at a mesh of points
                                                                                                                                                                                                                                                                                                                                                E02DFF
                                          Performs non-metric (ordinal) multidimensional scaling Performs principal co-ordinate analysis, classical metric scaling
                                                                                                                                                                                                                                                                                                                                                G03FCF
                                                                                                                                                                                                                                                                                                                                                GOSFAF
                               ...integration of function defined by data values, Gill-Miller method
                                                                                                                                                                                                                                                                                                                                                D01GAF
                                                                                                        Computes reciprocal of Mills' Ratio
                                                                                                                                                                                                                                                                                                                                                G01MBF
                                                                                      Least-squares (if rank = n) or minimal least-squares (if rank < n) solution of m real equations...

Minimal least-squares solution of m real equations in n unknowns,...

Minimal least-squares solution of m real equations in n unknowns,...
                                                                                                                                                                                                                                                                                                                                                 F04JGF
                                                                                                                                                                                                                                                                                                                                                 F04JDF
                                                                                                                                                                Minimax curve fit by polynomials
                                                                                                                                                                                                                                                                                                                                                E02ACF
                                                                                                                                                                 Minimization
                                                                                                                                                                                                                                                                                                                                                E04/H02
                                                                                                                                                                 Minimum, function of one variable, using first derivative
                                                                                                                                                                                                                                                                                                                                                E04BBF
                                                                                                                                                                Minimum, function of one variable using function values only
Minimum, function of several variables, modified Newton algorithm,...

E04ABF
Minimum, function of several variables, modified Newton algorithm,...
Minimum, function of several variables, modified Newton algorithm,...
Minimum, function of several variables, modified Newton algorithm,...
E04KDF
Minimum, function of several variables, quasi-Newton algorithm,...
E04KYF
Minimum, function of several variables, quasi-Newton algorithm,...
E04YF
                                                                                                                                                                                                                                                                                                                                               E04KDF
E04KZF
```

```
Minimum, function of several variables, sequential QP method,...

Minimum, function of several variables, sequential QP method,...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Winimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and...

Unconstrained minimum, pre-conditioned conjugate gradient algorithm,...

Unconstrained minimum, pre-conditioned conjugate gradient algorithm,...

Unconstrained minimum, simplex algorithm, function of several variables using...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E04UCF
E04UFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E04GDF
E04GZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E04FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E04FYF
E04HEF
E04HYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E04GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E04GYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E04UNE
                                                                            Computes probability for von Mises distribution
Generates a vector of pseudo-random variates from von Mises distribution
     Pearson product-moment correlation coefficients, all variables, no missing values
...coefficients, all variables, casewise treatment of missing values
...coefficients, all variables, pairwise treatment of missing values
...coefficients, all variables, pairwise treatment of missing values
...(about zero), all variables, casewise treatment of missing values
...(about zero), all variables, pairwise treatment of missing values
...(about zero), all variables, pairwise treatment of missing values
...coefficients, subset of variables, pairwise treatment of missing values
...coefficients, subset of variables, pairwise treatment of missing values
...coefficients, subset of variables, pairwise treatment of missing values
...zero), subset of variables, pairwise treatment of missing values
...zero), subset of variables, pairwise treatment of missing values
...correlation coefficients, pairwise treatment of missing values
...correlation coefficients, pairwise treatment of missing values
...correlation coefficients, pairwise treatment of missing values
Simple linear regression with constant term, no missing values
Simple linear regression with constant term, momissing values
Simple linear regression with constant term, missing values
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
...correlation coefficients, casewise treatment of missing values, preserving input data
...correlation coefficients, casewise treatment of missing values, preserving input data
...correlation coefficients, casewise treatment of missing values, preserving input data
...correlation coefficients, casewise treatment of missing values, preserving input data
...correlation coefficients, casewise treatment of missing values, preserving input data
...correlation coefficients, casewise treatment of missing values, preserving input data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BDF
G02BDF
G02BEF
G02BFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G02BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOORIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BJF
G02BLF
G02BMF
G02BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02CAF
G02CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02CCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02CDF
G02BNF
G02BPF
G02BRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02DCF
G02DDF
G02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02DFF
G05EGF
G05EWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G05EWF
G05HDF
G12BAF
G13ADF
G13BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G13BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13BBF
G13BDF
G13BEF
G13BHF
G13BJF
G13DCF
G02DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02DNF
G02GNF
G02EEF
G13AEF
G13AFF
G03CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G11SAF
G12ZAF
G02DKF
G02GKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G02DGF
G02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F04JLF
F04KLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        X02AKF
X02ALF
X02BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X02BLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X02BKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X02BIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X02DJF
G02GBF
G02GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G02GAF
G02GCF
                                                                                                      Modified Bessel function e^{-|x|}I_0(x) S18CEF

Modified Bessel function e^{-|x|}I_1(x) S18CFF

Modified Bessel function e^xK_0(x) S18CCF

Modified Bessel function e^xK_0(x) S18CCF

Modified Bessel function e^xK_1(x) S18CDF

Modified Bessel function I_1(x) S18AFF

Modified Bessel function I_1(x) S18ADF

Modified Bessel function I_1(x) S18ADF

Modified Bessel function I_1(x) S18ADF

Modified Bessel function I_1(x) S18DEF

All zeros of complex polynomial, modified Laguerre method

All zeros of real polynomial, modified Laguerre method

Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and... E04LBF

Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives... E04KDF

Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives... E04KDF

Minimum, function of several variables, modified Newton algorithm using first derivatives (comprehensive)

Maum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive)

E04GZF

as um of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (comprehensive)

E04GZF

as um of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive)

E04GZF

Las um of squares, combined Gauss-Newton and modified Newton algorithm using second derivatives (comprehensive)

E04GZF

Las um of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)

E04GZF

Las um of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)

E04GZF

Las um of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)

E04GZF

Las um of squares, combined Gauss-Newton and modified Newton al
                                                                                                                                                                                                                                                                                                                                                                                                             Modulus of complex number
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             A02ABF
                                                                                                                                                                                                     by SIP, five-point two-dimensional molecule, iterate to convergence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03EBF
                                                                                                                                 tions by SIP for seven-point three-dimensional molecule, iterate to convergence ... equations by SIP, five-point two-dimensional molecule, one iteration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D03UAF
```

KWIC.24 [NP3390/19]

```
D03UBF
                                                       ...equations by SIP, seven-point three-dimensional molecule, one iteration
                                                                                                                                                               Pearson product-moment correlation coefficients, all variables, casewise...

Pearson product-moment correlation coefficients, all variables, no missing values

Pearson product-moment correlation coefficients, all variables, pairwise...

Pearson product-moment correlation coefficients, subset of variables, casewise...

Pearson product-moment correlation coefficients, subset of variables, no missing values
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02BAF
G02BCF
                                                                                                                                                                 Pearson product-moment correlation coefficients, subset of variables, pairwise...
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02BJF
                                                                                                                                                                    Cumulants and moments of quadratic forms in Normal variables

Moments of ratios of quadratic forms in Normal variables,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOINAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOINBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                          E01BEF
                                                                                                                                         Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                          D01GBF
                                                  Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
                                                                                                                                                                                                                                                                                                                                                                                                                                                          G08BAF
                                                                                                                                                                                                                     Mood's and David's tests on two samples of unequal size
                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13DXF
                                                       Calculates the zeros of a vector autoregressive (or moving average) operator
                                                                                                                                                                                      Interpret MPSX data file defining IP or LP problem, optimize and print...

Convert MPSX data file defining IP or LP problem to format required by...

Converts MPSX data file defining LP or QP problem to format required...
                                                                                                                                                                                                                                                                                                                                                                                                                                                          H02BFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           E04MZF
                                Multi-dimensional adaptive quadrature over hyper-rectangle
Multi-dimensional complex discrete Fourier transform of...
Multi-dimensional complex discrete Fourier transform of multi-dimensional data
Multi-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
Multi-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
Multi-dimensional Quadrature over hyper-rectangle
Multi-dimensional quadrature, general product region,...
Multi-dimensional quadrature over an n-simplex
Multi-dimensional quadrature over an n-simplex
Multi-dimensional quadrature over hyper-rectangle, Monte Carlo...
Multi-dimensional quadrature over hyper-rectangle, Monte Carlo...
Multi-dimensional quadrature, Sag-Szekeres method,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                           DOLECE
                                                                                                                                                                                                                                                                                                                                                                                                                                                           DOIFCF
DOIEAF
CO6FJF
CO6FFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           C06FJF
C06PFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           COSPIE
                                                                                                                                                                                                                                                                                                                                                                                                                                                          D01FBF
D01GCF
D01GDF
D01PAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           D01JAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           D01GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          DOIFDE
                                 Elliptic PDE, solution of finite difference equations by a multigrid technique
                                                                                                                                                                                                                                                                                                                                                                                                                                                          D03EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G13BEF
  Multivariate time series, spake taates et of roceating from state et of multi-input model
Multivariate time series, spake taates et of roceating from multi-input model
Tultivariate time series, take te and forceating from fully specified multi-input model
Tultivariate time series, take te and forceating from fully specified multi-input model

Multi-dimensional adaptive quadrature over hyper-rectangly multiple interar regression on the correlation coefficients...

Multiple interar regression moder of the control of the control
                                                                                           Multivariate time series, estimation of multi-input model
Multivariate time series, update state set for forecasting from multi-input model

Multivariate time series, forecasting from state set of multi-input model

Multivariate time series, state set and forecasts from fully specified multi-input model
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G13BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           COGGOE
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02CFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          G02CEF
C06FRF
C06PSF
C06FQF
C06PPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           C06PQF
C06FPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOTAHF
FOTAVF
FOTBHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07BVF
F07FHF
F07FVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          FO7FVF
FO7HHF
FO7HVF
FO7MVF
FO7NVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOTTEF
FOTTHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO7TSF
FO7TVF
FO7VEF
FO7VHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07VSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07VVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          F04AAF
F04ACF
F04ADF
F06ZJF
F07AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07ASF
F07BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07FEF
F07FSF
F07GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO7HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO7HSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOTMEF
FOTMSF
FOTMSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07PEF
F07PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO7PSF
FO7QSF
FO7GHF
FO7PHF
FO7PVF
FO7QVF
FO7UEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                            FO7UHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F07USF
F07UVF
F06YJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                            F04ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           F01CKF
                                                                                                                                                                                             Matrix multiplication
                                                                                    Real sparse nonsymmetric matrix vector multiply
                                                                                                                                                                                                                                                                                                                                                                                                                                                            F11XAF
```

```
Real sparse symmetric matrix vector multiply
Complex sparse non-Hermitian matrix vector multiply
Complex sparse Hermitian matrix vector multiply
Multiply complex vector by complex scalar
Multiply complex vector by complex scalar, preserving input vector
Multiply complex vector by real diagonal matrix
Multiply complex vector by real scalar, preserving input vector
Multiply complex vector by real scalar, preserving input vector
Multiply complex vector by real scalar, preserving input vector
Multiply real vector by diagonal matrix
Multiply real vector by scalar
Multiply real vector by scalar, preserving input vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F11XEF
F11XNF
F11XSF
F06HCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06HDF
F06KCF
F06JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06KDF
F06FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06EDF
                                                                                                                                                                Multiply real vector by scalar, preserving input vector

Multiply real vector by scalar, preserving input vector

Computes probabilities for the multivariate Normal distribution

Set up reference vector for multivariate Normal distribution

Pseudo-random multivariate Normal vector from reference vector

Multivariate time series, cross amplitude spectrum,...

Multivariate time series, cross-correlations

Multivariate time series, diagnostic checking of residuals,...

Multivariate time series, diagnostic checking of residuals,...

Multivariate time series, differences and/or transforms...

Multivariate time series, estimation of multi-input model

Multivariate time series, filtering by a transfer function model

Multivariate time series, filtering (pre-whitening) by an ARIMA...

Multivariate time series, forecasting from state set of multi-input...

Multivariate time series, forecasting from state set of multi-input...

Multivariate time series, gain, phase, bounds, univariate and...

Multivariate time series, multiple squared partial autocorrelations

Multivariate time series, multiple squared partial autocorrelations

Multivariate time series, printil autoregression matrices

Multivariate time series, smultiple squared partial autocorrelations

Multivariate time series, spectrum, bounds,...

Multivariate time series, sample cross-correlation or...

Multivariate time series, sample cross-correlation or...

Multivariate time series, sample cross spectrum using...

Multivariate time series, sample cross spectrum using...

Multivariate time series, smoothed sample cross spectrum using...

Multivariate time series, smoothed sample cross spectrum using...

Multivariate time series, update state set for forecasting from...

Multivariate time series, updates forecasts and their standard errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06FDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GOIHBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G01HBF
G05EAF
G05EZF
G13CEF
G13BCF
G13DSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G13DLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13DLF
G13BEF
G13DCF
G13BBF
G13BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GOSHDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13CFF
G13DBF
G13CGF
G13DPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G13BDF
G13DMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G13DMF
G13CCF
G13CDF
G13BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G13BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G13DKF
                                                                             ODEs, IVP, interpolation for D02M-N routines, natural interpolant ODEs, IVP, interpolation for D02M-N routines, natural interpolant
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02MZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02XJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06HGF
F06FGF
                                                                                                                                                                                                                                                                                                                                 Negate complex vector
                                                                                                                                                                                                                                                                                                                                  Negate real vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05EEF
 Set up reference vector for generating pseudo-random integers, negative binomial distribution
Pseudo-random real numbers, (negative) exponential distribution
Generates a vector of random numbers from an (negative) exponential distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G05DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06KLF
                                                                                                                                                                                                                                                                                 Last non-negligible element of real vector
   Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and...

Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and...

Minimum, function of several variables, modified Newton algorithm, simple bounds, using first derivatives...

Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)

Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)

Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (easy-to-use)

Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives (comprehensive)

...of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive)

...of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives (casy-to-use)

...squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive)

...squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use)

...squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (casy-to-use)

...squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (comprehensive)

...squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use)

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using second derivatives (casy-to-use)

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using first derivatives...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives...

Uncons
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04LBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04LYF
E04KDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04KYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04KZF
E04JYF
E04GBF
E04GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04GYF
E04GZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04FCF
E04FYF
E04HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04HYF
E04GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04GZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04FCF
E04FYF
E04HEF
E04HYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04GYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04UGF
                                                                                                                                                                                                                                                                                                                                   NLP problem (sparse)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GI3CGF
                                                                                                                                                                                                    Multivariate time series, noise spectrum, bounds, impulse response function and.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D01BDF
                                                                                                                                                                               One-dimensional quadrature, non-adaptive, finite interval
                                                                                                                                                                               One-dimensional quadrature, non-adaptive, finite interval with provision for indefinite integrals
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DOLARF
                                                                                                                                                                      Computes probabilities for the non-central beta distribution Computes probabilities for the non-central \chi^2 distribution Computes probabilities for the non-central F-distribution Computes probabilities for the non-central Student's f-distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G01GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G01GCF
G01GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G01GBF
                                                                    Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or...

Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or...

Complex sparse non-Hermitian linear systems, diagnostic for F11BSF

Complex sparse non-Hermitian linear systems, incomplete LU factorization

Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS,...

Complex sparse non-Hermitian linear systems, set-up for F11BSF

...generated by applying SSOR to complex sparse non-Hermitian matrix

Complex sparse non-Hermitian matrix reorder routine

Complex sparse non-Hermitian matrix vector multiply
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F11DSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F11DQF
F11BTF
F11DNF
F11BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F11BRF
F11DRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F11XNF
ODEs, general nonlinear boundary value problem, collocation technique
ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
ODEs, general nonlinear boundary value problem, diagnostics for D02TKF
ODEs, general nonlinear boundary value problem, inite difference technique...
ODEs, general nonlinear boundary value problem, interpolation for D02TKF
ODEs, general nonlinear boundary value problem, interpolation for D02TKF
Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and...
Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and...
Nonlinear convolution Volterra—Abel equation, first kind,...
Nonlinear convolution Volterra—Abel equation, second...
Solution of system of nonlinear equations using first derivatives (comprehensive)
Solution of system of nonlinear equations using first derivatives (reverse communication)
Solution of system of nonlinear equations using function values only (comprehensive)
Solution of system of nonlinear equations using function values only (comprehensive)
Solution of system of nonlinear equations using function values only (comprehensive)
Solution of system of nonlinear equations using function values only (comprehensive)
Solution of system of nonlinear equations using function values only (easy-to-use)
Nonlinear optimization
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D02TKF
D02TXF
D02TZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DOZTAF
DOZTYF
DOZTVF
E04UNF
E04UCF
E04UFF
DOSBEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D05BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   COSPOR
COSPOR
COSPOR
COSNOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     COSNDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E04YCF
```

KWIC.26 [NP3390/19]

```
D02GAF
                                      ...difference technique with deferred correction, simple nonlinear problem
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E04
D05BAF
                                                                                                                                                                                                                                                                             Nonlinear regression

Nonlinear Volterra convolution equation, second kind
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G03FCF
                                                                                                                                                                                                                                     Performs non-metric (ordinal) multidimensional scaling
                                                                                                                                                                                                                                                        Last non-negligible element of real vector
                                                                                                                                                                                          Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of...
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of...
Kendall/Spearman non-parametric rank correlation coefficients, no missing values,...
Kendall/Spearman non-parametric rank correlation coefficients, no missing values,...
Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of...
Non-parametric tests
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G02BPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G02BRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GOZBNE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GOZBOE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G05CCF
                                           Initialise random number generating routines to give non-repeatable sequence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G13AAF
                                                                                                                   Univariate time series, seasonal and non-seasonal differencing
                                                                                                                                                                                                                                                Linear non-singular Fredholm integral equation, second kind, smooth kernel
Linear non-singular Fredholm integral equation, second kind, split kernel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D05ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DOSAAF
                                          Solution of real sparse nonsymmetric linear systems, RGMRES, CGS or...

Solution of real sparse nonsymmetric linear systems, RGMRES, CGS or...

Real sparse nonsymmetric linear systems, diagnostic for F11BBF
Real sparse nonsymmetric linear systems, diagnostic for F11BBF
Real sparse nonsymmetric linear systems, incomplete LU factorization
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS,...
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS,...
Real sparse nonsymmetric linear systems, set-up for F11BBF
Real sparse nonsymmetric linear systems, set-up for F11BBF
Real sparse nonsymmetric linear systems, set-up for F11BEF
...matrix generated by applying SSOR to real sparse nonsymmetric matrix

Real sparse nonsymmetric matrix reorder routine
Real sparse nonsymmetric matrix vector multiply
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FUIDEE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FIIDEF
FIIDCF
FIIBCF
FIIBFF
FIIDAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FIIBBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FIIBAF
                                                                                                                                          Real sparse nonsymmetric linear systems, set-up for P11BEF
P11BDF
Real sparse nonsymmetric matrix
Real sparse nonsymmetric nonsymmetric matrix
Real sparse nonsymmetric nonsymmetric matrix
Real sparse nonsymmetric nonsymm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FIIBDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FIIDDF
FIIZAF
FIIXAF
Computes probabilities for the standard Normal distribution
Computes deviates for the standard Normal distribution
Computes probability for the bivariate Normal distribution
Computes probabilities for the multivariate Normal distribution
Pseudo-random real numbers, Normal distribution
Set up reference vector for multivariate Normal distribution
Generates a vector of random numbers from a Normal distribution
Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G01FAF
G01HAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COLHRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G07BBF
```

```
Cumulative normal distribution function P(x)

Complement of cumulative normal distribution function Q(x)

Fits a generalized linear model with Normal errors

Computes t-test statistic for a difference in means between two Normal populations, confidence interval Lineprinter scatterplot of one variable against Normal scores

Ranks, Normal scores, approximate Normal scores or exponential...

Normal scores, approximate values

Normal scores, approximate values

Normal scores, approximate variance-covariance matrix

Ranks, Normal scores, approximate variance-covariance matrix

Cumulants and moments of quadratic forms in Normal variables

Moments of ratios of quadratic forms in Normal variables, and related statistics

Pseudo-random multivariate Normal vector from reference vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S15ABF
S15ACF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02GAF
G07CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G01AHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G01DHF
G01DBF
G01DCF
G01DHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GOINAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GOINBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G05EZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G01DDF
                                                                                                                                                                                       Shaniro and Wilk's W test for Normality
                         Numerical differentiation, derivatives up to order 14,...

Estimate (using numerical differentiation) gradient and/or Hessian of a function

...conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable

...coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable

...coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, remeshing,...

Numerical integration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D04AAF
E04XAF
D03PFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03PLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D03PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Doi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02LAF
                                                                                                                                    Second-order ODEs, IVP, Runge-Kutta-Nystrom method
                                                         Update a weighted sum of squares matrix with a new observation Add/delete an observation to/from a general linear regression model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G02DCF
                                                                                                                                                                                                                                                   Add/delete an observations to from a general linear regression model.

nth-order linear ODEs, boundary value problem, collocation and least-squares...

ODEs, boundary value problem, collocation and least-squares...

ODEs, boundary value problem, finite difference technique...

ODEs, boundary value problem, finite difference technique...

ODEs, boundary value problem, finite difference technique...

ODEs, boundary value problem, shooting and matching...

ODEs, boundary value problem, shooting and matching...

ODEs, boundary value problem, shooting and matching technique...

ODEs, boundary value problem, shooting and matching technique...

ODEs, boundary value problem, shooting and matching technique...

ODEs, general nonlinear boundary value problem,...

ODES, general nonlinear boundary v
                                                                                                                                                 Reorder data to give ordered distinct observations

Allocates observations to groups according to selected rules...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G10ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02TGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02JAF
D02JBF
D02GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02GAF
D02HAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D02HAF
D02HBF
D02AGF
D02SAF
D02TKF
D02TXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             DO2RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D02HAF
D02TYF
D02TVF
D02CJF
D02QFF
D02QGF
D02NVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02NWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02NVF
D02LYF
D02QXF
D02PZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02NTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D02NTF
D02NSF
D02NRF
D02NUF
D02PYF
D02NYF
D02LZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02XKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D02XKF
D02MZF
D02XJF
D02PXF
D02QZF
D02PWF
D02QYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           D02PDF
D02PCF
D02BJF
D02BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02LAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02NZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             D02LXF
D02PVF
D02QWF
D02NXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02ZAF
D02NCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02NHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02NHF
D02NHF
D02NHF
D02NHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02NNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DOSNDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D02NJF
                                                                                                                                                                                                                                                                                                           Single one-dimensional complex discrete Fourier transform,...

Single one-dimensional complex discrete Fourier transform, extra...

Single one-dimensional complex discrete Fourier transform, no extra...

One-dimensional complex discrete Fourier transform of...

Multiple one-dimensional complex discrete Fourier transforms of...

Multiple one-dimensional complex discrete Fourier transforms using...

Multiple one-dimensional complex discrete Fourier transforms using...

Multiple one-dimensional complex discrete Fourier transforms using...

One-dimensional Agunssian quadrature

Single one-dimensional Hermitian discrete Fourier transform, extra...

Single one-dimensional Hermitian discrete Fourier transform, extra...

Multiple one-dimensional Hermitian discrete Fourier transform, on extra...

Multiple one-dimensional quadrature, adaptive, finite interval,...

One-dimensional quadrature, adaptive, semi-infinite interval,...

One-dimensional quadrature, adaptive, semi-infinite interval,...

One-dimensional quadrature, adaptive, finite interval,...

One-dimensional quadrature, adaptive, finite
                                                                                                                                                                                                                                                                                                                              Single one-dimensional complex discrete Fourier transform,..
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C06PCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C06FCF
C06ECF
C06FFF
C06PFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C06PFF
C06PRF
C06PSF
D01BAF
C06FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C06EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C06EBF
C06FQF
D01ALF
D01AKF
D01AHF
D01AJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DOIAUF
DOIAUF
DOIANF
DOIANF
DOIAMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D01ASF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D01GAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D01BDF
```

KWIC.28 [NP3390/19]

```
One-dimensional quadrature, non-adaptive, finite interval with...

Single one-dimensional real and Hermitian complex discrete Fourier...

Multiple one-dimensional real and Hermitian complex discrete Fourier...

Multiple one-dimensional real and Hermitian complex discrete Fourier...

Single one-dimensional real discrete Fourier transform, extra workspace...

Single one-dimensional real discrete Fourier transform, no extra workspace

Multiple one-dimensional real discrete Fourier transforms
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DOLARF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C06PAF
C06PPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C06PQF
C06FAF
                                                                                                                                    Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
Performs the one-sample Kolmogorov-Smirnov test for a user-supplied distribution
Performs the one-sample Kolmogorov-Smirnov test for standard distributions
Performs the Wilcoxon one-sample (matched pairs) signed rank test
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G01EYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G08CCF
G08CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GOSAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G08AFF
                                                                                                                                                                                            Kruskal-Wallis one-way analysis of variance on k samples of unequal size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X04ACF
                                                                                                                                                                                                                                                Open unit number for reading, writing or appending ....
                                                                                                                                                                                                                                                Operations Research Operations with orthogonal matrices, form rows of Q,\dots Operations with unitary matrices, form rows of Q,\dots
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F01QKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F01RKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G13DXF
     Calculates the zeros of a vector autoregressive (or moving average) operator
                                                                                                                                                                                                                 Korobov optimal coefficients for use in D01GCF or D01GDF,...
Korobov optimal coefficients for use in D01GCF or D01GDF,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DOLGVE
                                                                                                                                                                                                            Nonlinear optimization
                                                                                                                                                                                                                                                Order statistics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G10ZAF
                                                                                                                                                                       Reorder data to give ordered distinct observations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G03FCF
                                                                   Performs non-metric (ordinal) multidimensional scaling

Operations with orthogonal matrices, form rows of Q,....
Computes random orthogonal matrix
Computes random orthogonal polynomials or dummy variables for...
Form all or part of orthogonal Q from LQ factorization determined by F08AHF
Form all or part of orthogonal Q from QR factorization determined by F08AEF or...
Orthogonal reduction of real general matrix to upper Hessenberg form
Orthogonal reduction of real symmetric band matrix to...
Orthogonal reduction of real symmetric matrix to...
Orthogonal reduction of real symmetric matrix to...
Orthogonal reduction of real symmetric matrix to...
Computes orthogonal rotations for loading matrix,...
Reorder Schur factorization of real matrix using orthogonal similarity transformation
Orthogonal similarity transformation
Orthogonal similarity transformation of real symmetric matrix as...
Apply orthogonal transformation determined by F08AEF or F08BEF
Apply orthogonal transformation determined by F08GEF
Generate orthogonal transformation matrics from reduction to...
Generate orthogonal transformation matrix from reduction to...
Apply orthogonal transformation matrix from reduction to...
Generate orthogonal transformation matrix from reduction to...
Generate orthogonal transformation form reduction to bidiagonal form...
Apply orthogonal transformation from reduction to bidiagonal form...
                                                                                                                                                                     Performs non-metric (ordinal) multidimensional scaling
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F01QKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F08NEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FOSKEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSKEF
FOSHEF
FOSFEF
FOSGEF
GO3BAF
FOSQFF
FOSAGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F08AGF
F08AKF
F08FGF
F08GGF
F08KFF
F08NFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F08NGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FOSFFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSKGF
                                                                                                                                                                                          Gram-Schmidt orthogonalisation of n vectors of order m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F05AAF
                   Computes orthogonal rotations for loading matrix, generalized orthomax criterion
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G03BAF
                                                                          ... adaptive, finite interval, method suitable for oscillating functions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D01AKF
                                                                                                                                                                                                                                                Osher's approximate Riemann solver for Euler equations...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D03PVF
                                                                        Compute quotient of two real scalars, with overflow flag Compute quotient of two complex scalars, with overflow flag
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSBLE
Cumulative normal distribution functions P(a, x) and Q(a, x)
Cumulative normal distribution function P(x)

Convert real matrix between packed banded and rectangular storage schemes Print real packed Print complex packed banded matrix (comprehensive)

Print real packed banded matrix (comprehensive)

Matrix-vector product, real symmetric packed matrix

Matrix-vector product, real symmetric packed matrix

Rank-1 update, real symmetric packed matrix

Rank-2 update, real symmetric packed matrix

Matrix-vector product, complex Hermitian packed matrix

Matrix-vector product, complex Hermitian packed matrix

Matrix-vector product, complex Hermitian packed matrix

Rank-1 update, complex Hermitian packed matrix

Rank-2 update, complex Hermitian packed matrix

Rank-2 update, complex Hermitian packed matrix

Rank-2 update, complex Hermitian packed matrix

Rank-1 update, complex Hermitian packed storage

...largest absolute element, real triangular matrix, packed storage

...largest absolute element, complex Hermitian matrix, packed storage

...largest absolute element, complex triangular matrix, packed storage

...matrix, matrix already factorised by POTGDF, packed storage

...matrix, matrix already factorised by POTGPF, packed storage

...lar
                                                                                              Incomplete Gamma functions P(a,x) and Q(a,x) Cumulative normal distribution function P(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S14BAF
S15ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F01ZCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FOIZDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X04CFF
X04DFF
X04CEF
X04DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO6PLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06PQF
F06PSF
F06SEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06SHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06SLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06RDF
F06RKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06UDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06UGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06UGF
F06UKF
F07GDF
F07GEF
F07GGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07GJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07GRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07GUF
F07GVF
F07GWF
F07PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07PGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07PGF
F07PHF
F07PJF
F07PRF
F07PUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07PVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07PWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07QUF
F07QVF
```

```
...matrix, matrix already factorized by FOTQRF, packed storage
...linear equations, multiple right-hand sides, packed storage
Estimate condition number of real triangular matrix, packed storage
...linear equations, multiple right-hand sides, packed storage
...linear equations, mult
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F07QWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F07UGF
F07UHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO7UJE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FOTUSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FOTUUF
FOTUVF
FOTUWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F08GEF
F08GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO8TEF
FO8TSF
FO8GCF
FO8GQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F01ZAF
F01ZBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X04CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X04DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      X04CCF
X04DCF
                                                                                                                                                              Sign test on two paired samples
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G08AAF
                                                                Performs the pairs (serial) test for randomness
Performs the Wilcoxon one-sample (matched pairs) signed rank test
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G08EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GORAGE
Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
...correlation coefficients, subset of variables, pairwise treatment of missing values
Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values
Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOORCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BCF
G02BFF
G02BJF
G02BMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02BSF
                                                                                                                                                        General system of parabolic PDEs, coupled DAEs, method of lines,....
General system of parabolic PDEs, coupled DAEs, method of lines,...
General system of parabolic PDEs, coupled DAEs, method of lines,...
General system of parabolic PDEs, method of lines, Chebyshev C<sup>0</sup> colle
General system of parabolic PDEs, method of lines, finite differences,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03PJF
D03PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03PPF
                                                                                                                                                                                                                                                                                                                                                                                          collocation....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03PCF
                                                                                                                                       Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment...
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment...
Kendall/Spearman non-parametric rank correlation coefficients, no missing values,...
Kendall/Spearman non-parametric rank correlation coefficients, no missing values,...
Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment...
Non-parametric tests
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOORPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G02BQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G02BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G08
                                                                          Multivariate time series, multiple squared partial autocorrelations
Univariate time series, partial autocorrelations from autocorrelations
Multivariate time series, partial autoregression matrices
Computes partial correlation/variance-covariance matrix from...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13DBF
G13ACF
G13DPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G02BYF
                                                                                                           Multivariate time series, sample partial lag correlation matrices, \chi^2 statistics and significance levels
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13DNF
                                                   ...spectrum using rectangular, Bartlett, Tukey or Parsen lag window
...spectrum using rectangular, Bartlett, Tukey or Parsen lag window
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G13CAF
G13CCF
                               ... quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DOLAHE
                                                                                                       Elliptic PDE, Helmholts equation, three-dimensional Cartesian co-ordinates
Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain

Discretize a second-order elliptic PDE on a rectangle
Elliptic PDE, solution of finite difference equations by a multigrid technique
Elliptic PDE, solution of finite difference equations by SIP,...
Elliptic PDE, solution of finite difference equations by SIP,...
Elliptic PDE, solution of finite difference equations by SIP,...
Elliptic PDE, solution of finite difference equations by SIP,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03FAF
D03EAF
D03EEF
D03EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D03EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03UAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D03UBF
                                                                                   General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C<sup>0</sup>...

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences,...

General system of parabolic PDEs, coupled DAEs, method of lines, finite differences,...

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation,...

General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation,...

General system of parabolic PDEs, method of lines, Chebyshev C<sup>0</sup> collocation,...

General system of parabolic PDEs, method of lines, finite differences,...

General system of second-order PDEs, method of lines, finite differences, remeshing,...

General system of second-order PDEs, method of lines, finite differences, remeshing,...

General system of first-order PDEs, method of lines, finite differences, remeshing,...

PDEs, spatial interpolation with D03PCF, D03PFF, D03PFF,...

PDEs, spatial interpolation with D03PCF, D03PFF, D03PFF,...

PDEs, spatial interpolation with D03PCF or D03PJF

General system of convection-diffusion PDEs with source terms in conservative form,...

General system of convection-diffusion PDEs with source terms in conservative form,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D03PJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D03PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03PFF
D03PKF
D03PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D03PDF
D03PCF
D03RAF
D03RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D03PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D03PZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D03PFF
                                                                                                                                                                                                                       Pearson product-moment correlation coefficients,...
Pearson product-moment correlation coefficients,...
Pearson product-moment correlation coefficients,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02BAF
G02BCF
G02BHF
                                                                                                                                                                                                                        Pearson product-moment correlation coefficients,...
                                                                                                                                                                                                                       Pearson product-moment correlation coefficients,...
Pearson product-moment correlation coefficients,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02BGF
G02BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GIIBBF
                                                             ...from set of classification factors using given percentile/quantile
                                                                                                                                                      Invert a permutation
Check validity of a permutation
Decompose a permutation into cycles
Pseudo-random permutation of an integer vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         MOIZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         M01ZCF
G05EHF
                              Permute rows or columns, real rectangular matrix, permutations represented by a real array
Permute rows or columns, complex rectangular matrix, permutations represented by a real array
Permute rows or columns, real rectangular matrix, permutations represented by an integer array
Permute rows or columns, complex rectangular matrix, permutations represented by an integer array
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06QKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06VKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06QJF
F06VJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06VKF
F06VJF
F06QKF
                                                                                                                                                                                                                        Permute rows or columns, complex rectangular matrix,...
Permute rows or columns, complex rectangular matrix,...
Permute rows or columns, real rectangular matrix,...
Permute rows or columns, real rectangular matrix,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06QJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13CFF
                                                                                                                  Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          XOLAAF
                                                                                               Provides the mathematical constant s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            EOIBEF
                                                   Interpolating functions, monotonicity-preserving, plecewise cubic Hermite, one variable
                                 ... quadrature, adaptive, finite interval, strategy due to Plessens and de Doncker, allowing for badly-behaved integrands
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D01AJF
QR factorization of real general rectangular matrix with column pivoting ...complex general rectangular matrix with column pivoting
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSBEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSBSF
```

KWIC.30 [NP3390/19]

```
Triangulation of plane region
Generate real plane rotation
Generate real plane rotation
Apply real plane rotation
Apply real plane rotation
Apply complex plane rotation, storing tangent
Generate complex plane rotation, storing tangent, real cosine
Generate complex plane rotation, storing tangent, real sine
Apply real plane rotation, storing tangent, real sine
Apply real plane rotation to two complex vectors
Apply plane rotation to two complex vectors
Apply real symmetric plane rotation to two vectors
Generate sequence of real plane rotations
Generate sequence of complex plane rotations
...U real upper triangular, Z a sequence of plane rotations
...U real upper triangular, Z a sequence of plane rotations
...U complex upper triangular, Z a sequence of plane rotations
...U complex upper triangular, Z a sequence of plane rotations
Apply sequence of plane rotations, complex rectangular matrix, real cosine...
Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine
QR or RQ factorization by sequence of plane rotations, complex rectangular matrix, real cosine and sine
QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
Compute upper Hessenberg matrix by sequence of plane rotations, complex upper spiked matrix
QR factorization by sequence of plane rotations, complex upper triangular matrix
QR factorization by sequence of plane rotations, complex upper triangular matrix
QR factorization by sequence of plane rotations, real upper triangular matrix
QR or RQ factorization by sequence of plane rotations, real upper triangular matrix
QR or RQ factorization by sequence of plane rotations, real upper triangular matrix
QR or RQ factorization by sequence of plane rotations, real upper triangular matrix
Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
Compute
                                                                                                                                                                                                                                                                                                                                                                                                                                                       DOSMAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOGAAF
FOGBEF
FOGEPF
FOGHPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         FOSCRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06CBF
F06KPF
F06EXF
F06FPF
F06FQF
F06HQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO6HQF
FO6QMF
FO6QTF
FO6TMF
FO6TTF
FO6TXF
FO6TXF
FO6TRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         FO6TSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                       FO6TSF
FO6TVF
FO6TWF
FO6TQF
FO6QPF
FO6QXF
FO6QRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06QVF
F06QWF
F06QQF
                                       Constructs a stem and leaf plot
Constructs a box and whisker plot
...needed for range-mean or standard deviation-mean plot
                                                                                                                                                                                                                                                                                                                                                                                                                                                         G01ARF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         GISAUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         GOSDRE
                                                                                                                                   Pseudo-random integer, Poisson distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                         G05ECF
G07ABF
G01BKF
       Set up reference vector for generating pseudo-random integers, Poisson distribution
Computes confidence interval for the parameter of a Poisson distribution
                                                                                                                                                                                                                 Poisson distribution function
                                                                                           Fits a generalized linear model with Poisson errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02GCF
                                                                                                                                  Least-squares polynomial fit, special data points (including interpolation)
Least-squares polynomial fit, values and derivatives may be constrained,...
Derivative of fitted polynomial in Chebyshev series form
Integral of fitted polynomial in Chebyshev series form
Evaluation of fitted polynomial in one variable, from Chebyshev series form
Evaluation of fitted polynomial in one variable from Chebyshev series form...
Evaluation of fitted polynomial in two variables
Interpolating functions, polynomial interpolant, data may include derivative values,...
All seros of complex polynomial, modified Laguerre method
All seros of real polynomial, modified Laguerre method
                                                                                                                                                                                                                                                                                                                                                                                                                                                        E02AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         E02AFF
E02AFF
E02AFF
E02AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         E02AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         E01AEF
                                                                                                                       Minimax curve fit by polynomials
Least-squares curve fit, by polynomials, arbitrary data points
Least-squares surface fit by polynomials, data on lines
Computes orthogonal polynomials or dummy variables for factor/classification variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                         G04EAF
                                  ...for the Mann-Whitney U statistic, no ties in pooled sample
...for the Mann-Whitney U statistic, ties in pooled sample
Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after G03DAF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                         G08AJF
                                                      ... for a difference in means between two Normal populations, confidence interval
       The machine precision
Real inner product added to initial value, basic/additional precision
Complex inner product added to initial value, basic/additional precision
                                                                                                                                                                                                                                                                                                                                                                                                                                                         X02AJF
X03AAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          X03ABF
                                                                                                                                                                                                                 Pre-computed weights and abscissae for Gaussian quadrature rules,... D01BBF
                                                                                                                                Unconstrained\ minimum, \textbf{pre-conditioned}\ conjugate\ gradient\ algorithm,\ function\ of...
               ...RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner (Black Box)
....CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
...linear system, RGMRES, CGS or Bi-CGSTAB method, preconditioner computed by F11DAF (Black Box)
...system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          F11DSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           FIIDCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                         FIIDQF
Solution of linear system involving preconditioning matrix generated by applying SSOR to...
Solution of linear system involving preconditioning matrix generated by applying SSOR to...
Solution of linear system involving preconditioning matrix generated by applying SSOR to...
Solution of linear system involving preconditioning matrix generated by applying SSOR to...
Solution of linear system involving incomplete LU preconditioning matrix generated by F11DAF
Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF
Solution of linear system involving incomplete Cholesky preconditioning matrix generated by F11JAF
Solution of complex linear system involving incomplete Cholesky preconditioning matrix generated by F11JNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         F11JRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         F11DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         F11JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          FIIDBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                         F11JBF
F11JPF
                                                                                                                                 Multivariate time series, preliminary estimation of transfer function model
Univariate time series, preliminary estimation, seasonal ARIMA model
                                                                                                                                                                                                                                                                                                                                                                                                                                                         G13BDF
G13ADF
                                                                                       Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                         E01BEF
                                                                                                  Multivariate time series, filtering (pre-whitening) by an ARIMA model
                                                                                                                                                                                                                                                                                                                                                                                                                                                         GISBAF
                                        ...in D01GCF or D01GDF, when number of points is prime
                                       ...D01GDF, when number of points is product of two primes
                                          Performs principal component analysis Performs principal co-ordinate analysis, classical metric scaling ...finite interval, weight function 1/(x-c), Cauchy principal value (Hilbert transform)
                                                                                                                                                                                                                                                                                                                                                                                                                                                           G03FAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                         DOLAQE
                                                                                                                                                                                                               Print complex general matrix (comprehensive)
Print complex general matrix (casy-to-use)
Print complex packed banded matrix (comprehensive)
Print complex packed banded matrix (comprehensive)
Print complex packed triangular matrix (comprehensive)
Print complex packed triangular matrix (comprehensive)
Print integer matrix (comprehensive)
Print integer matrix (comprehensive)
Print real general matrix (comprehensive)
Print real general matrix (comprehensive)
Print real packed banded matrix (comprehensive)
Print real packed triangular matrix (comprehensive)
Print real packed triangular matrix (comprehensive)
Print real packed triangular matrix (casy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                          X04DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           X04DAF
X04DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           X04DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           X04DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                           X04EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          X04CAF
X04CFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                          X04CEF
```

```
H02BFF
Interpret MPSX data file defining IP or LP problem, optimize and print solution
                   Computes Kaplan-Meier (product-limit) estimates of survival probabilities

Computes upper and lower tail probabilities

Computes probabilities for \( \frac{2}{2} \) distribution

Computes probabilities for \( \frac{2}{2} \) distribution

Computes probabilities for \( \frac{2}{2} \) distribution

Computes probabilities for Student's \( \frac{2}{2} \) distribution

Computes the exact probabilities for the Mann-Whitney \( U \) statistic, no ties in...

Computes the exact probabilities for the Mann-Whitney \( U \) statistic, ties in...

Computes probabilities for the mann-whitney \( U \) statisticution

Computes probabilities for the mon-central beta distribution

Computes probabilities for the non-central \( V \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the non-central \( F \) distribution

Computes probabilities for the on-eample Kolmogorov-Smirnov distribution

Computes probabilities for the standard Normal distribution

Computes probabilities for the one-sample Kolmogorov-Smirnov distribution

G01EXF
                                                                                     Computes upper and lower tail probabilities and probability density function for the beta distribution ...supplied cumulative distribution function or probability distribution function

Computes lower tail probability for a linear combination of (central) \chi^2 variables

Computes probability for a positive linear combination of \chi^2 variables

Computes probability for the bivariate Normal distribution

Computes probability for the Studentized range statistic

Computes probability for von Mises distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01EEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOSEXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G01JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G01JCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOIHAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOLEME
                      Real inner product added to initial value, basic/additional precision
Complex inner product added to initial value, basic/additional precision
Matrix-vector product, complex Hermitian band matrix
Matrix-vector product, complex Hermitian band matrix
Matrix-vector product, complex Hermitian packed matrix
Matrix-vector product, complex Hermitian packed matrix
Matrix-vector product, complex rectangular band matrix
Matrix-vector product, complex triangular band matrix
Matrix-vector product, complex triangular band matrix
Matrix-vector product, complex triangular packed matrix
Matrix-vector product, complex triangular packed matrix
Matrix-vector product, complex triangular packed matrix
Dot product of two complex sparse vector, conjugated
Dot product of two complex sparse vector, conjugated
Dot product of two complex vectors, conjugated
Dot product of two complex vectors, conjugated
Dot product of two complex vectors, conjugated

Dot product of two real sparse vectors

Matrix-matrix product, one complex vectors, conjugated
Matrix-matrix product, one complex Hermitian matrix, one complex...
Matrix-matrix product, one complex Hermitian matrix, one complex...
Matrix-matrix product, one complex triangular matrix, one complex...
Matrix-matrix product, one real sparse vectors complex...
Matrix-matrix product, one real product matrix, one real rectangular matrix
Matrix-vector product, real rectangular band matrix
Matrix-vector product, real rectangular band matrix
Matrix-vector product, real symmetric matrix
Matrix-vector product, real symmetric matrix
Matrix-vector product, real symmetric band matrix
Matrix-matrix product, two com
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G03BCF
                                                                                                                                                                                                                                                                                       Computes Procrustes rotations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     X03AAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      X03ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06SDF
F06SCF
F06SEF
F06SBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06SAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06SGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOSSEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06SHF
F06GSF
F06GRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06GAF
D01GZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D01GZF
F06ERF
F06EAF
F06ZCF
F06ZTF
F06ZFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06YCF
F06YFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06PBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06PDF
F06PDF
F06PCF
F06PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06PGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06PGF
F06PFF
F06PHF
D01GCF
D01GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DOIFDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G12AAF
                                                                                                                                                                                                            Computes Kaplan-Meier (product-limit) estimates of survival probabilities
                                                                                                                                                                                                                                                                                                   Pearson product-moment correlation coefficients, all variables, casewise...

Pearson product-moment correlation coefficients, all variables, no missing...

Pearson product-moment correlation coefficients, all variables, pairwise...

Pearson product-moment correlation coefficients, subset of variables,...

Pearson product-moment correlation coefficients, subset of variables,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02BBF
G02BAF
G02BCF
G02BGF
G02BJF
                                                                                                                                                                                                                                                                                         Integer Programming See IP
Linear Programming See LP
Quadratic Programming See QP
Integer programming solution, supplies further information on solution...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      H02BZF
                                                                                                           Fits Cox's proportional hazard model
Creates the risk sets associated with the Cox proportional hazards model for fixed covariates
                                                                                                                                           Pseudo-random integer from reference vector
Pseudo-random integer from uniform distribution
Pseudo-random integer from uniform distribution
Pseudo-random integers, Poisson distribution
Set up reference vector for generating pseudo-random integers, binomial distribution
Set up reference vector for generating pseudo-random integers, hypergeometric distribution
Set up reference vector for generating pseudo-random integers, hypergeometric distribution
Set up reference vector for generating pseudo-random integers, Poisson distribution
Set up reference vector for generating pseudo-random integers, uniform distribution
Pseudo-random logical (boolean) value
Pseudo-random numbers from a beta distribution
Generates a vector of pseudo-random numbers from a gamma distribution
Pseudo-random real numbers from a gamma distribution
Pseudo-random real numbers, Cauchy distribution
Pseudo-random real numbers, Cauchy distribution
Pseudo-random real numbers, P-distribution
Pseudo-random real numbers, log-normal distribution
Pseudo-random real numbers, (negative) exponential distribution
Pseudo-random real numbers, Student's t-distribution
Pseudo-random real numbers, Student's t-distribution
Pseudo-random real numbers, uniform distribution over (0,1)
Pseudo-random real numbers, uniform distribution over (0,1)
Pseudo-random real numbers, weiball distribution
Pseudo-random real numbers, Weiball distribution
Pseudo-random real numbers, Weiball distribution
Pseudo-random sample from an integer vector
Generates a vector of pseudo-random variates from von Mises distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F01BLF
                                                                                                                                                                                                                                                                                                                                              Pseudo-inverse and rank of real m by n matrix (m \ge n)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G05EYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G05DYF
G05DRF
G05EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05EFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05EEF
G05ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05EBF
G05EZF
G05FEF
G05FFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05EHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G05DHF
G05DKF
G05DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOSDEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05DBF
G05DDF
G05DJF
G05CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GOSDPF
                                                                                                                                                                                                                                        Scaled derivatives of \psi(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S14ADF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          S14BAF
                                                                                                                               Incomplete Gamma functions P(a, x) and Q(a, x)
```

KWIC.32 [NP3390/19]

```
SISACE
                                   Complement of cumulative normal distribution function Q(x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F08JEF
F08JFF
F08JSF
                                                    ...reduced from real symmetric matrix using implicit QL or QR ...symmetric tridiagonal matrix, root-free variant of QL or QR ...from complex Hermitian matrix, using implicit QL or QR
Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values...
Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values...
Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and...
QP problem (dense)

Integer QP problem (dense)

Convex QP problem (dense)

LP or QP problem (sparse)

Integer LP or QP problem (sparse)

Converts MPSX data file defining LP or QP problem to format required by E04NKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04UCF
E04UFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E04UNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               H02CBF
E04NCF
E04NKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04MZF
                                                         QR factorization of complex general rectangular matrix... QR factorization of real general rectangular matrix... ... real symmetric matrix using implicit QL or QR ... tridiagonal matrix, root-free variant of QL or QR ... complex Hermitian matrix, using implicit QL or QR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOABSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F08BSF
F08BEF
F08JEF
F08JFF
F08JSF
F06TPF
F06QPF
                                                                                                              Hermitian matrix, using implicit QL or QR
QR factorization by sequence of plane rotations, rank-1 update...
QR factorization by sequence of plane rotations, rank-1 update...
QR factorization by sequence of plane rotations,...
QR factorization determined by FOBASF or FOBBSF
QR factorization of complex general rectangular matrix
QR factorization of complex general rectangular matrix
QR factorization of UZ or RQ factorization of ZU,...
QR factorization of UZ or RQ factorization of ZU,...
QR factorization, possibly followed by SVD
QR or RQ factorization by sequence of plane rotations,...
QR or RQ factorization by sequence of plane rotations,...
QR or RQ factorization by sequence of plane rotations,...
QR or RQ factorization by sequence of plane rotations,...
QRxx factorization by sequence of plane rotations,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO6QPF
FO6QQF
FO8AFF
FO8AFF
FO8AEF
FO6TTF
FO6QTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F02WDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06TRF
F06TSF
F06QRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06TQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C02AHF
                                                                                                                                                                                                All zeros of complex quadratic
                                                                                                                                                                All seros of complex quadratic
All seros of real quadratic
Cumulants and moments of quadratic forms in Normal variables
Moments of ratios of quadratic forms in Normal variables, and related statistics
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 C02AJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GOINAF
                                                        Moments of ratios of quadratic forms in Normal variables, and related statistics

One-dimensional Gaussian quadrature
One-dimensional quadrature, adaptive, finite interval, allowing for singularities...

Do1ALF
One-dimensional quadrature, adaptive, finite interval, method suitable for...

Do1ALF
One-dimensional quadrature, adaptive, finite interval, strategy due to...

Do1ALF
One-dimensional quadrature, adaptive, finite interval, strategy due to...

Do1ALF
One-dimensional quadrature, adaptive, finite interval, variant of D01AJF...

D01AJF
One-dimensional quadrature, adaptive, finite interval, variant of D01AKF...

D01AUF
One-dimensional quadrature, adaptive, finite interval, weight function I/(x-c)...

D01AQF
One-dimensional quadrature, adaptive, finite interval, weight function I/(x-c)...

D01APF
One-dimensional quadrature, adaptive, finite interval, weight function cos(wx) or...

D01APF
One-dimensional quadrature, adaptive, infinite or semi-infinite interval

One-dimensional quadrature, adaptive, infinite or semi-infinite interval

One-dimensional quadrature, adaptive, semi-infinite interval...

D01APF
One-dimensional quadrature, general product region, number-theoretic method

Multi-dimensional quadrature, general product region, number-theoretic method

D01GDF
One-dimensional quadrature, non-adaptive, finite interval

Multi-dimensional quadrature, non-adaptive, finite interval

Multi-dimensional quadrature over an n-simplex

Multi-dimensional Gaussian quadrature over hyper-rectangle

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method

D01GBF

Multi-dimensional adaptive quadrature over hyper-rectangle, Monte Carlo method

D01GBF

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method

D01GBF

Multi-dimensional adaptive quadrature over hyper-rectangle, Monte Carlo method

D01GBF

Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method

D01GBF

Multi-dimensional quadrature, over hyper-rectangle, Multi-dimensional puadrature over hyper-rectangle, Multi-dimensi
                                                                                ... classification factors using given percentile/quantile
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G11BBF
                                                                                                                                                                                                                                                   Discrete quarter-wave cosine transform (easy-to-use) Discrete quarter-wave soine transform (easy-to-use) Discrete quarter-wave sine transform (easy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C06HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 COSRDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 COSHCE
                                                              Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first derivatives...
Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function values only...
... a sum of squares, combined Gauss-Newton and quasi-Newton algorithm using first derivatives (comprehensive)
... a sum of squares, combined Gauss-Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E04GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E04GYF
                                              Left and right eigenvectors of real upper quasi-triangular matrix ...selected eigenvalues and eigenvectors of real upper quasi-triangular matrix ...equation AX+XB=C, A and B are upper quasi-triangular or transposes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FOROKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F08QLF
F08QHF
                                                                                                                                                                                                                                                Quotient of two complex numbers
Compute quotient of two complex scalars, with overflow flag
Compute quotient of two real scalars, with overflow flag
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A02ACF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOSBLE
                              ...eigenvectors of generalised complex eigenproblem by QZ algorithm (Black Box) ...optionally eigenvectors of generalised eigenproblem by QZ algorithm, real matrices (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOOG IF
                                                                          Computes random correlation matrix
Pseudo-random integer from uniform distribution
Pseudo-random integer, Poisson distribution
Pseudo-random integer, Poisson distribution
Pseudo-random integer, Poisson distribution
Set up reference vector for generating pseudo-random integers, binomial distribution
Set up reference vector for generating pseudo-random integers, hypergeometric distribution
Set up reference vector for generating pseudo-random integers, no pseudo-random integers, poisson distribution
Set up reference vector for generating pseudo-random integers, poisson distribution
Set up reference vector for generating pseudo-random integers, uniform distribution
Set up reference vector for generating pseudo-random integers, uniform distribution
Pseudo-random number generating routines

Restorer state of random number generating routines
Restorer state of random number generating routines
Initialize random number generating routines to give non-repeatable sequence
Initialize random numbers from a beta distribution
Generates a vector of pseudo-random numbers from a beta distribution
Generates a vector of random numbers from a Normal distribution
Generates a vector of random numbers from a normal distribution
Generates a vector of random numbers from a uniform distribution
Computes random orthogonal matrix
Pseudo-random permutation of an integer vector
Pseudo-random real numbers, Cauchy distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G05EYF
G05DYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G05DRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05EDF
G05EFF
G05EEF
G05ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G05EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GOSDZE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GOSEZE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05CFF
G05CGF
G05CCF
G05CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05FEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GOSFFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GOSFDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G05GAF
G05EHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G05DFF
```

```
Pseudo-random real numbers, \chi^2 distribution
Pseudo-random real numbers, F-distribution
Pseudo-random real numbers, logistic distribution
Pseudo-random real numbers, logistic distribution
Pseudo-random real numbers, logistic distribution
Pseudo-random real numbers, (negative) exponential distribution
Pseudo-random real numbers, Student's t-distribution
Pseudo-random real numbers, uniform distribution over (0,1)
Pseudo-random real numbers, uniform distribution over (a, b)
Pseudo-random real numbers, Weibull distribution
Pseudo-random sample from an integer vector
Generates a vector of pseudo-random variates from von Mises distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GOSDHE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G05DHF
G05DKF
G05DEF
G05DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05DAF
G05DPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G05FSF
                                    Analysis of variance, randomized block or completely randomized design,...
Analysis of variance, randomized block or completely randomized design, treatment means and standard errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G04BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G04BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G08EAF
                                                                                Performs the runs up or runs down test for randomness
Performs the pairs (serial) test for randomness
Performs the triplets test for randomness
Performs the gaps test for randomness
...problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction, user-specified break-points
Second-order Sturm-Liouville problem, regular system, finite range, eigenvalue only
...problem, regular/singular system, finite infinite range, eigenvalue only, user-specified break-points
ODEs, IVP, resets end of range of DO2PDF
The safe range parameter
The safe range parameter
Computes probability for the Studentized range statistic
Computes deviates for the Studentized range statistic
...function of solution is zero, integration over range with intermediate output (simple driver)
ODEs, IVP, Runge-Kutta method, integration over range with output
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02KEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02KAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02KDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02KDF
D02PWF
X02AMF
X02ANF
G01EMF
G01FMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D02BJF
          Computes quantities needed for range-mean or standard deviation-mean plot

Rank a vector, character data
Rank a vector, rela numbers
Rank columns of a matrix, integer numbers
Rank columns of a matrix, integer numbers
Rendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values,...
Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values,...
Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting input data
Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing values
Pseudo-inverse and rank of real m by n matrix (m ≥ n)
Rank rows of a matrix, integer numbers
Rank rows of a matrix, integer numbers
Rank rows of a matrix, real numbers
Rank rows of a matrix, real numbers
Rank-1 update, complex Hermitian packed matrix
Rank-1 update, complex Hermitian packed matrix
Rank-1 update, complex rectangular matrix, conjugated vector
Rank-1 update, complex rectangular matrix, conjugated vector
Rank-1 update, complex rectangular matrix
Rank-1 update, real upper triangular matrix
Rank-1 update, real upper triangular matrix
Rank-1 update, real upper triangular matrix
Rank-1 update, real pymmetric matrix
Rank-2 update, real symmetric packed matrix
Rank-2 update, real symmetric packed matrix
Rank-2 update, real pymmetric matrix
Rank-2 update, real symmetric matrix
Rank-2 update, real symmetric matrix
Rank-2 update, real symmetric matrix
Rank-2 update of complex Hermitian matrix
Rank-2 update of complex Hermitian matrix
Rank-2 update of complex symmetric matrix
Ran
                                                                                                                                 Computes quantities needed for range-mean or standard deviation-mean plot
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G13AUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    M01DCF
M01DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     M01DAF
M01DZF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    M01DZF
M01DKF
M01DJF
G02BPF
G02BRF
G02BNF
G02BQF
G02BSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G02BSF
F01BLF
M01DFF
M01DEF
G08AGF
F06SPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06SPF
F06SQF
F06SNF
F06SMF
F06TPF
F06QPF
F06PPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06PQF
F06SRF
F06SSF
F06PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06PSF
F06ZRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FOSZWE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06ZWF
F06ZPF
F06ZUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06YPF
                                                                                                     Rearrange a vector according to given ranks, character data
Rearrange a vector according to given ranks, complex numbers
Rearrange a vector according to given ranks, integer numbers
Ranks, Normal scores, approximate Normal scores or...
Rearrange a vector according to given ranks, real numbers
Regression using ranks, right-censored data
Regression using ranks, uncensored data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M01ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       MOIEDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M01EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G08RAF
                                                                                                                                             Evaluation of fitted rational function as computed by E02RAF
Interpolated values, evaluate rational interpolant computed by E01RAF, one variable
Interpolating functions, rational interpolant, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E02RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOSHDE
                                                                                                                                                                                                                       Generates a realisation of a multivariate time series from a VARMA model
                                                                                                                                                                                                                                                                              Rearrange a vector according to given ranks, character data
Rearrange a vector according to given ranks, complex numbers
Rearrange a vector according to given ranks, integer numbers
Rearrange a vector according to given ranks, real numbers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      M01ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        M01EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G01MBF
                                                                                                                                                                                                                                 Computes reciprocal of Mills' Ratio
                                                                                                                                                                                                                                                                              Recover cosine and sine from given complex tangent, real cosine
Recover cosine and sine from given complex tangent, real sine
Recover cosine and sine from given real tangent
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06CCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D01FBF
D01FCF
D03EEF
                                                Multi-dimensional Gaussian quadrature over hyper-rectangle
Multi-dimensional adaptive quadrature over hyper-rectangle
Discretize a second-order elliptic PDE on a rectangle
Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
Multi-dimensional adaptive quadrature over hyper-rectangle, multiple integrands
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D01EAF
       Matrix-vector product, real rectangular band matrix

Matrix-vector product, complex rectangular band matrix

Matrix-vector product, complex rectangular band matrix

Univariate time series, smoothed sample spectrum using rectangular. Bartlett, Tukey or Parsen lag window ditivariate time series, smoothed sample cross spectrum using rectangular. Bartlett, Tukey or Parsen lag window Interpolating functions, fitting bicubic spline, data on rectangular grid

...splines with automatic knot placement, data on rectangular grid

Matrix-matrix product, two complex rectangular matrices

Matrix-matrix product, two complex rectangular matrix

Rank-1 update, real rectangular matrix

Matrix initialisation, real rectangular matrix

Apply sequence of plane rotations, real rectangular matrix

Matrix-wector product, complex rectangular matrix

Matrix initialisation, complex rectangular matrix

Matrix matrix product, one real symmetric matrix, one real rectangular matrix

Matrix-matrix product, one real triangular matrix, one real rectangular matrix

...product, one complex Hermitian matrix, one complex rectangular matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06PBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06PBF
F06SBF
G13CAF
G13CCF
E01DAF
E02DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FO6YAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06PAF
F06PMF
F06QHF
F06QXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06SAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSTHE
```

KWIC.34 [NP3390/19]

F06ZFF

```
..product, one complex triangular matrix, one complex rectangular matrix
..product, one complex symmetric matrix, one complex rectangular matrix
QR factorization of real general rectangular matrix
LQ factorization of complex general rectangular matrix
LQ factorization of complex general rectangular matrix
Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine
Rank-1 update, complex rectangular matrix, conjugated vector
Permute rows or columns, complex rectangular matrix, permutations represented by a real array
Permute rows or columns, complex rectangular matrix, permutations represented by a real array
Permute rows or columns, complex rectangular matrix, permutations represented by an integer array
Permute rows or columns, complex rectangular matrix, permutations represented by an integer array
Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
Apply sequence of plane rotations, complex rectangular matrix to bidiagonal form
Unitary reduction of complex general rectangular matrix to bidiagonal form
Rank-1 update, complex rectangular matrix to bidiagonal form
Rank-1 update, complex rectangular matrix with column pivoting
QR factorization of complex general rectangular matrix with column pivoting
Matrix copy, complex rectangular or trapezoidal matrix
...differences, remeshing, two space variables, rectangular region
Convert real matrix between packed banded and rectangular storage schemes
Convert complex matrix between packed banded and rectangular storage schemes
...differences, remeshing, two space variables, rectilinear region
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO6ZTF
FO8AEF
FO8AHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FOSASF
FOSAVF
FOSTYF
FOSSNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06QKF
F06VKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSKSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOSSME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORREF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D03RAF
F01ZCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FO1ZDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                DOSBBE
                                                                                                              ...differences, remeshing, two space variables, rectilinear region
                                                                      SVD of real bidiagonal matrix reduced from complex general matrix
...factorization of complex upper Hessenberg matrix reduced from complex general matrix
...eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR
...symmetric positive-definite tridiagonal matrix, reduced from complex Hermitian positive-definite matrix
SVD of real bidiagonal matrix reduced from real general matrix
...eigenvectors of real upper Hessenberg matrix reduced from real general matrix
...eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR
...symmetric positive-definite tridiagonal matrix, reduced from real symmetric positive-definite matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F08MSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F08PSF
F08JSF
F08JUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FOSMER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FOAPER
                                                                        ...eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR ...symmetric positive-definite tridiagonal matrix, reduced from real symmetric positive-definite matrix

Unitary reduction of complex general matrix to upper Hessenberg form Unitary reduction of complex general rectangular matrix to...

Unitary reduction of complex Hermitian matrix to...

Unitary reduction of complex Hermitian matrix to...

Reduction of complex Hermitian matrix to...

Reduction of complex Hermitian matrix to upper bidiagonal...

Reduction of complex rectangular band matrix to upper bidiagonal...

Orthogonal reduction of real general matrix to upper bidiagonal...

Orthogonal reduction of real general matrix to upper bidiagonal form Reduction of real remains and matrix to upper bidiagonal form of real remains and matrix to upper bidiagonal form eduction of real symmetric band matrix to symmetric tridiagonal...

Orthogonal reduction of real symmetric matrix to symmetric tridiagonal...

Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form detaction of real symmetric matrix to symmetric tridiagonal...

Reduction of real symmetric definite banded generalized...

Reduction to bidiagonal form determined by FORKEF

Apply unitary transformation matrix from reduction to bidiagonal form determined by FORKEF

Apply unitary transformation matrix from reduction to bidiagonal form determined by FORKEF

Apply unitary transformation matrix from reduction to Hessenberg form determined by FORKEF

Apply unitary transformation matrix from reduction to Hessenberg form determined by FORKEF

Generate unitary transformation matrix from reduction to standard form of complex Hermitian-definite...

Reduction to standard form of complex Hermitian-definite...

Reduction to standard form of complex Hermi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FO8HSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOAFSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORGSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FO&USF
FO&LSF
FO&NEF
FO&KEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOSLEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FORHER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSHEF
FOSFEF
FOSUEF
FOSKFF
FOSKGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F08KTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOSKUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORNER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FO8NGF
FO8NTF
FO8NUF
FO1BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F08SSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOSTSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORSEE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FOSFTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FOSGFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F08GTF
                                                                                       Pseudo-random integer from reference vector
Pseudo-random multivariate Normal vector from reference vector for ARMA time series model

Set up reference vector for generating pseudo-random integers,...

Set up reference vector for multivariate Normal distribution

Set up reference vector for multivariate ARMA time series model

Set up reference vector from supplied cumulative distribution function...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G05EYF
G05EZF
G05EWF
G05EDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G05EFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOSEEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOSECE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G05EXF
                                                                                                                                                                                                                                                                                                                                                                                Refined solution with error bounds of complex band system of...
Refined solution with error bounds of complex Hermitian...
Refined solution with error bounds of complex ymmetric...
Refined solution with error bounds of complex symmetric...
Refined solution with error bounds of complex system of linear...
Refined solution with error bounds of complex system of linear...
Refined solution with error bounds of real band system of linear...
Refined solution with error bounds of real symmetric indefinite...
Refined solution with error bounds of real symmetric indefinite...
Refined solution with error bounds of real symmetric...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FO7BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07BVF
F07MVF
F07PVF
F07HVF
F07FVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F07NVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F07QVF
F07AVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F07MHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F07PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F07HHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO7FHF
Inverse of real symmetric positive-definite matrix using iterative refinement
                    erse of real symmetric positive-definite matrix using iterative refinement
...with multiple right-hand sides using iterative refinement (Black Box)
...with multiple right-hand sides using iterative refinement (Black Box)
...unknowns, rank = n, m ≥ n using iterative refinement (Black Box)
...equations, one right-hand side using iterative refinement (Black Box)
...equations, one right-hand side using iterative refinement (Black Box)
...simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AEF)
Solution of real simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AFF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F04ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F04AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO4AMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F04ASF
F04ATF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO4AHF
                                                                                                                                                                                                        Generate complex elementary reflection
Apply complex elementary reflection
Generate real elementary reflection, LINPACK style
Apply real elementary reflection, LINPACK style
Generate real elementary reflection, NAG style
Apply real elementary reflection, NAG style
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06HRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO6HTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06FSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FO6FUF
FO6FRF
FO6FTF
                                                                                                                                                                                                                                                                                                                         Nonlinear regression
                                                                                                                                                                                                                                                                                                                                        Robust regression, compute regression with user-supplied functions...
Robust regression, compute weights for use with G02HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G02HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G02HBF
```

KWIC.35 [NP3390/19]

```
Multiple linear regression, from correlation coefficients, with constant term
Multiple linear regression from correlation-like coefficients, without constant term
Fits a general (multiple) linear regression model
Add/delete an observation to/from a general linear regression model
Delete a variable from a general linear regression model
Computes estimable from a general linear regression model and its standard error
Fits a linear regression model by forward selection
Estimates and standard errors of parameters of a general linear regression model for given constraints
Fits a general linear regression model from updated model
Service routines for multiple linear regression, resorter elements of vectors and matrices
Service routines for multiple linear regression, select elements from vectors and matrices
Regression using ranks, right-censored data
Regression using ranks, incensored data
Regression variance-covariance matrix following GO2HDF
Simple linear regression with constant term, missing values
Simple linear regression with constant term, mo missing values
Simple linear regression with constant term, no missing values
Simple linear regression with constant term, mo missing values
Computes residual sums of squares for all possible linear regressions for a set of independent variables
                                                                                                                                                                                                                                                                                                                                                                                             GOOGE
                                                                                                                                                                                                                                                                                                                                                                                            G02CGF
G02CHF
G02DAF
G02DCF
G02DEF
G02DFF
                                                                                                                                                                                                                                                                                                                                                                                             G02DNF
                                                                                                                                                                                                                                                                                                                                                                                            G02EEF
G02DKF
G02DGF
G02CFF
G02CEF
                                                                                                                                                                                                                                                                                                                                                                                             G02HAF
G08RBF
                                                                                                                                                                                                                                                                                                                                                                                            G08RBF
G08RAF
G02HFF
G02CCF
G02CAF
G02CDF
                                                                                                                                                                                                                                                                                                                                                                                             G02CBF
                                                                                                                                                                                                                                                                                                                                                                                            GOSEAF
                      Computes residual sums of squares for all possible linear regressions for a set of independent variables
                                                                                                                                                                                                                                                                                                                                                                                             D02KAF
                                                                      Second-order Sturm-Liouville problem, regular system, finite range, eigenvalue only
                                                                      Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue...
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue only,...
                                                                                                                                                                                                                                                                                                                                                                                             DOSKDE
                      ...coupled DAEs, method of lines, finite differences, remeshing, one space variable
...DAEs, method of lines, Keller box discretisation, remeshing, one space variable
...numerical flux function based on Riemann solver, remeshing, one space variable
...second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region
...second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectilinear region
                                                                                                                                                                                                                                                                                                                                                                                             D03PPF
                                                                                                                                                                                                                                                                                                                                                                                              D03PRF
                                                                                                                                                                                                                                                                                                                                                                                               D03PSF
                                                                                                                                                                                                                                                                                                                                                                                             E01SAF
                                                                                   Interpolating functions, method of Renka and Cline, two variables
                                                                       Real sparse nonsymmetric matrix reorder routine
Real sparse symmetric matrix reorder routine
Complex sparse non-Hermitian matrix reorder routine
Complex sparse Hermitian matrix reorder routine
Complex sparse Hermitian matrix reorder routine
Reorder Schur factorization of complex matrix, form orthonormal...
Reorder Schur factorization of real matrix using...
Reorder Schur factorization of real matrix using orthogonal...
                                                                                                                                                                                                                                                                                                                                                                                             G10ZAF
F11ZAF
                                                                                                                                                                                     Reorder data to give ordered distinct observations
                                                                                                                                                                                                                                                                                                                                                                                              F11ZBF
                                                                                                                                                                                                                                                                                                                                                                                             F11ZBF
F11ZPF
F11ZPF
F08QUF
F08QTF
                                                                                                                                                                                                                                                                                                                                                                                               F08OGF
                                                                                                                                                                                                                                                                                                                                                                                              F08QFF
                    Initialise random number generating routines to give repeatable sequence
Initialise random number generating routines to give non-repeatable sequence
                                                                                                                                                                                                                                                                                                                                                                                              G05CBF
                                                                                                                                                                                                                                                                                                                                                                                              G03CAF
                                 ...analysis model, factor loadings, communalities and residual correlations

Calculates R^2 and C_P values from residual sums of squares

Computes residual sums of squares for all possible linear regressions for...
                                                                                                                                                                                                                                                                                                                                                                                               G02EAF
                                                 Calculates standardized residuals and influence statistics
Univariate time series, diagnostic checking of residuals, following G13AEF or
Multivariate time series, diagnostic checking of residuals, following G13DCF
                                                                                                                                                                                                                                                                                                                                                                                               G02FAF
                                                                                                                                                                                                                                                                         or G13AFF
                                                                                                                                                                                                                                                                                                                                                                                               G13DSF
                                                                                                                                                                                                                                                                                                                                                                                              G13CGF
                    Multivariate time series, noise spectrum, bounds, impulse response function and its standard error
      Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or... Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method,... Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, Jacobi or... Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method,...
                                                                                                                                                                                                                                                                                                                                                                                             F11BEF
F11BSF
F11DSF
F11DQF
F11BBF
                                                                                                                                                                                                                                                                                                                                                                                               FIIDCF
                                            Roe's approximate Riemann solver for Euler equations in conservative form,...

Osher's approximate Riemann solver for Euler equations in conservative form,...

Modified HLL Riemann solver for Euler equations in conservative form,...

Exact Riemann Solver for Euler equations in conservative form,...

scheme using numerical flux function based on Riemann solver, one space variable

scheme using numerical flux function based on Riemann solver, remeshing, one space variable
                                                                                                                                                                                                                                                                                                                                                                                                D03PUF
                                                                                                                                                                                                                                                                                                                                                                                                D03PVF
D03PWF
                                                                                                                                                                                                                                                                                                                                                                                                D03PXF
                                                                                                                                                                                                                                                                                                                                                                                                D03PFF
                                                                                                                                                                                                                                                                                                                                                                                                D03PLF
D03PSF
                      Selected right and/or left eigenvectors of complex upper Hessenberg matrix...

Selected right and/or left eigenvectors of real upper Hessenberg matrix...

Left and right eigenvectors of complex upper triangular matrix

Left and right eigenvectors of real upper quasi-triangular matrix

...factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues,...

...of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues,...
                                                                                                                                                                                                                                                                                                                                                                                               F08PXF
F08PKF
                                                                                                                                                                                                                                                                                                                                                                                                F08QXF
F08QKF
                                                                                                                                                                                                                                                                                                                                                                                                G08RBF
                                                                                                                   Regression using ranks, right-censored data
                                                                                                                                                    Creates the risk sets associated with the Cox proportional hazards model...
                                                                                                                                                                                                                                                                                                                                                                                                G12ZAF
                          Robust confidence intervals, one-sample
Robust confidence intervals, two-sample
Robust confidence intervals, two-sample
Robust estimation, median, median absolute deviation,...
Robust estimation, M-estimates for location and scale...
Robust estimation of a correlation matrix, user-supplied weight function
Calculates a robust estimation of a correlation matrix, user-supplied weight...
Calculates a robust estimation of a correlation matrix, user-supplied weight...
Robust regression, compute regression with user-supplied functions...
Robust regression, compute weights for use with G02HDF
Robust regression, standard M-estimates
Robust regression, variance-covariance matrix following G02HDF
Robust estimation, median, median absolute deviation, robust standard deviation
                                                                                                                                                                                                                                                                                                                                                                                                G07EAF
                                                                                                                                                                                                                                                                                                                                                                                                G07EBF
G07DAF
G07DBF
                                                                                                                                                                                                                                                                                                                                                                                                G07DCF
                                                                                                                                                                                                                                                                                                                                                                                                G02HKF
                                                                                                                                                                                                                                                                                                                                                                                                G02HMF
                                                                                                                                                                                                                                                                                                                                                                                                 G02HLF
                                                                                                                                                                                                                                                                                                                                                                                                G02HDF
G02HBF
G02HAF
G02HFF
                                                                                                                                                                                                                                                                                                                                                                                                G07DAF
                                                                                                                                                                                       Roe's approximate Riemann solver for Euler equations in...
                                                                                                                                                                                                                                                                                                                                                                                                D03PUF
                                       ...iteration of Kalman filter, time-varying, square root covariance filter ...iteration of Kalman filter, time-invariant, square root covariance filter ...Compute square root of (a^2+b^2), real a and b Square root of complex number
                                                                                                                                                                                                                                                                                                                                                                                                 G13EAF
G13EBF
                                                                                                                                                                                                                                                                                                                                                                                                  F06BNF
                                                                                           ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF ODEs, IVP, Adams method with root-finding (forward communication, comprehensive) ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                  D02QYF
                                                                                                                                                                                                                                                                                                                                                                                                  D02QGF
                                   All eigenvalues of real symmetric tridiagonal matrix, root-free variant of QL or QR
                                                                                                                                                                                                                                                                                                                                                                                                  F08JFF
                                                                                                                                Generate real plane rotation
                                                                                                                                                                                                                                                                                                                                                                                                  FOGAAF
                                                                                                           Generate real Jacobi plane rotation
Apply real plane rotation
```

[NP3390/19]

```
Apply complex plane rotation
Generate real plane rotation, storing tangent
Generate complex plane rotation, storing tangent, real cosine
Generate complex plane rotation, storing tangent, real sine
Apply complex similarity rotation to 2 by 2 Hermitian matrix
Apply real similarity rotation to 2 by 2 symmetric matrix
Apply real plane rotation to two complex vectors
Apply plane rotation to two real sparse vectors
Apply real symmetric plane rotation to two vectors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06CAF
F06CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FOSCHE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06BHF
F06KPF
F06EXF
F06FPF
                   Generate sequence of real plane rotations
Generate sequence of complex plane rotations
....real symmetric matrix as a sequence of plane rotations
....real upper triangular, Z a sequence of plane rotations
....real upper triangular, Z a sequence of plane rotations
....complex upper triangular, Z a sequence of plane rotations
Computes Procrustes rotations
Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine
Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine
QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix
QR factorization by sequence of plane rotations, complex upper triangular matrix
QR factorization by sequence of plane rotations, complex upper triangular matrix
QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix
QR or RQ factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix
QR or RQ factorization by sequence of plane rotations, real rectangular matrix
QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix
QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix
QR or RQ factorization by sequence of plane rotations, real upper triangular matrix
Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
QR or RQ factorization by sequence of plane rotations, real upper triangular matrix
Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
QR or RQ factorization by sequence of plane rotations, real upper triangular matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06FQF
F06HQF
                                                                                                                                     Generate sequence of real plane rotations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06OMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G03BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06TYF
F06TXF
F06VXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06VXF
F06TRF
F06TSF
F06TVF
F06TWF
F06TQF
G03BAF
F06TPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FO6TPF
FO6QPF
FO6QXF
FO6QRF
FO6QSF
FO6QVF
FO6QWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06QQF
                   Allocates observations to groups according to selected rules (for use after G03DAF)
Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOSDOF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D01BCF
D01BBF
                                                                                                                                                          ODEs, IVP, Runge-Kutta method, integration over one step ODEs, IVP, Runge-Kutta method, integration over range with output ODEs, IVP, Runge-Kutta method, until function of solution is zero,...
ODEs, IVP, Runge-Kutta-Merson method, until a component attains given...
ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero...
Second-order ODEs, IVP, Runge-Kutta-Nystrom method
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D02PCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02BJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D02BGF
                                                                                                    Compute smoothed data sequence using running median smoothers
                                                                                                                                                                Performs the runs up or runs down test for randomness

Performs the runs up or runs down test for randomness
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOSEAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G08EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     S20ACF
                                                                                                                                                                                                                                            The safe range parameter The safe range parameter for complex floating-point arithmetic
                                                                                                                                        Multi-dimensional quadrature, Sag-Szekeres method, general product region or n-sphere
                                             Robust confidence intervals, one-sample
Robust confidence intervals, one-sample
Robust confidence intervals, two-sample
....Mann-Whitney U statistic, to ties in pooled sample
....the Maun-Whitney U statistic, ties in pooled sample
....the Maun-Whitney U statistic, ties in pooled sample
....the Maun-Whitney U statistic, ties in pooled sample cross spectrum using rectangular, Bartlett, Tukey or...
Multivariate time series, sample autocorrelation function
Multivariate time series, sample cross-spectrum using spectral smoothing by...
Multivariate time series, sample cross-correlation or cross-covariance matrices
Paeudo-random sample from an integer vector
Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
Computes probabilities for the two-sample Kolmogorov-Smirnov test for a user-supplied distribution
Performs the one-sample Kolmogorov-Smirnov test for a user-supplied distribution
Performs the Wilcoxon one-sample Kolmogorov-Smirnov test for standard distributions
Performs the Wilcoxon one-sample Kolmogorov-Smirnov test for standard distributions
Performs the Wilcoxon one-sample partial lag correlation matrices, \chi^2 statistics and...
Univariate time series, smoothed sample spectrum using spectral smoothing by...
Computes a trimmed and wintorised mean of a single sample with estimates of their variance
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G07EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       COTERF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G07EBF
G08AJF
G08AKF
G13ABF
G13CCF
G13CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13DMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13DMF
G05EJF
G01EYF
G01EZF
G08CDF
G08CCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G08CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G08AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GI3CRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G07DDF
                                    Sign test on two paired samples
Friedman two-way analysis of variance on k matched samples
Performs the Mann-Whitney U test on two independent samples of unequal size
Median test on two samples of unequal size
Kruskal-Wallis one-way analysis of variance on k samples of unequal size
Mood's and David's tests on two samples of unequal size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOSAHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G08ACF
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
                                                                                                              Multiply real vector by scalar
Multiply complex vector by complex scalar
Multiply complex vector by real scalar

Multiply complex vector by real scalar into complex vector

Broadcast scalar into integer vector

Broadcast scalar into integer vector

Multiply real vector by scalar, preserving input vector

Multiply complex vector by scalar, preserving input vector

Multiply complex vector by real scalar, preserving input vector

Add scalar times complex sparse vector to complex sparse vector

Add scalar times complex vector to real sparse vector

Add scalar times real sparse vector to real sparse vector

Add scalar times real sparse vector to real sparse vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06EDF
                                                                                                                                                                  Multiply real vector by scalar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06JDF
F06HBF
F06DBF
F06FBF
F06FDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06KDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06GTF
                                                                                                                          Compute quotient of two real scalars, with overflow flag
Compute quotient of two complex scalars, with overflow flag
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06CLF
                                                                   Robust estimation, M-estimates for location and scale parameters, standard weight functions Robust estimation, M-estimates for location and scale parameters, user-defined weight functions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G07DBF
                                                                                Scaled complex complement of error function, \exp(-z^2)\operatorname{erfc}(-iz)
Scaled derivatives of \psi(x)
Compute Euclidean norm from scaled form
Update Euclidean norm of real vector in scaled form
Update Euclidean norm of complex vector in scaled form
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       S15DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06KJF
                                       Performs principal co-ordinate analysis, classical metric scaling
Performs non-metric (ordinal) multidimensional scaling
Sum or difference of two real matrices, optional scaling and transposition
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G03FAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G03FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F01CTF
```

```
Sum or difference of two complex matrices, optional scaling and transposition
                                                                                                                                                                                                                          Scatter complex sparse vector Scatter real sparse vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02DDF
                                                          ... bicubic splines with automatic knot placement, scattered data
                                                                                                                                                                                      Lineprinter scatterplot of one variable against Normal scores
Lineprinter scatterplot of two variables
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOLAHE
                                                                                                                                                                                                      Gram-Schmidt orthogonalisation of n vectors of order m
                                                                                                                                                          All eigenvalues and Schur factorization of complex general matrix (Black Box)
Reorder Schur factorization of complex matrix, form orthonormal basis...
Reorder Schur factorization of complex matrix using unitary...
Eigenvalues and Schur factorization of complex upper Hessenberg matrix...
All eigenvalues and Schur factorization of real general matrix (Black Box)
Reorder Schur factorization of real matrix, form orthonormal basis...
Reorder Schur factorization of real matrix using orthogonal...
Eigenvalues and Schur factorization of real upper Hessenberg matrix...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F02GAF
F08QUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FOSOTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FORPSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F02EAF
F08QGF
F08QFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F08PEF
                                                                                                                                                                     Computes factor score coefficients (for use after G03CAF)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G03CCF
                                          Lineprinter scatterplot of one variable against Normal scores
...approximate Normal scores or exponential (Savage) scores
Normal scores, accurate values
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
Normal scores, approximate values
Normal scores, approximate variance-covariance matrix
Produces standardized values (z-scores) for a data matrix
Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G01AHF
G01DHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GOIDHF
GOIDHF
GOIDBF
GOIDCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G03ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G01DHF
                                                                       ...algorithm, from given starting value, binary search for interval
Binary search for interval containing zero of continuous function...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C05AGF
C05AVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13AAF
G13ADF
G13AJF
    Univariate time series, seasonal and non-seasonal differencing
Univariate time series, preliminary estimation, seasonal ARIMA model
Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model
Univariate time series, estimation, seasonal ARIMA model (comprehensive)
Univariate time series, estimation, seasonal ARIMA model (easy-to-use)
Univariate time series, seasonal and non-seasonal differencing
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GISAEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GISAFI
         Selected eigenvalues and eigenvectors of complex Hermitian...

Estimates of sensitivities of selected eigenvalues and eigenvectors of complex nonsymmetric...

Selected eigenvalues and eigenvectors of complex upper triangular...

Selected eigenvalues and eigenvectors of real nonsymmetric...

Selected eigenvalues and eigenvectors of real nonsymmetric...

Selected eigenvalues and eigenvectors of real upper quasi-triangular...

Selected eigenvalues and eigenvectors of real upper quasi-triangular...

Selected eigenvalues of real symmetric tridiagonal matrix by...

Selected eigenvalues of real symmetric tridiagonal matrix by...

Selected eigenvalues, with estimates of sensitivities

...orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities

Selected eigenvalues, with estimates of sensitivities

Selected eigenvalues of real symmetric tridiagonal matrix by...

Selected right and/or left eigenvectors of complex upper...

Allocates observations to groups according to selected right and/or left eigenvectors of real upper...

Computes multiway table from set of classification factors using selected statistic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F02HCF
F02GCF
F08QYF
F02ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FORECE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F08QGF
F08QUF
F08JXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F08JKF
F08PXF
F08PKF
G03DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G11BAF
                                                           One-dimensional quadrature, adaptive, infinite or semi-infinite interval One-dimensional quadrature, adaptive, semi-infinite interval, weight function \cos(\omega x) or \sin(\omega x)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D01AMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08QGF
F08QUF
F08QYF
                                                 ...selected eigenvalues, with estimates of sensitivities
...subspace for selected eigenvalues, with estimates of sensitivities
Estimates of sensitivities of selected eigenvalues and eigenvectors of...
Estimates of sensitivities of selected eigenvalues and eigenvectors of...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08QLF
Complex conjugate of Hermitian sequence
Complex conjugate of Hermitian sequence
Complex conjugate of complex sequence
Initialise random number generating routines to give repeatable sequence
...number generating routines to give non-repeatable sequence
Generate sequence of complex plane rotations
Generate sequence of plane rotations
...factorisation of ZU, U real upper triangular, Z a sequence of plane rotations
Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations
...factorisation of ZU, U complex upper triangular, Z a sequence of plane rotations
...factorisation of EV, U complex upper triangular, Z a sequence of plane rotations
...factorisation and triangular, Z a sequence of plane rotations
...factorisation and triangular matrix is plane and triangular is plane and triangular
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COSGRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06HQF
F06QMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06QTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06VXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06TRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO6TRF
FO6TSF
FO6TVF
FO6TWF
FO6TQF
FO6TPF
FO6QPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06QPF
F06QXF
F06QRF
F06QVF
F06QWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06QQF
F06FQF
                                                                                          Complex conjugate of multiple Hermitian sequence
                                               Convert Hermitian sequences to general complex sequences
...transform, using complex data format for Hermitian sequences
...Convert Hermitian sequences to general complex sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C06PAF
                                                    Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values...

Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values...

Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             E04UCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E04UFF
E04UNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GOSEBF
                                                                                                                                                                 Performs the pairs (serial) test for randomness
                                                                                                                                                                           Creates the risk sets associated with the Cox proportional hazards model...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G12ZAF
                     Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional molecule, iterate to convergence
Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional molecule, one iteration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D03UBF
                                                                                              Acceleration of convergence of sequence, Shanks' transformation and epsilon algorithm
                                                                                                                                                                                                                                   Shapiro and Wilk's W test for Normality
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G01DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              E01SEF
                                                                                                                      Interpolating functions, modified Shepard's method, two variables
```

KWIC.38 [NP3390/19]

```
E01SGF
                                                                                                     Interpolating functions, modified Shepard's method, two variables
                                                                                                       ODEs, boundary value problem, shooting and matching, boundary values to be determined ODEs, boundary value problem, shooting and matching, general parameters to be determined ODEs, boundary value problem, shooting and matching technique, allowing interior matching point,... ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic
                                                                                                                                                                                                                                                                                                                                                                                                                            D02HAF
                                                                                                                                                                                                                                                                                                                                                                                                                             D02HBF
                                                                                                                                                                                                                                                                                                                                                                                                                             D02AGE
                                                                                                                                                                                                                                                                                                                                                                                                                             D02SAF
                                                                                                                                                                                                                                                                                                                                                                                                                            H03ADF
                                                                                                                                                                                                      Shortest path problem, Dijkstra's algorithm
                                                                                                                                                                                                                                                                                                                                                                                                                            G08AAF
                                                                                                                                                                                                      Sign test on two paired samples
                                                                                                                                                                                                                                                                                                                                                                                                                          G08AGF
                                                Performs the Wilcoxon one-sample (matched pairs) signed rank test
                                                                                ...correlation matrices, \chi^2 statistics and significance levels

Computes bounds for the significance of a Durbin-Watson statistic
                                                                                                                                                                                                                                                                                                                                                                                                                             G13DNF
G01EPF
                   Apply complex similarity rotation to 2 by 2 Hermitian matrix
Apply real similarity rotation to 2 by 2 symmetric matrix
Reorder Schur factorization of real matrix using orthogonal similarity transformation
Reorder Schur factorization of complex matrix using unitary similarity transformation
Unitary similarity transformation of Hermitian matrix as a sequence...
Orthogonal similarity transformation of real symmetric matrix as a sequence...
                                                                                                                                                                                                                                                                                                                                                                                                                             F06CHF
                                                                                                                                                                                                                                                                                                                                                                                                                              F06BHF
                                                                                                                                                                                                                                                                                                                                                                                                                              FOROFF
                                                                                                                                                                                                                                                                                                                                                                                                                              FOROTE
                                                                                                                                                                                                                                                                                                                                                                                                                             F06QMF
                                                                                                                                                                                                                                                                                                                                                                                                                             D01PAF
E04CCF
                                                                                Multi-dimensional quadrature over an n-simplex
Unconstrained minimum, simplex algorithm, function of several variables using...
          Unconstrained minimum, simplex algorithm, function of several variables using...

Solution of real sparse simultaneous linear equations (coefficient matrix already factorized).

Solution of real almost block diagonal simultaneous linear equations (coefficient matrix already factorized...

Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized...

Solution of real symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized...

Solution of real simultaneous linear equations (coefficient matrix already factorized...

Solution of real simultaneous linear equations, one right-hand side (Black Box)

Solution of real symmetric positive-definite tridiagonal simultaneous linear equations, one right-hand side (Black Box)

Solution of real symmetric positive-definite simultaneous linear equations, one right-hand side using...

Solution of real simultaneous linear equations, one right-hand side using...

Solution of real simultaneous linear equations using iterative refinement...

Solution of real simultaneous linear equations using iterative refinement...

Solution of real simultaneous linear equations with multiple right-hand sides...

Solution of real simultaneous linear equations with multiple right-hand sides...

Solution of complex simultaneous linear equations with multiple right-hand sides...

Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides...

Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides...

Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides...

Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides using...

Solution of real symmetric positive-definite simultaneous linear equations with multiple right-hand sides using...
                                                                                                                                                                                                                                                                                                                                                                                                                            F04AXF
                                                                                                                                                                                                                                                                                                                                                                                                                             FO4LEF
                                                                                                                                                                                                                                                                                                                                                                                                                            F04LEF
F04LHF
F04MCF
F04AGF
F04AJF
F04ARF
                                                                                                                                                                                                                                                                                                                                                                                                                            F04ARF
F04EAF
F04ASF
F04ATF
F04AFF
F04AAF
F04AAF
                                                                                                                                                                                                                                                                                                                                                                                                                              F04ADF
                                                                                                                                                                                                                                                                                                                                                                                                                             X02AHF
                                                                                         The largest permissible argument for sin and cos
                           Generate complex plane rotation, storing tangent, real sine
Recover cosine and sine from given complex tangent, real sine
...complex rectangular matrix, real cosine and complex sine
...complex rectangular matrix, complex cosine and real sine
...rotations, complex rectangular matrix, real cosine and sine
Recover cosine and sine from given complex tangent, real cosine
Recover cosine and sine from given complex tangent, real sine
Recover cosine and sine from given real tangent
Sine integral Si(x)
Discrete sine transform
Discrete sine transform (easy-to-use)
Discrete quarter-wave sine transform (easy-to-use)
                                                                                                                                                                                                                                                                                                                                                                                                                             F06CBF
                                                                                                                                                                                                                                                                                                                                                                                                                              F06CDF
                                                                                                                                                                                                                                                                                                                                                                                                                              F06TXF
                                                                                                                                                                                                                                                                                                                                                                                                                              F06TYF
                                                                                                                                                                                                                                                                                                                                                                                                                              F06CCF
F06CDF
                                                                                                                                                                                                                                                                                                                                                                                                                              F06BCF
S13ADF
                                                                                                                                                                                                                                                                                                                                                                                                                              COSHAF
                                                                                                                                                                                                                                                                                                                                                                                                                              C06HCF
Nonlinear convolution Volterra-Abel equation, second kind, weakly singular
Nonlinear convolution Volterra-Abel equation, first kind, weakly singular
Generate weights for use in solving weakly singular Abel-type equations
Linear non-singular Fredholm integral equation, second kind, smooth kernel
Linear non-singular Fredholm integral equation, second kind, split kernel
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and...
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue only,...
                                                                                                                                                                                                                                                                                                                                                                                                                              D05BDF
                                                                                                                                                                                                                                                                                                                                                                                                                              D05BEF
                                                                                                                                                                                                                                                                                                                                                                                                                              D05BYF
                                                                                                                                                                                                                                                                                                                                                                                                                             D05ABF
D05AAF
D02KEF
                                                                                                                                                                                                                                                                                                                                                                                                                             D02KDF
  One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points ...finite interval, weight function with end-point singularities of algebraico-logarithmic type
                                                                                                                                                                                                                                                                                                                                                                                                                              D01ALF
D01APF
                                                                                                                                                                                                                                                                                                                                                                                                                              SIOABF
                                     Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional molecule, one iteration
                                                                                                                                                                                                                                                                                                                                                                                                                             D03EBF
                                                                                                                                                                                                                                                                                                                                                                                                                             D03UBF
                                                                                                                                                       Mean, variance, skewness, kurtosis, etc, one variable, from frequency table
Mean, variance, skewness, kurtosis, etc, one variable, from raw data
Mean, variance, skewness, kurtosis, etc, two variables, from raw data
                                                                                                                                                                                                                                                                                                                                                                                                                             G01ADF
                                                                                                                                                                                                                                                                                                                                                                                                                              GOLABE
                                                                               Elements of real vector with largest and smallest absolute value

The smallest positive model number
                                                                                                                                                                                                                                                                                                                                                                                                                              X02AKF
                                    Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
                                                                                                                                                                                                                                                                                                                                                                                                                              G01EYF
                                   Computes probabilities for the two-sample Kolmogorov-Smirnov distribution
Performs the two-sample Kolmogorov-Smirnov test
Performs the one-sample Kolmogorov-Smirnov test for a user-supplied distribution
Performs the one-sample Kolmogorov-Smirnov test for standard distributions
                                                                                                                                                                                                                                                                                                                                                                                                                              G01EZF
G08CDF
                 Linear non-singular Fredholm integral equation, second kind, smooth kernel
                                                                                                                                                                                                                                                                                                                                                                                                                              D05ABF
                                                                                                                             Compute smoothed data sequence using running median smoothers
Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett,...
Multivariate time series, smoothed sample cross spectrum using spectral smoothing by...
Univariate time series, smoothed sample spectrum using rectangular, Bartlett,...
Univariate time series, smoothed sample spectrum using spectral smoothing by...
                                                                                                                                                                                                                                                                                                                                                                                                                              G10CAF
G13CCF
                                                                                                                                                                                                                                                                                                                                                                                                                              G13CDF
G13CAF
G13CBF
                                                                                                                                                                                                                                                                                                                                                                                                                              G10CAF
                                Compute smoothed data sequence using running median smoothers
      Univariate time series, smoothed sample spectrum using spectral smoothing by the trapesium frequency (Daniell) window
...smoothed sample cross spectrum using spectral smoothing by the trapesium frequency (Daniell) window
Fit cubic smoothing spline, smoothing parameter estimated
Fit cubic smoothing parameter given
Fit cubic smoothing spline, smoothing parameter estimated
Fit cubic smoothing spline, smoothing parameter given
                                                                                                                                                                                                                                                                                                                                                                                                                              G13CBF
                                                                                                                                                                                                                                                                                                                                                                                                                              G13CDF
G10ACF
                                                                                                                                                                                                                                                                                                                                                                                                                               G10ABF
G10ACF
                                                                                                                                                                                                                                                                                                                                                                                                                              G10ABF
                                                                                                                                                                                                                                                                                                                                                                                                                              S21CAF
                                                                                                                       Jacobian elliptic functions on, on and dn
                                                                                                                                                                                                       Soft fail
                                                                                                                                                                                                                                                                                                                                                                                                                              P01
                                                                                                                                                                                                        Sort a vector, character data
Sort a vector, integer numbers
Sort a vector, real numbers
Sort two-dimensional data into panels for fitting bicubic splines
                                                                                                                                                                                                                                                                                                                                                                                                                              M01CCF
```

```
Solution of complex spaces. Hermitian linear system, conjugate gradient/Lanczon... Solution of complex spaces. Hermitian linear system, conjugate gradient/Lanczon... Complex spaces. Hermitian matrix. incomplex Cholesky factorization Complex spaces. Hermitian matrix complex deviations. Complex spaces. Hermitian matrix incomplex Cholesky factorization Complex spaces. Hermitian matrix incomplex Cholesky factorization Complex spaces. Hermitian matrix incomplex Cholesky factorization Complex spaces. Jacobian. Comprehensive)

Implicit/algebraic ODEs. stiff IVP, spaces. Jacobian. (comprehensive)

ODEs, IVP, for use with DOZM-N rotation. spaces. Jacobian. (comprehensive)

ODEs, IVP, for use with DOZM-N rotation. spaces. Jacobian. enquiry retting and complex spaces. Jacobian. enquiry retting spaces. Jacobian. Spaces. Jacobian. enquiry retting spaces. Jacobian. English setup. Spaces. Jacobian. English spaces. Jacobian. J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F11JSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F11JSF
F11JQF
F11JRF
F11JNF
F11ZPF
F11XSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D02NDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D02NJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D02NRF
D02NRF
D02NXF
D02NUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F04OAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F01BRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FOIRSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F01BSF
F11BSF
F11DSF
F11DQF
F11BTF
F11DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FIIBRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FIIDRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F11DRF
F11ZNF
F11XNF
F11DEF
F11DCF
F11BCF
F11BFF
F11DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F11BEF
F11BBF
F11BAF
F11BDF
F11DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F11ZAF
F11XAF
F04AXF
F02FJF
F11JEF
F11JCF
F11GCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FIIGRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F11GBF
F11GAF
F11JDF
F11JAF
F11ZBF
F11XEF
F06ETF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FOSEUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06EVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FOGEVE
FOGEWE
FOGGTE
FOGGVE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06GWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06EXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F01BSF
                                                     LU factorization of real sparse matrix with known sparsity pattern
                                                                                                                                                                                                                PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF,...
PDEs, spatial interpolation with D03PDF or D03PJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D03PZF
D03PYF
                                                                                                                                                                                                          Kendall/Spearman non-parametric rank correlation coefficients,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G02BPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02BRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02BNF
                                                                                                                                Least-squares polynomial fit, special data points (including interpolation)
Approximation of special functions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      E02AFF
                                                    coherency, bounds, univariate and bivariate (cross) spectra....phase, bounds, univariate and bivariate (cross) spectra
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13CFF
        Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
                                                                Multivariate time series, noise spectrum, bounds, impulse response function and its standard error Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate...

Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Takey or Parsen lag window Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parsen lag window Univariate time series, smoothed sample spectrum using spectral smoothing by the trapesium frequency...

Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13CCF
G13CBF
G13CDF
                                                  ...Sag-Szekeres method, general product region or n-sphere
Multi-dimensional quadrature over an n-sphere, allowing for badly-behaved integrands
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D01FDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D01JAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06QSF
QR or RQ factorization by sequence of plane rotations, real upper spiked matrix
...by sequence of plane rotations, complex upper spiked matrix
Compute upper spiked matrix by sequence of plane rotations, complex...
Compute upper spiked matrix by sequence of plane rotations, real...
                                                                                                 Evaluation of fitted bicubic spline at a mesh of points
Evaluation of fitted bicubic spline at a vector of points
Least-squares cubic spline curve fit, automatic knot placement
Interpolating functions, fitting bicubic spline, data on rectangular grid
Evaluation of fitted cubic spline, definite integral
Least-squares curve cubic spline fit (including interpolation)
Evaluation of fitted cubic spline, function and derivatives
Evaluation of fitted cubic spline, function only
Interpolating functions, cubic spline, interpolant, one variable
Fit cubic smoothing spline, smoothing parameter estimated
Fit cubic smoothing spline, smoothing parameter given
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E02DFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E02DEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E02BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       E02BEF
E01DAF
E02BDF
E02BAF
E02BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E01BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GIOACE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GIOABF
                                    Least-squares surface fit, bicubic splines

Sort two-dimensional data into panels for fitting bicubic splines

Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid

Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E02ZAF
E02DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E02DDF
                    Linear non-singular Fredholm integral equation, second kind, split kernel
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D02M-N
                                                                                                                                                                                                                                           SPRINT package
```

KWIC.40 [NP3390/19]

```
...one iteration of Kalman filter, time-varying, square root covariance filter ...one iteration of Kalman filter, time-invariant, square root covariance filter ... Compute square root of (a^2+b^2), real a Square root of complex number Convert real matrix between packed triangular and square storage schemes Convert complex matrix between packed triangular and square storage schemes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSBNE
                                                                              Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate...

Computes Mahalanobis squared distances for group or pooled variance-covariance...

Multivariate time series, multiple squared partial autocorrelations
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G13DBF
    ...boundary value problem, collocation and least-squares
Check user's routine for calculating Hessian of a sum of squares
Real general Gauss-Markov linear model (including weighted least-squares)
...Gauss-Markov linear model (including weighted least-squares)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DOSTGE
                                                        Check user's routine for calculating Hessian of a sum of squares al Gauss-Markov linear model (including weighted least-squares)

...Gauss-Markov linear model (including weighted least-squares)

...Gauss-Markov linear model (including weighted least-squares)

...Gauss-Markov linear model (including weighted least-squares)

Calculates R<sup>2</sup> and Cp values from residual sums of squares, combined Gauss-Newton and modified Newton algorithm...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and signithm...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton algorithm...

Least-squares (and prophy combined Gauss-Newton and gauss-Newton and gauss-Newton and prophy combined Gauss-Newton and gauss-Newton and prophy combined Gauss-Newton and gauss-Newton and gauss-Newton and gauss-Newton and gauss-Newton and gauss-Newton and gauss-Ne
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G02ECF
E04GDF
E04GZF
E04FCF
E04FYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E04HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E04HYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E04GBF
E04GYF
E02BEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E02BAF
E02ADF
G02EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G04DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F04JGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G02BUF
G02BWF
G02BTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E04UNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               E02AFF
E02AGF
F04JMF
F04KMF
E04NCF
F04QAF
E04YCF
D02JAF
F04AMF
F04JAF
F04JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E02AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E02DAF
E02DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    E02DDF
                           ...system, RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner (Black Box)
...RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
...conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
...conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
...preconditioning matrix generated by applying SSOR to complex sparse Hermitian matrix
...preconditioning matrix generated by applying SSOR to complex sparse non-Hermitian matrix
...pre-conditioning matrix generated by applying SSOR to real sparse nonsymmetric matrix
...pre-conditioning matrix generated by applying SSOR to real sparse symmetric matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F11JEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F11JSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FILIRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F11DRF
F11DDF
F11JDF
Performs the \chi^2 goodness of fit test, for standard Robust estimation, median absolute deviation, robust standard Computes quantities needed for range-mean or standard Performs the one-sample Kolmogorov-Smirnov test for standard Performs the one-sample Reduction to standard Performs the sample Reduction to standard Performs the performs the performs the sample Reduction to standard Performs the performs the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G08CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G07DAF
G13AUF
G08CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOZGNE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G13CGF
G04BBF
G04BCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G04CAF
G13DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GISDKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G02GKF
G02DKF
F08UEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F08USF
F01BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F08SSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F08TSF
F08SEF
F08TEF
G02HAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GOIFAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G07DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G02FAF
                                                                                                                                                                                                                                                                                      Calculates standardized residuals and influence statistics
Produces standardized values (s-scores) for a data matrix
                                         Computes probability for the Studentised range statistic
Computes bounds for the significance of a Durbin-Watson statistic
Computes deviates for the Studentised range statistic
Computes Durbin-Watson test statistic
...set of classification factors using selected statistic
Computes t-test statistic for a difference in means between two Normal populations,...
Computes test statistic for equality of within-group covariance matrices and...
Computes the exact probabilities for the Mann-Whitney U statistic, no ties in pooled sample
Computes the exact probabilities for the Mann-Whitney U statistic, ties in pooled sample
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01EPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01FMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GIIBAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G08AKF
 Order statistics ...quadratic forms in Normal variables, and related statistics Calculates standardized residuals and influence statistics Multivariate time series, sample partial lag correlation matrices, \chi^2 statistics and significance levels \chi^2 statistics for two-way contingency table
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G01D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        GOINEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GIIAAF
                                                                                                                                                                                                                                                                            Constructs a stem and leaf plot
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01ARF
                                                                                                                                                                     Transportation problem, modified 'stepping stone' method
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     H03ABF
                                                                                                                                                                                                               Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)
Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)
ODEs, stiff IVP, BDF method, until function of solution is zero,...
Explicit ODEs, stiff IVP, full Jacobian (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02NCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D02NBF
```

```
Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive)
Explicit ODEs, stiff IVP (reverse communication, comprehensive)
Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive)
Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive)
Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02NGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DOSNNE
                                                                                                                            Computes probability for the Studentized range statistic
Computes deviates for the Studentized range statistic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01FMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G01EBF
                                                                            Computes probabilities for Student's f-distribution
Computes deviates for Student's f-distribution
Computes probabilities for the non-central Student's f-distribution
Pseudo-random real numbers, Student's f-distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GOIFBE
                                                                                                                                                                                    Second-order Sturm-Liouville problem, regular system, finite range,...
Second-order Sturm-Liouville problem, regular/singular system,...
Second-order Sturm-Liouville problem, regular/singular system,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D02KDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G04AGF
                              Two-way analysis of variance, hierarchical classification, subgroups of unequal size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06
                                                                                                                                                         Basic Linear Algebra Subprograms
                                                        Sum absolute values of complex vector elements
Sum absolute values of real vector elements
Sum of a Chebyshev series
Check user's routine for calculating Hessian of a sum of squares
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F06JKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F06EKF
C06DBF
                                                                                            Purm of a Chebyshev series

Sum of a valuates

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton...

Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-Newton...

Computes sum of squares for contrast between means

Computes sum of squares for contrast between means

Computes a weighted sum of squares matrix

Update a weighted sum of squares matrix

Update a weighted sum of squares matrix with a new observation

Minimum of a sum of squares, nonlinear constraints, sequential QP method,...

Sum or difference of two complex matrices,...

Sum or difference of two real matrices,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04YBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                E04YBF
E04GDF
E04GZF
E04FCF
E04FYF
E04HEF
E04HYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E04GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 E04GYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G04DAF
G02BUF
G02BWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G02BTF
E04UNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F01CTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G01ALF
                                                                                                                                                      Computes a five-point summary (median, hinges and extremes)
                                                                                                                                                                                                                                     Summation of Series
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GOZECE
                                                                           Calculates R^2 and C_P values from residual sums of squares Computes residual sums of squares for all possible linear regressions for...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  E02DAF
                                                                                                                                                                                    Least-squares surface fit, bicubic splines
Least-squares surface fit by bicubic splines with automatic knot placement,...
Least-squares surface fit by bicubic splines with automatic knot placement,...
Least-squares surface fit by polynomials, data on lines
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   E02DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  E02CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 G12AAF
                                           Computes Kaplan-Meier (product-limit) estimates of survival probabilities
                                                                                            Plan-Meier (product-mails) SVD
SVD of complex matrix (Black Box)
SVD of complex upper triangular matrix (Black Box)
SVD of real bidiagonal matrix reduced from complex general matrix
SVD of real bidiagonal matrix reduced from real general matrix
SVD of real matrix (Black Box)
SVD of real matrix (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F02WDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F02XEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F02XUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F02WUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06GGF
                                                                                                                                                                                                                                      Swap two complex vectors
Swap two real vectors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06EGF
Solve real Sylvester matrix equation AX + XB = C, A and B arc...

Solve complex Sylvester matrix equation AX + XB = C, A and B arc...

Matrix-vector product, real symmetric band matrix
...Frobenius norm, largest absolute element, real symmetric band matrix
...Frobenius norm, largest absolute element, real symmetric band matrix
...Frobenius norm, largest absolute element, real symmetric band matrix
...Frobenius norm, largest absolute element, real symmetric band matrix
...Frobenius norm, largest absolute element, real symmetric indefinity

All eigenvalues and optionally all eigenvectors of real symmetric eigenproblem (Black Box)

Bunch-Kaufman factorisation of real symmetric eigenproblem (Black Box)

Estimate condition number of real symmetric eigenproblem (Black Box)

Estimate condition number of real symmetric indefinite matrix, matrix already factorised by FOTMDF

Estimate condition number of real symmetric indefinite matrix, matrix already factorised by FOTMDF

Inverse of real symmetric indefinite matrix, matrix already factorised by FOTMDF

Refined solution with error bounds of real symmetric indefinite matrix, packed storage

Refined solution with error bounds of real symmetric indefinite system of linear equations...

Solution of real sparse symmetric linear system, conjugate gradient/Lancoo method....

Solution of real sparse symmetric linear system, conjugate gradient/Lancoo method....

Solution of real sparse symmetric linear system, conjugate gradient/Lancoo method....

Real sparse symmetric linear system, singular gradient/Lancoo method....

Real sparse symmetric linear system, singular gradient/Lancoo method.....

Real sparse symmetric linear system, singular gradient/Lancoo method.....

Real sparse symmetric linear system, singular gradient/Lancoo method......

Real sparse symmetric matrix

Matrix-vector product, real symmetric matrix

Rank-1 update, real symmetric matrix

Rank-2 update, real symmetric matrix

Rank-2 update, real symmetric matrix

Rank-2 update, real symmetric matrix

R
                                                                                                                                                                                   Solve real Sylvester matrix equation AX + XB = C, A and B are... Solve complex Sylvester matrix equation AX + XB = C, A and B are...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FOROHE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06REF
F06UHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOSHEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F08HCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F08HCF
F02FJF
F07MDF
F07MJF
F07PGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F07PJF
F07PDF
F07MHF
F07MEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F07PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F07PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F07PHF
F11JEF
F11JCF
F11GCF
F11GBF
F11GAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOSBPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06PCF
F06PPF
F06PRF
F06RCF
F06UFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06YPF
F06YRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06ZUF
F06ZWF
F07NRF
F11JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FOOQMF
FOOFAF
FOOFCF
F11JAF
FOOTNUF
FOOTNUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F07QUF
F07QWF
```

[NP3390/19]

```
Bunch-Kaufman factorization of complex symmetric matrix, packed storage
All eigenvalues and optionally all eigenvectors of real symmetric matrix, packed storage, using divide and conquer
Real sparse symmetric matrix reorder routine
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer
...symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR
Real sparse symmetric matrix vector multiply

Matrix-vector product, real symmetric packed matrix
Rank-1 update, real symmetric packed matrix
Rank-2 update, real symmetric packed matrix
Apply real symmetric place rotation to two vectors
Cholesky factorization of real symmetric positive-definite band matrix A
Determinant of real symmetric positive-definite band matrix (Black Box)
Estimate condition number of real symmetric positive-definite band matrix...

Refined solution with error bounds of real symmetric positive-definite band system of linear equations,...
Solution of real symmetric positive-definite band system of linear equations,...

Solution of real symmetric positive-definite matrix

LLL<sup>T</sup> factorization and determinant of real symmetric positive-definite matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F07QRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORGCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F11ZBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FORFEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F08GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSFEF
FOSJEF
F11XEF
F06PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06PQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSPSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FOSFPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F06FPF
F07HDF
F08UFF
F03ACF
F07HGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07HHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F07HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F04ACF
                                                   Solution of real symmetric positive-definite matrix

LLT factorization and determinant of real symmetric positive-definite matrix

Cholesky factorization of real symmetric positive-definite matrix

Cholesky factorization of real symmetric positive-definite matrix

Determinant of real symmetric positive-definite matrix

Determinant of real symmetric positive-definite matrix (Black Box)

Estimate condition number of real symmetric positive-definite matrix, matrix already factorized...

Inverse of real symmetric positive-definite matrix, matrix already factorized...

Estimate condition number of real symmetric positive-definite matrix, matrix already factorized...

Cholesky factorization of real symmetric positive-definite matrix, packed storage

Inverse of real symmetric positive-definite matrix, packed storage

Inverse of real symmetric positive-definite matrix, packed storage

Inverse of real symmetric positive-definite simultaneous linear equations...

Solution of real symmetric positive-definite simultaneous linear equations...

Solution of real symmetric positive-definite simultaneous linear equations with...

Refined solution with error bounds of real symmetric positive-definite system of linear equations,...

Solution of real symmetric positive-definite system of linear equations,...

Solution of real symmetric positive-definite system of linear equations,...

Refined solution with error bounds of real symmetric positive-definite system of linear equations,...

Solution of real symmetric positive-definite Toeplitz matrix

Solution of the Yule-Walker equations for real symmetric positive-definite Toeplitz matrix.

Update solution of real symmetric positive-definite Toeplits system

Solution of real symmetric positive-definite tridiagonal matrix, reduced...

All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal matrix, reduced...

Solution of real symmetric positive-definite tridiagonal simultaneous linear...

LDL<sup>T</sup> factorization of real symmetric positive-definite variable-bandwi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F03AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7FDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORIGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F03ABF
F07FGF
F07FJF
F07GGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07GJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F07GDF
F01ABF
F04AGF
F04AFF
F04ABF
F07FHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO7FEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO7GEF
FO7GHF
FO4MEF
FO4FEF
FO4MFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO4FFF
FO8JUF
                 All eigenvalues and eigenvectors of real symmetric positive-definite tridisgonal simultaneous linear...

Solution of real symmetric positive-definite variable-bandwidth matrix

Solution of real symmetric positive-definite variable-bandwidth matrix

Solution of real symmetric positive-definite variable-bandwidth simultaneous linear...

Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides,...

Solution of complex symmetric system of linear equations, multiple right-hand sides,...

Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides,...

Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form

Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form

Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form

Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form

Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form

Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage

Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal matrix by bisection

Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration,...

Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration,...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, seduced from complex Hermitian...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, seduced from complex Hermitian...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, seduced from complex Hermitian...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, suing divide and co
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F01MCF
F04MCF
F07NVF
F07NSF
F07QSF
F07QVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORFEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORFSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FO8HEF
FO8HSF
FO8GEF
FO8GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FOSJJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORIXE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FOSJKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F08JFF
F08JCF
                                                                                                                                              Reduction to standard form, generalised real symmetric-definite banded eigenproblem

Reduction of real symmetric-definite banded generalised eigenproblem Ax = \lambda Bx...
All eigenvalues of generalised banded real symmetric-definite eigenproblem (Black Box)

Reduction to standard form of real symmetric-definite generalised eigenproblem Ax = \lambda Bx...

Reduction to standard form of real symmetric-definite generalised eigenproblem Ax = \lambda Bx...
All eigenvalues and eigenvectors of real symmetric-definite generalised problem (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F01BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F08UEF
F02FHF
F08SEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F02FDF
                                                                                                                                                                                                                                                                                                                                                                                                                Degenerate symmetrised elliptic integral of 1st kind R_C(x,y)
Symmetrised elliptic integral of 1st kind R_F(x,y,z)
Symmetrised elliptic integral of 2nd kind R_D(x,y,z)
Symmetrised elliptic integral of 3rd kind R_J(x,y,z,r)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S21BAF
Symmetriesed elliptic integral of 2nd kind R<sub>I</sub>(x, y, s)
Symmetriesed elliptic integral of 3nd kind R<sub>I</sub>(x, y, s, r)

Update solution of real symmetric positive-definite Toeplits system
Solution of complex sparse termitian linear system, conjugate gradient/Lancsos method, Jacobi or...
Solution of complex sparse termitian linear system, conjugate gradient/Lancsos method,...
Solution of complex sparse termitian linear system, conjugate gradient/Lancsos method,...
Solution of complex sparse termitian linear system, conjugate gradient/Lancsos method,...
Socond-order Sturm-Liouville problem, regular system, finite range, eigenvalue only
Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue and eigenfunction,...
Solution of long system involving incomplete Cholesky preconditioning matrix...
Solution of complex linear system involving incomplete Cholesky preconditioning matrix...
Solution of complex linear system involving incomplete LU preconditioning matrix...
Solution of linear system involving preconditioning matrix generated by applying...
Solution of linear system involving preconditioning matrix generated by applying...
Solution of linear system involving preconditioning matrix generated by applying...
Solution of linear system involving preconditioning matrix generated by applying...
General system of coavection-diffusion PDEs with source terms in...
General system of coavection-diffusion PDEs with source terms in...
General system of equations, complex triangular matrix
System of equations, real triangular matrix
System of equations, real triangular packed matrix
System of equations, real triangular packed matrix
System of equations, real triangular packed matrix
System of equations, with multiple right-hand ides,...
Solves system of inter-order linear equations. Matter plath-hand ides,...
General system of inter-order linear equations.
Refined solution with error bounds of complex system of inter-order PDEs, method of lines,...
General system of inter-order linear e
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S21BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F04MFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F11JEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F11JSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F11JSF
F11JCF
F11JQF
D02KAF
D02KEF
D02KDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FILIBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FILIPE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F11DBF
F11DPF
F11JRF
F11DRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FIIDDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F11JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            P11JDF
D03PLF
D03PSF
D03PFF
F06SKF
F06SJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06SLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06PKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOSPIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO6PLF
FO6ZJF
FO6YJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D02JBF
D03PKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D03PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DOSPEF
FO7AHF
FO7AVF
FO7BHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F07BVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7FHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FO7FVF
```

```
Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides. Refined solution with error bounds of complex symmetric system of linear equations, multiple right-hand sides. Refined solution with error bounds for solution of real triangular system of linear equations, multiple right-hand sides. Solution of real triangular system of linear equations, multiple right-hand sides. Solution of complex triangular system of linear equations, multiple right-hand sides. Solution of complex triangular system of linear equations, multiple right-hand sides. Solution of creal band triangular system of linear equations, multiple right-hand sides. Solution of real band triangular system of linear equations, multiple right-hand sides. Solution of complex band triangular system of linear equations, multiple right-hand sides. Solution of complex band triangular system of linear equations, multiple right-hand sides. Solution of real band triangular system of linear equations, multiple right-hand sides. Solution of real system of linear equations, multiple right-hand sides. Solution of real symmetric positions of real system of linear equations, multiple right-hand sides. Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides. Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides. Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides. Solution of real symmetric indefinite system of linear equations, multiple right-hand sides. Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides. Solution of real symmetric indefinite system of linear equations, multiple right-hand sides. Solution of real symmetric indefinite system of linear equations, multiple right-hand sides. Solution of complex Hermitian positive-definite system of linear equations, multiple right-hand sides. Solution of real symmetric indef
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07MHF
F07MVF
F07NVF
F07TEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO7THF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO7TSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             FO7TSF
FO7TVF
FO7TVF
FO7VSF
FO7VSF
FO7AEF
FO7AEF
FO7BEF
FO7BEF
FO7FEF
FO7FEF
FO7GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07GEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07GSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO7HEF
FO7HSF
FO7MEF
FO7MSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07NSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07PEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07QSF
F07GHF
F07GVF
F07PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FO7PHF
FO7PVF
FO7QVF
FO7UEF
FO7UHF
FO7UVF
CO5PCF
CO5PDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  COSPDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   COSNCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  C05NBF
C05NDF
D03PJF
D03PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D03PPF
                                                                     General system of parabolic PDEs, coupled DAEs, method of lines,....

General system of parabolic PDEs, method of lines, Chebyshev C<sup>0</sup>...

General system of parabolic PDEs, method of lines, finite differences,...

General system of second-order PDEs, method of lines, finite differences,...

General system of second-order PDEs, method of lines, finite differences,...

General system of second-order PDEs, method of lines, finite differences,...

Solution of real symmetric positive-definite Toeplits system, one right-hand side

Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method,...

Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB method, Jacobi or SSOR...

Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D03PDF
D03PCF
D03RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DOSRAF
DOSRBF
FO4FFF
F11DSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F11DEF
F11DCF
                                                                                                                                     Real sparse nonsymmetric linear systems, diagnostic for F11BBF
Real sparse nonsymmetric linear systems, diagnostic for F11BBF
Complex sparse non-Hermitian linear systems, diagnostic for F11BBF
Real sparse symmetric linear systems, diagnostic for F11BBF
Real sparse non-Hermitian linear systems, diagnostic for F11BBF
Real sparse nonsymmetric linear systems, incomplete LU factorization
Complex sparse non-Hermitian linear systems, incomplete LU factorization
Real sparse nonsymmetric linear systems, preconditioned conjugate gradient or Lanczos
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB...
Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB...
Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB
Real sparse nonsymmetric linear systems, set-up for F11BBF
Real sparse non-Hermitian linear systems, set-up for F11BBF
Real sparse non-Hermitian linear systems, set-up for F11BBF
Real sparse symmetric linear systems, set-up for F11BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FIIBCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F11BCF
F11BTF
F11GCF
F11DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F11DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F11GBF
F11BEF
F11BSF
F11BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FIIBDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FIIGAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    D01FDF
                                                                                                                                                   Multi-dimensional quadrature, Sag-Szekeres method, general product region or n-sphere
                                                                      Computes probabilities for Student's t-distribution
Computes deviates for Student's t-distribution
Computes probabilities for the non-central Student's t-distribution
Pseudo-random real numbers, Student's t-distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G01EBF
G01FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01GBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05DJF
                                                                                                                                                                                                                                                               Computes t-test statistic for a difference in means between two Normal...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01ADF
                                                                  ...skewness, kurtosis, etc, one variable, from frequency table
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GIIAAF
                                                                                                                                       \chi^2 statistics for two-way contingency table
                                                                                                                                \chi^- statistics for two-way contingency table

Two-way contingency table analysis, with \chi^2/Fisher's exact test

Computes marginal tables for multiway table computed by G11BAF or G11BBF

Frequency table from raw data

Computes multiway table from set of classification factors using given percentile/quantile

Computes multiway table from set of classification factors using selected statistic

Contingency table, latent variable model for binary data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G01AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GIIBEF
G01AEF
G11BBF
G11BAF
G11SAF
                                                                                                                                                                                                                       Computes marginal tables for multiway table computed by G11BAF or G11BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     GIIBCF
                                                                                                                                                                                       Computes upper and lower tail probabilities and probability density function for... Computes lower tail probability for a linear combination of (central) \chi^2 variables
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOIEEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G01JDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      S07AAF
                                                                                                                                                                                                                                                                                                              tan x
                                                                                                               Generate real plane rotation, storing tangent
Recover cosine and sine from given real tangent
Generate complex plane rotation, storing tangent, real cosine
Recover cosine and sine from given complex tangent, real cosine
Generate complex plane rotation, storing tangent, real sine
Recover cosine and sine from given complex tangent, real sine
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06BAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       F06BCF
F06CAF
F06CCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F06CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SIOAAF
                          Two-way contingency table analysis, with \chi^2/\text{Fisher's} exact test Performs the Wilcoxon one-asample (matched pairs) signed rank test Performs the two-sample Kolmogorov-Smirnov test Performs the two-sample Kolmogorov-Smirnov test for a user-supplied distribution Shapiro and Wilk's W test for Normality Performs the runs up or runs down test for randomness Performs the pairs (serial) test for randomness Performs the triplets test for randomness Performs the gaps test for randomness Performs the \chi^2 goodness of fit test, for standard continuous distributions Performs the one-sample Kolmogorov-Smirnov test for standard distributions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        G01AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G08AGF
G08CDF
G08CCF
G01DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G08EAF
G08EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOSECE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GOAEDE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G08CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOSCBF
```

KWIC.44 [NP3390/19]

```
G08ALF
G08AHF
G08AAF
G08ACF
G02FCF
                                                                                                                                                                      Performs the Cochran Q test on cross-classified binary data
Performs the Mann-Whitney U test on two independent samples
Sign test on two paired samples
Median test on two samples of unequal size
                                                                                                                                                                                             Computes Durbin-Watson test statistic

Computes f-test statistic for a difference in means between two Normal...

Computes test statistic for equality of within-group covariance matrices...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G03DAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G08
                                                                                                                                                                                                                                                                   Dispersion tests
                                                                                                                                                                                                                                             Goodness of fit tests
Location tests
                                                                                                                                                                                                                        Non-parametric tests

Mood's and David's tests on two samples of unequal size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GOSBAF
                     ...systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
...systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
...non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
...non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FUBER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FIIDQF
                                                                               Elliptic PDE, Helmholtx equation, three-dimensional Cartesian co-ordinates
Three-dimensional complex discrete Fourier transform
Three-dimensional complex discrete Fourier transform, complex...
...finite difference equations by SIP for seven-point three-dimensional molecule, iterate to convergence
...finite difference equations by SIP, seven-point three-dimensional molecule, one iteration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03FAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C06FXF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       D03ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DOSUBE
                                                                       ...probabilities for the Mann-Whitney U statistic, no ties in pooled sample ...probabilities for the Mann-Whitney U statistic, ties in pooled sample
                                                                  ...probabilities for the Mann-Whitney U statistic, ties in pooled sample

Compare two character strings representing date and time
Return date and time as an array of integers

Multivariate time series, cross-correlations

Univariate time series, diagnostic checking of residuals,...
Multivariate time series, estimation of multi-input model
Multivariate time series, estimation of waRMA model
Univariate time series, estimation, seasonal ARIMA model (comprehensive)
Univariate time series, filtering (pre-whitening) by an ARIMA model
Multivariate time series, filtering (pre-whitening) by an ARIMA model
Univariate time series, forecasting from state set of multi-input model
Multivariate time series, forecasting from state set of multi-input model
Multivariate time series, forecasting from state set of multi-input model
Multivariate time series, forecasts and their standard errors

Generates a realisation of a multivariate time series from a VARMA model
Multivariate time series, forecasts and their standard errors

Generate next term from reference vector for ARMA time series model

Multivariate time series, model

Multivariate time series, partial autocorrelations
Multivariate time series, partial autocorrelations from autocorrelations
Multivariate time series, partial autocorrelation from autocorrelations
Multivariate time series, preliminary estimation of transfer function model
Univariate time series, preliminary estimation of transfer function model
Univariate time series, sample cautocorrelation matrices, x<sup>2</sup> statistics...
Univariate time series, sample partial lag correlation matrices, x<sup>2</sup> statistics...
Univariate time series, sample partial and non-seasonal differencing
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X05ACF
X05BAF
X05AAF
G13CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13CEF
G13BCF
G13ASF
G13DSF
G13DLF
G13BEF
G13DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13DCF
G13AEF
G13AFF
G13BAF
G13AHF
G13BHF
G13DJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G05HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       GI3CFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G05EGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G05EGF
G05EWF
G13DBF
G13CGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13ACF
G13DPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G13BDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13ADF
G13ABF
G13DMF
                                                                                          Multivariate time series, sample cross-correlation or cross-covariance matrices

Multivariate time series, sample partial lag correlation matrices, x² statistics...
Univariate time series, seasonal and non-seasonal differencing
Multivariate time series, smoothed sample cross spectrum using rectangular,...
Multivariate time series, smoothed sample spectrum using...
Univariate time series, smoothed sample spectrum using...
Multivariate time series, smoothed sample spectrum using...
Multivariate time series, state set and forecasts from...
Univariate time series, state set and forecasts, from...
Univariate time series, update state set for forecasting
Multivariate time series, update state set for forecasting
Multivariate time series, update state set for forecasting from...
Multivariate time series, update state set for forecasting from...
Convert array of integers representing date and time to character string
Combined measurement and time update, one iteration of Kalman filter, time-invariant,...
Combined measurement and time update, one iteration of Kalman filter, time-varying,...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13DNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13AAF
G13CCF
G13CDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13CAF
G13CBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13BJF
G13AJF
G13AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13BGF
G13DKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       X05ABF
G13EBF
                                                                                                    ...time update, one iteration of Kalman filter, time-invariant, square root covariance filter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13EBF
                                                                                                    ...time update, one iteration of Kalman filter, time-varying, square root covariance filter
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     G13EAF
                                                                             ...equations for real symmetric positive-definite Toeplits matrix
...equations for real symmetric positive-definite Toeplits matrix, one right-hand side
Update solution of real symmetric positive-definite Toeplits system
Solution of real symmetric positive-definite Toeplits system, one right-hand side
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F04MEF
                                                                               Multivariate time series, filtering by a transfer function model Multivariate time series, preliminary estimation of transfer function model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      G13BBF
G13BDF
Multivariate time series, filtering by a transfer function model

Two-dimensional complex discrete Fourier transform
Three-dimensional complex discrete Fourier transform
Discrete cosine transform
Discrete cosine transform
Discrete quarter-wave cosine transform

Single one-dimensional complex discrete Fourier transform, complex data format
Two-dimensional complex discrete Fourier transform, complex data format
Three-dimensional complex discrete Fourier transform, complex data format
Invest Laplace transform, Crump's method
Discrete cosine transform (easy-to-use)
Discrete quarter-wave sine transform (easy-to-use)
Discrete quarter-wave sine transform (easy-to-use)
Discrete quarter-wave sine transform (easy-to-use)
Transform eigenvectors of complex balanced matrix to...

Single one-dimensional real discrete Fourier transform, extra workspace for greater speed
Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
Single one-dimensional real discrete Fourier transform, motified Weeks' method
Single one-dimensional real discrete Fourier transform, no extra workspace
Single one-dimensional real discrete Fourier transform, no extra workspace
One-dimensional complex discrete Fourier transform, no extra workspace
One-dimensional complex discrete Fourier transform, no extra workspace
One-dimensional complex discrete Fourier transform of multi-dimensional data
One-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
Multi-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
Single one-dimensional real and Hermitian complex discrete Fourier transform of multi-dimensional data (using complex data type)

Single one-dimensional real and Hermitian complex discrete Fourier transform of multi-dimensional data (using complex data type)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      COSPUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06HCF
C06HDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C06HDF
D01AQF
C06LCF
C06PCF
C06PUF
C06PXF
C06RAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06RBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06RCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C06RDF
F08NWF
F08NJF
C06FAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06FCF
C06LBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06EAF
C06EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06FFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       C06FJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C06PFF
C06PJF
C06PAF
                                                    ...factorization of real matrix using orthogonal similarity transformation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F08QFF
```

```
...factorization of complex matrix using unitary similarity transformation
Acceleration of convergence of sequence, Shanks' transformation and epsilon algorithm
Apply orthogonal transformation determined by F08AEF or F08BEF
Apply orthogonal transformation determined by F08AFF or F08BEF
Apply unitary transformation determined by F08AFF
Apply orthogonal transformation determined by F08AFF
Apply orthogonal transformation determined by F08GEF
Generate orthogonal transformation matrices from reduction to bidiagonal form...
Generate unitary transformation matrix determined by F08FSF
Apply orthogonal transformation matrix from reduction to Hessenberg form...
Generate unitary transformation matrix from reduction to Hessenberg form...
Generate unitary transformation matrix from reduction to Hessenberg form...
Generate unitary transformation matrix from reduction to tridiagonal form...
Generate unitary transformation matrix from reduction to tridiagonal form...
Generate unitary transformation matrix from reduction to tridiagonal form...
Generate unitary transformation matrix from reduction to tridiagonal form...
Orthogonal similarity transformation of Hermitian matrix as a sequence of plane...
Orthogonal imilarity transformation of real symmetric matrix as a sequence of plane...
Apply orthogonal transformations from reduction to bidiagonal form determined...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08QTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            COSBAE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSAUF
FOSAXF
FOSFGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSGGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSKFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F08KFF
F08KTF
F08FUF
F08GUF
F08NFF
F08NTF
F08NUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORFFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FO8FTF
FO8GFF
FO8GTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06QMF
                                                                                                                                                                                                                                                       Apply orthogonal transformations from reduction to bidiagonal form determined...

Apply unitary transformations from reduction to bidiagonal form determined...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORKGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSKUF
                          Multiple one-dimensional real discrete Fourier transforms
Multiple one-dimensional Hermitian discrete Fourier transforms
Multiple one-dimensional complex discrete Fourier transforms
Multiple one-dimensional complex discrete Fourier transforms (for use before G13DCF)
Multiple one-dimensional complex discrete Fourier transforms using complex data format
Multiple one-dimensional complex discrete Fourier transforms using complex data format and sequences stored...
...one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences
...one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C06FPF
C06FQF
C06FRF
G13DLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C06PRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C06PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           C06PPF
C06PQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          H03ABF
                                                                                                                                                                                                                                                                                                                                           Transportation problem, modified 'stepping stone' method
                     Matrix transposition
Sum or difference of two real matrices, optional scaling and transposition
Sum or difference of two complex matrices, optional scaling and transposition
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F01CRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F01CWF
                                                                                     ...sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window
...cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
                    Matrix copy, real rectangular or trapezoidal matrix Matrix copy, complex rectangular or trapezoidal matrix RQ factorization of complex m by n upper trapezoidal matrix (m \leq n) RQ factorization of real m by n upper trapezoidal matrix (m \leq n) l-norm, \infty-norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix ...Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06QFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06TFF
RQ factorization of complex m by n upper trapposidal matrix (m ≤ n)
RQ factorization of real m by n upper trapposidal matrix (m ≤ n)
l-neorm, co-norm, Probesius norm, largest absolute dement, real trapposidal/triangular matrix

Convert real matrix between packed triangular and equations, real trapposition of the control of the control
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOIRGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F01ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F01ZBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06PGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSPKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06PKF
F06RLF
F06SGF
F06SKF
F06ULF
F06YJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F067 IF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06PFF
F06PJF
F06QPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06OVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06QVF
F06QWF
F06RJF
F06SJF
F06TPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06TVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06TWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F06UJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F07TWF
F07VGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FO7VIIF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F08QKF
F08QLF
F08QXF
F08QYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F06OOF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F06QQF
F06TQF
F02WUF
F02XUF
X04CDF
X04DDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               X04CCF
X04DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FOOLKF
FOOLKF
FOOLKF
FOOLKF
FOOLKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F07UJF
F07UUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FOTHWE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               F08QVF
F08QHF
F06PHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F06PLF
F06SHF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F06SLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07TVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07VEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                F07VSF
F07VVF
F07UEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 F07USE
```

```
Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides,... QR factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of plane rotations ... RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations
                                                                                                                                                                                                                                                                                  Triangulation of plane region
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          D03MAF
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
....complex Hermitian band matrix to real symmetric tridiagonal form
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08FEF
Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08FEF
Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GEF
Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GEF
Generate unitary transformation matrix from reduction to tridiagonal form determined by F08GEF
Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal matrix

Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors...

Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric ...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric...

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric...

All eigenvalues and optionally all eigenvectors of real symmetric tridiagonal matrix, unit reduced from real symmetric...

Solution of real tridiagonal simultaneous linear equations, one right-hand side...

Solution of real tridiagonal simultaneous linear equations, one right-hand side...

Computes a trimmed and winsorized mean of a single sample with estimates...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSFEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FORFSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORHER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSHER
FOSHSF
FOSFFF
FOSFFF
FOSGFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOSGTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FORGER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOAGSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO8JJF
FO8JJF
FO8JXF
FO8JKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F08JSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSJUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSJEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08JGF
F08JFF
F08JCF
F04LEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F04FAF
                                                                                                                                                                                                                               Computes a trimmed and winsorized mean of a single sample with estimates...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G07DDF
                                                                                                                                                                                                                             Performs the triplets test for randomness
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOSECE
                                                             ...sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window ...sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
                                                                                     Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain

Two-dimensional complex discrete Fourier transform

Two-dimensional complex discrete Fourier transform,...

Sort two-dimensional data into panels for fitting bicubic splines

...finite difference equations by SIP, five-point two-dimensional molecule, iterate to convergence
...finite difference equations by SIP, five-point two-dimensional molecule, one iteration
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D03EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          C06PUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E02ZAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DOSEBE
                                                                                                                                                    Computes probabilities for the two-sample Kolmogorov-Smirnov distribution
Performs the two-sample Kolmogorov-Smirnov test
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOACDE
                                                                                                                                                                                                               Two-way analysis of variance, hierarchical classification,... Friedman two-way analysis of variance on k matched samples \chi^2 statistics for two-way contingency table
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G04AGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          GOSAEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GIIAAF
                                                                                                                                                                                                                                                                                  Two-way contingency table analysis, with \chi^2/Fisher's exact test
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G01AFF
                                                                                                                                                                                  Regression using ranks, uncensored data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         GOBRAF
                                                                                                     Dot product of two complex vectors, unconjugated
Dot product of two complex sparse vector, unconjugated
ank-1 update, complex rectangular matrix, unconjugated vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06GAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06SMF
                                                                                                                                                                                                                                                                                Unconstrained minimum of a sum of squares, combined...
Unconstrained minimum, pre-conditioned conjugate gradient...
Unconstrained minimum, pre-conditioned conjugate gradient...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E04GDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E04GZF
E04FCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E04FYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E04HEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E04HYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         E04GBF
E04GYF
                                                                                                                      Switch for taking precautions to avoid underflow
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        X02DAF
                                                                                                               Interpolated values, Aitken's technique, unequally spaced data, one variable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        E01AAF
                  Pseudo-random integer from uniform distribution
Set up reference vector for generating pseudo-random integers, uniform distribution
Generates a vector of random numbers from a uniform distribution
Pseudo-random real numbers, uniform distribution over (0,1)
Pseudo-random real numbers, uniform distribution over (a, b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05DYF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05EBF
G05FAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05CAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G05DAF
                                                         Operations with unitary matrices, form rows of Q, after RQ factorization by F01RJF
Form all or part of unitary Q from LQ factorization determined by F08AVF
Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF
Unitary reduction of complex general matrix to upper Hessenberg...
Unitary reduction of complex general rectangular matrix to...
Unitary reduction of complex Hermitian band matrix to...
Unitary reduction of complex Hermitian matrix to...

Reorder Schur factorization of complex matrix using unitary reduction of complex Hermitian matrix as...
Apply unitary transformation of Hermitian matrix as...
Apply unitary transformation determined by F08ASF or F08BSF
Apply unitary transformation matrix determined by F08FSF
Apply unitary transformation matrix determined by F08FSF
Apply unitary transformation matrix from reduction to...
Apply unitary transformation matrix from reduction to...
Generate unitary transformation matrix from reduction to...
Generate unitary transformation matrix from reduction to...
Apply unitary transformation matrix from reduction to...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FOIRKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FO8AWF
FO8ATF
FO8NSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08KSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FORHSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F08HSF
F08FSF
F08GSF
F08QTF
F06TMF
F08AUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FOSAUF
FOSAXF
FOSFUF
FOSFUF
FOSNUF
FOSFTF
FOSETF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F08KUF
                                                                 ...amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra

Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra

Set up reference vector for univariate ARMA time series model

Univariate time series, diagnostic checking of residuals,...

Univariate time series, estimation, seasonal ARIMA model...

Univariate time series, estimation, seasonal ARIMA model...

Univariate time series, pertain autocorrelations from autocorrelations

Univariate time series, pertain autocorrelation from autocorrelations

Univariate time series, preliminary estimation, seasonal ARIMA...

Univariate time series, sample autocorrelation function

Univariate time series, sample autocorrelation function

Univariate time series, seasonal and non-seasonal differencing

Univariate time series, smoothed sample spectrum using...

Univariate time series, smoothed sample spectrum using...

Univariate time series, state set and forecasts, from fully specified...

Univariate time series, update state set for forecasting
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            G13CFF
G05EGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13ASF
G13AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G13AFF
G13ACF
G13ADF
G13ABF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          G13AAF
G13CAF
```

```
Update a weighted sum of squares matrix with a new observation

Rank-1 update, complex Hermitian matrix

Rank-1 update, complex Hermitian matrix

Rank-1 update, complex Hermitian packed matrix

Rank-1 update, complex Hermitian packed matrix

Rank-1 update, complex rectangular matrix, conjugated vector

Rank-1 update, complex rectangular matrix, unconjugated vector

Update Euclidean norm of complex vector in scaled form

Update Euclidean norm of oral vector in scaled form

Rank-2 update of complex Hermitian matrix

Rank-2 update of complex Hermitian matrix

Rank-2 update of complex Hermitian matrix

Rank-2 update of complex symmetric matrix

Rank-2 update of complex symmetric matrix

Rank-2 update of complex symmetric matrix

Rank-2 update of complex upper triangular matrix

Rank-2 update of real symmetric matrix

Combined measurement and time update, one iteration of Kalman filter, time-invariant,...

Combined measurement and time update, one iteration of Kalman filter, time-invariant,...

Rank-1 update, real symmetric matrix

Rank-2 update, real symmetric matrix

Rank-1 update, real symmetric matrix

Rank-2 update, real symmetric packed matrix

Rank-2 update solution of the Yule-Walker equations for real symmetric matrix

Multivariate time series, update state set for forecasting from multi-input model

....parameters and general linear regression model from updated model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02BTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06SQF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06SSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06SNF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06SMF
F06KJF
F06FJF
F06ZPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06ZRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FO6ZUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06ZUF
F06ZWF
F06TPF
F06YPF
F06YRF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06QPF
G13EBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G13EAF
F06PMF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          F06PPF
F06PRF
F06PQF
F06PSF
F04MFF
F04MEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GI3BGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G02DDF
                                                        ...parameters and general linear regression model from updated model
Computes upper and lower tail probabilities and probability density...

Computes upper and lower tail probabilities and probability density...

Orthogonal reduction of real general matrix to upper Hessenberg form

Unitary reduction of complex general matrix to upper Hessenberg form

QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix

Selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration

Selected right and/or left eigenvectors of real upper Hessenberg matrix by sequence of plane rotations...

Compute upper Hessenberg matrix by sequence of plane rotations...

Eigenvalues and Schur factorization of or complex upper Hessenberg matrix by sequence of plane rotations...

Eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix

Eigenvalues and schur factorization of real upper quasi-triangular matrix

Eigenvalues and eigenvectors of real upper quasi-triangular matrix

Solve real Sylvester matrix equation AX + XB = C, A and B are upper quasi-triangular matrix

Compute upper spiked matrix by sequence of plane rotations, complex upper spiked matrix by sequence of plane rotations, real upper quasi-triangular matrix

Compute upper spiked matrix by sequence of plane rotations, real upper spiked matrix by sequence of plane rotations, real upper traperoidal matrix (m \leq n)

...sequence of plane rotations, real upper traperoidal matrix (m \leq n)

...sequence of plane rotations, complex upper traperoidal matrix (m \leq n)

...matrix by sequence of plane rotations, complex upper traperoidal matrix

QR factorization by sequence of plane rotations, complex upper traperoidal matrix

...selected eigenvalues and eigenvectors of complex upper triangular matrix

...selected eigenvalues and eigenvectors of complex upper triangular matrix

...selected eigenvalues and eigenvectors of complex upper triangular matrix

...selected eigenvalues and eigenvectors of complex upper triangular matrix

...selected eigenvalues and e
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GI3DKF
                                                                                                                                                                                            Multivariate time series, updates forecasts and their standard errors
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G01EEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FOSNEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FO8NEF
FO8NSF
FO6QRF
FO6TRF
FO8PXF
FO6TVF
FO6QVF
FO8PSF
FO8PSF
FO8QLF
FO8QLF
FO8QLF
FO8QLF
FO8QLF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06TSF
F06TWF
F06QWF
F01RGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F01QGF
F06QPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06QVF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F06QWF
F06TPF
F06TVF
F06TWF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F08QXF
F08QYF
F06QQF
F06TQF
F02WUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F02XUF
F08QVF
                                                                   ...terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann...
...conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann...
...conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               D03PFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              D03PSF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              X04
                                                                                                                                                                                                                                               Input/output utilities
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G07DDF
                                                                               ...mean of a single sample with estimates of their variance
                                                                                                                                               ingle sample with estimates of their variance

Analysis of variance, complete factorial design, treatment means and...

Analysis of variance, general row and column design, treatment means and...

Two-way analysis of variance, hierarchical classification, subgroups of unequal size

Friedman two-way analysis of variance on k matched samples

Kruskal-Wallis one-way analysis of variance on k samples of unequal size

Analysis of variance, randomised block or completely randomized design,...

Mean, variance, skewness, kurtosis, etc, one variable, from frequency table

Mean, variance, skewness, kurtosis, etc, one variables, from raw data

Mean, variance, skewness, kurtosis, etc, two variables, from raw data
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              G04CAF
G04BCF
G04AGF
G08AEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G08AFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G04BBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               G01ADF
G01AAF
G01ABF
                         Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after G03DAF)

Normal scores, approximate variance-covariance matrix

....correlation/variance-covariance matrix from correlation/variance-covariance matrix computed by G02BXF

Robust regression, variance-covariance matrix following G02HDF

Computes partial correlation/variance-covariance matrix from correlation/variance-covariance...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G03DBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   G01DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GOZHFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                GOSACE
                                                                                                                                                                                                                         Performs canonical variate analysis
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                G05FSF
                                                                                                                                        Generates a vector of pseudo-random variates from von Mises distribution
                                                                                                                                     on of a multivariate time series from a VARMA model
Multivariate time series, estimation of VARMA model
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G05HDF
                                        Generates a realisation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  G13DCF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  F06DBF
                                                                                 Broadcast scalar into integer vector
Copy integer vector
Add scalar times real vector to real vector
Copy real vector
Compute Euclidean norm of real vector
Add scalar times real sparse vector Gather real sparse vector
Gather real sparse vector
Scatter real sparse vector
Scatter real sparse vector
Broadcast scalar into real vector
Multiply real vector by scalar, preserving input vector
Negate real vector
                                                                                                                                                                              Broadcast scalar into integer vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06DFF
F06ECF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06EFF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06EJF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   F06ETF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06EUF
F06EVF
F06EWF
F06FBF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F06FDF
                                             Multiply real vector by scalar, preserving input vector

Negate real vector

Compute weighted Euclidean norm of real vector

Add scalar times complex vector to complex vector

Copy complex vector

Gather complex sparse vector

Gather complex sparse vector

Gather complex sparse vector
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FOSFGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FOSFKE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06GTF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06GUF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F06GVF
```

[NP3390/19]

```
Scatter complex sparse wester

Multiply complex vector by complex contact can complex wester

Multiply complex vector by complex contact can complex wester

Multiply complex vector by complex contact can complex wester

Capp real vector to camplex wester

Racking and an analysis from a single wester

Peccoder and manager from a single wester

Racking and an analysis from a single wester

Peccoder and manager from a single wester

Racking and an analysis from a single wester

Racking a vector wester wester

Racking a vector wester wester

Racking and an analysis from a single wester

Multiply complex wester by complex scales

Multiply complex wester by capped and an analysis from a single wester

Multiply camplex wester by capped and an analysis from a single wester

Multiply camplex wester by read diagonal matrix

Postor

Multiply camplex wester by read wester

Multiply camplex wester by read diagonal matrix

Postor

Multiply camplex wester by read wester

Multiply camplex wester by read 
Circular convolution or correlation of two complex vectors

Dot product of two real vectors

Swap two real vectors

Dot product of two real sparse vectors

Apply plane rotation to two real sparse vectors

Compute cosine of angle between two real vectors

Apply real symmetric plane rotation to two vectors

Apply real symmetric plane rotation to two vectors

Swap two complex vectors

Apply real plane rotation to two complex vectors

Apply real plane rotation to two complex vectors

Service routines for multiple linear regression, select elements from vectors and matrices

Service routines for multiple linear regression, re-order elements of vectors and matrices

Dot product of two complex vectors, conjugated

Circular convolution or correlation of two real vectors, extra workspace for greater speed

Circular convolution or correlation of two real vectors, no extra workspace

Gram-Schmidt orthogonalisation of n vectors of order m

Dot product of two complex vectors, unconjugated
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06EAF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FO6EGF
FO6ERF
FO6EXF
FO6FAF
FO6FPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06GGF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F06KPF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02CEF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G02CEF
G02CFF
F06GBF
C06FKF
C06EKF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FO6GAF
                                                                                                                                                                                                            Nonlinear Volterra convolution equation, second kind
Generate weights for use in solving Volterra equations
Nonlinear convolution Volterra—Abel equation, first kind, weakly singular
Nonlinear convolution Volterra—Abel equation, second kind, weakly singular
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DOSBAF
                                                                                                      Computes probability for von Mises distribution
Generates a vector of pseudo-random variates from von Mises distribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       G01ERF
                                                                                                                                                                                                                                                                                                                    Shapiro and Wilk's W test for Normality
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         G01DDF
```

```
Update solution of the Yule-Walker equations for real symmetric positive-definite Toeplitz...

Solution of the Yule-Walker equations for real symmetric positive-definite Toeplitz...
                                                                                                                                   Kruskal-Wallis one-way analysis of variance on k samples of unequal size
                                                                                                                                                                                                                                                                                                                                   GORAFF
                                                                                                                                                                                                                                                                                                                                   COLEPE
                               Computes bounds for the significance of a Durbin-Watson statistic
Computes Durbin-Watson test statistic
                                                                                                                                                                                                                                                                                                                                   D05BDF
         Nonlinear convolution Volterra-Abel equation, second kind, weakly singular
Nonlinear convolution Volterra-Abel equation, first kind, weakly singular
Generate weights for use in solving weakly singular Abel-type equations
                                                                                                                                                                                                                                                                                                                                   D05BYF
                                                                                                                                                                                                                                                                                                                                  C06LBF
                                                                 Inverse Laplace transform, modified Weeks' method
                                                                                                                                                                                                                                                                                                                                   G05DPF
G07BEF
  Pseudo-random real numbers, Weibull distribution Computes maximum likelihood estimates for parameters of the Weibull distribution
 G02HKF
G02HMF
                                                                                                                                                                                                                                                                                                                                   D01AQF
D01ANF
                                                                                                                                                                                                                                                                                                                                    DOLASE
                                                                                                                                                                                                                                                                                                                                   G02HLF
D01APF
G07DBF
G07DCF
                   Computes (optionally weighted) correlation and covariance matrices

Compute weighted Euclidean norm of real vector

Real general Gauss-Markov linear model (including weighted least-squares)

Complex general Gauss-Markov linear model (including weighted least-squares)

ODEs, IVP, weighted norm of local error estimate for D02M-N routines

Computes a weighted sum of squares matrix

Update a weighted sum of squares matrix with a new observation
                                                                                                                                                                                                                                                                                                                                    G02BXF
                                                                                                                                                                                                                                                                                                                                     FO6FKF
                                                                                                                                                                                                                                                                                                                                    F04JLF
F04KLF
D02ZAF
                                                                                                                                                                                                                                                                                                                                   G02BUF
G02BTF
                      ...compute regression with user-supplied functions and weights
Calculation of weights and abscissae for Gaussian quadrature rules,...
Pre-computed weights and abscissae for Gaussian quadrature rules,...
Generate weights for use in solving Volterra equations
Generate weights for use in solving weakly singular Abel-type equations
Robust regression, compute weights for use with G02HDF
                                                                                                                                                                                                                                                                                                                                    G02HDF
                                                                                                                                                                                                                                                                                                                                     DOIBCE
                                                                                                                                                                                                                                                                                                                                     DOIBBE
                                                                                                                                                                                                                                                                                                                                    G02HBF
                                                                                                                                                                                                                                                                                                                                    G01ASF
                                                                                                      Constructs a box and whisker plot
                                                                                                                                                                                                                                                                                                                                    GISBAF
                                                               Multivariate time series, filtering (pre-whitening) by an ARIMA model
                                                                                                                                                                                                                                                                                                                                     GOSAJE
                                         Computes the exact probabilities for the Mann-Whitney U statistic, no ties in pooled sample Computes the exact probabilities for the Mann-Whitney U statistic, ties in pooled sample Performs the Mann-Whitney U test on two independent samples
                                                                                                                                                                                                                                                                                                                                     G08AKF
G08AHF
                                                                                                                         Performs the Wilcoxon one-sample (matched pairs) signed rank test
                                                                                                                                                                                                                                                                                                                                     G08AGF
                                                                                                                                                                                                                                                                                                                                     G01DDF
                                                                                                                           Shapiro and Wilk's W test for Normality
                                                                                                                                                                                                                                                                                                                                     G13CAF
G13CBF
G13CCF
G13CDF
                                 ...using rectangular, Bartlett, Tukey or Parzen lag window ...smoothing by the trapezium frequency (Daniell) window ...using rectangular, Bartlett, Tukey or Parzen lag window ...smoothing by the trapezium frequency (Daniell) window
                                                                                             Computes a trimmed and winsorized mean of a single sample with estimates of their variance
                                                                                                                                                                                                                                                                                                                                     G07DDF
                                                                                                                                                                                                                                                                                                                                     X04BAF
                                                                                                                                                           Write formatted record to external file
                                                                                                                                                                                                                                                                                                                                      G01ECF
Computes probabilities for \chi^2
Computes deviates for the \chi^2
Computes probabilities for the non-central \chi^2
distribution

Computes probabilities for the non-central \chi^2
pseudo-random real numbers, \chi^2
computes probability for a positive linear combination of \chi^2
computes probability for a positive linear combination of (central) \chi^2

Two-way contingency table analysis, with \chi^2
/Fisher's exact test
                                                                                           Computes probabilities for \chi^2 distribution
                                                                                                                                                                                                                                                                                                                                      G01FCF
                                                                                                                                                                                                                                                                                                                                      G01GCF
                                                                                                                                                                                                                                                                                                                                      G05DHF
                                                                                                                                                                                                                                                                                                                                      GOSCGF
                                                                                                                                                                                                                                                                                                                                      G13DNF
                                                                                                                                                                                                                                                                                                                                      GIIAAF
                                                                                                                                                                                                                                                                                                                                      G01JCF
                                                                                                                                                                                                                                                                                                                                       G01JDF
                                                                                                                                                                                                                                                                                                                                       G01AFF
                                                                                                    Update solution of the Yule-Walker equations for real symmetric positive-definite...
Solution of the Yule-Walker equations for real symmetric positive-definite...
                                                                                                                                                                                                                                                                                                                                       F04MEF
                                                                                                                                                                                                                                                                                                                                       F04FEF
    Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
Correlation-like coefficients (about zero), all variables, no missing values
Correlation-like coefficients (about zero), all variables, no missing values
Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values

Gather and set to zero complex sparse vector
Zero in given interval of continuous function by Bus and Dekker...

ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver)
ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver)

Zero of continuous function, Bus and Dekker algorithm,...
Zero of continuous function, continuation method,...
Zero of continuous function in given interval, Bus and Dekker...
Binary search for interval containing zero of continuous function in given interval, Bus and Dekker...

Gather and set to zero real sparse vector

...Runge-Kutta-Merson method, until function of solution is zero (simple driver)

Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing values
Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing values

Calculates the zeros of a vector autoregressive (or moving average) operator
                                                                                                                                                                                                                                                                                                                                       G02BEF
                                                                                                                                                                                                                                                                                                                                       G02BDF
                                                                                                                                                                                                                                                                                                                                      G02BDF
G02BFF
F06GVF
C05AZF
D02BJF
D02CJF
                                                                                                                                                                                                                                                                                                                                       D02EJF
                                                                                                                                                                                                                                                                                                                                       C05AGF
C05AXF
C05AJF
C05ADF
C05AVF
F06EVF
                                                                                                                                                                                                                                                                                                                                         D02BHF
                                                                                                                                                                                                                                                                                                                                         GO2BLE
                                                                                                                         Calculates the zeros of a vector autoregressive (or moving average) operator
All zeros of complex polynomial, modified Laguerre method
All zeros of complex quadratic
All zeros of real polynomial, modified Laguerre method
All zeros of real quadratic
                                                                                                                                                                                                                                                                                                                                         G13DXF
                                                                                                                                                                                                                                                                                                                                         C02AFF
C02AHF
C02AGF
```

KWIC.50 (last) [NP3390/19]

Index GAMS Index

GAMS Index for the NAG Fortran 77 Library

This index classifies NAG Fortran 77 Library routines according to Version 2 of the GAMS classification scheme described in [1]. Note that only those GAMS classes which contain Library routines, either directly or in a subclass, are included below.

```
Arithmetic, error analysis
               Real
A3
A3a
                 Standard precision
                             F06BLF
                                         Compute quotient of two real scalars, with overflow flag
               Complex
A4
                 Standard precision
A4a
                                        Modulus of complex number
                             A02ARF
                                         Quotient of two complex numbers
                             A02ACF
                                         Compute quotient of two complex scalars, with overflow flag
                             FO6CLF
A7
               Sequences (e.g., convergence acceleration)
                                         Acceleration of convergence of sequence, Shanks' transformation and epsilon
                             CO6BAF
                                         algorithm
             Elementary and special functions (search also class L5)
               Integer-valued functions (e.g., factorial, binomial coefficient, permutations, combinations, floor, ceiling)
C1
C<sub>2</sub>
               Powers, roots, reciprocals
                             A02AAF
                                        Square root of complex number
               Polynomials
C3
C<sub>3</sub>a
                 Orthogonal
                   Chebyshev, Legendre
C3a2
                                        Sum of a Chebyshev series
                             COSDBF
                                        Evaluation of fitted polynomial in one variable from Chebyshev series form
                             E02AEF
                                         (simplified parameter list)
                                        Derivative of fitted polynomial in Chebyshev series form
                            E02AHF
                            E02AJF
                                        Integral of fitted polynomial in Chebyshev series form
                                        Evaluation of fitted polynomial in one variable from Chebyshev series form
                            E02AKF
               Elementary transcendental functions
C4
                 Trigonometric, inverse trigonometric
C<sub>4</sub>a
                            F06BCF
                                        Recover cosine and sine from given real tangent
                            F06CCF
                                        Recover cosine and sine from given complex tangent, real cosine
                            FO6CDF
                                        Recover cosine and sine from given complex tangent, real sine
                            SO7AAF
                                        tan x
                            SO9AAF
                                        \arcsin x
                            SO9ABF
                                        arccos x
                 Exponential, logarithmic
C<sub>4</sub>b
                            S01BAF
                                        ln(1+x)
                                        Complex exponential, e<sup>z</sup>
                            SO1EAF
                 Hyperbolic, inverse hyperbolic
C<sub>4</sub>c
                            S10AAF
                                        tanh x
                            S10ABF
                                        \sinh x
                            S10ACF
                                        cosh x
                            S11AAF
                                        arctanhr
                            S11ABF
                                        arcsinhx
                            S11ACF
                                        arccoshx
              Exponential and logarithmic integrals
C<sub>5</sub>
                             S13AAF
                                        Exponential integral E_1(x)
              Cosine and sine integrals
C<sub>6</sub>
                            S13ACF
                                         Cosine integral Ci(x)
                            S13ADF
                                        Sine integral Si(x)
               Gamma
                 Gamma, log gamma, reciprocal gamma
C7a
                             S14AAF
                                        Gamma function
                                        Log Gamma function
                            S14ABF
                 Psi function
C7c
                            S14ACF
                                         \psi(x) - \ln x
                            S14ADF
                                        Scaled derivatives of \psi(x)
                 Incomplete gamma
C7e
                             S14BAF
                                        Incomplete Gamma functions P(a,x) and Q(a,x)
              Error functions
C8
C8a
                 Error functions, their inverses, integrals, including the normal distribution function
                                        Cumulative normal distribution function P(x)
                            S15ABF
                            S15ACF
                                         Complement of cumulative normal distribution function Q(x)
                            S15ADF
                                        Complement of error function \operatorname{erfc}(x)
                            S15AEF
                                        Error function erf(x)
                                        Scaled complex complement of error function, \exp(-z^2)\operatorname{erfc}(-iz)
                            S15DDF
```

```
Fresnel integrals
C8b
                                        Fresnel integral S(x)
                            S20ACF
                                        Fresnel integral C(x)
                            S20ADF
                 Dawson's integral
C8c
                                        Dawson's integral
                            S15AFF
              Bessel functions
C10
                 J, Y, H_1, H_2
C<sub>10</sub>a
                   Real argument, integer order
C10a1
                                        Bessel function Y_0(x)
                            S17ACF
                            S17ADF
                                        Bessel function Y_1(x)
                                        Bessel function J_0(x)
                            S17AEF
                                        Bessel function J_1(x)
                            S17AFF
                                       real order
                   Complex argument,
C10a4
                                        Bessel functions Y_{\nu+a}(z), real a \ge 0, complex z, \nu = 0, 1, 2, ...
                            S17DCF
                                        Bessel functions J_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, \ldots
                            S17DEF
                                        Hankel functions H_{\nu+a}^{(j)}(z), j=1,2, real a\geq 0, complex z, \nu=0,1,2,\ldots
                            S17DLF
                 I.K
C10b
                   Real argument, integer order
C10b1
                                        Modified Bessel function K_0(x)
                            S18ACF
                                        Modified Bessel function K_1(x)
                            S18ADF
                                        Modified Bessel function I_0(x)
                            S18AEF
                                        Modified Bessel function I_1(x)
                            S18AFF
                                        Modified Bessel function e^x K_0(x)
                            S18CCF
                                        Modified Bessel function e^x K_1(x)
                            S18CDF
                                        Modified Bessel function e^{-|x|}I_0(x)
                            S18CEF
                                        Modified Bessel function e^{-|x|}I_1(x)
                            S18CFF
                   Complex argument
                                       real order
C10b4
                                        Modified Bessel functions K_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, ...
                            S18DCF
                                        Modified Bessel functions I_{\nu+a}(z), real a \geq 0, complex z, \nu = 0, 1, 2, \ldots
                            S18DEF
                 Kelvin functions
C<sub>10</sub>c
                                        Kelvin function ber x
                            S19AAF
                                        Kelvin function bei x
                             S19ABF
                                        Kelvin function ker x
                            S19ACF
                                        Kelvin function kei x
                            S19ADF
                 Airy and Scorer functions
C10d
                                        Airy function Ai(x)
                             S17AGF
                             S17AHF
                                        Airy function Bi(x)
                                        Airy function Ai'(x)
                             S17AJF
                                        Airy function Bi'(x)
                             S17AKF
                                        Airy functions Ai(z) and Ai'(z), complex z
                             S17DGF
                                        Airy functions Bi(z) and Bi'(z), complex z
                             S17DHF
               Jacobian elliptic functions, theta functions
C13
                                        Jacobian elliptic functions sn, cn and dn
                             S21CAF
               Elliptic integrals
C14
                                        Degenerate symmetrised elliptic integral of 1st kind R_C(x,y)
                             S21BAF
                                        Symmetrised elliptic integral of 1st kind R_F(x, y, z)
                             S21BBF
                                        Symmetrised elliptic integral of 2nd kind R_D(x, y, z)
                             S21BCF
                             S21BDF
                                         Symmetrised elliptic integral of 3rd kind R_J(x, y, z, r)
\mathbf{D}
             Linear Algebra
               Elementary vector and matrix operations
D1
D1a
                 Elementary vector operations
D1a1
                   Set to constant
                                         Broadcast scalar into integer vector
                             FO6DBF
                             F06EVF
                                         (SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
                                         Broadcast scalar into real vector
                             FO6FBF
                                         (CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
                             F06GVF
                                         Broadcast scalar into complex vector
                             FO6HBF
                   Minimum and maximum components
D1a2
                                         Elements of real vector with largest and smallest absolute value
                             F06FLF
                                         (ISAMAX/IDAMAX) Index, real vector element with largest absolute value
                             F06JLF
                                         (ICAMAX/IZAMAX) Index, complex vector element with largest absolute value
                             F06JMF
                             F06KLF
                                         Last non-negligible element of real vector
                    Norm
D1a3
                      L_1 (sum of magnitudes)
D1a3a
                                         (SASUM/DASUM) Sum absolute values of real vector elements
                             FO6EKF
                                         (SCASUM/DZASUM) Sum absolute values of complex vector elements
                             F06JKF
                      L_2 (Euclidean norm)
D1a3b
                                         Compute Euclidean norm from scaled form
                             F06BMF
                                         Compute square root of (a^2 + b^2), real a and b
                             FO6BEF
                                         (SNRM2/DNRM2) Compute Euclidean norm of real vector
                             F06EJF
                                         Update Euclidean norm of real vector in scaled form
                             F06FJF
```

GAMS.2 [NP3390/19]

Index GAMS Index

	F06FKF	Compute weighted Euclidean norm of real vector
	F06JJF	(SCNRM2/DZNRM2) Compute Euclidean norm of complex vector
	F06KJF	Update Euclidean norm of complex vector in scaled form
D1a3c	L_{∞} (maximum 1	
	F06FLF F06JLF	Elements of real vector with largest and smallest absolute value (ISAMAX/IDAMAX) Index, real vector element with largest absolute value
	FOGJNF	(ICAMAX/IZAMAX) Index, complex vector element with largest absolute value
D1a4	Dot product (inner	product)
	F06EAF	(SDOT/DDOT) Dot product of two real vectors
	FOGERF FOGGAF	(SDOTI/DDOTI) Dot product of two real sparse vectors (CDOTU/ZDOTU) Dot product of two complex vectors, unconjugated
•	FOGGRF	(CDOTC/ZDOTC) Dot product of two complex vectors, aneongagated
	FOGGRF	(CDOTUI/ZDOTUI) Dot product of two complex sparse vector, unconjugated
	F06GSF	(CDOTCI/ZDOTCI) Dot product of two complex sparse vector, conjugated
	XOSAAF	Real inner product added to initial value, basic/additional precision
D1a5	XO3ABF Copy or exchange	Complex inner product added to initial value, basic/additional precision
Dias	FO6DFF	Copy integer vector
	F06EFF	(SCOPY/DCOPY) Copy real vector
	F06EGF	(SSWAP/DSWAP) Swap two real vectors
	F06GFF	(CCOPY/ZCOPY) Copy complex vector
	FO6GGF FO6KFF	(CSWAP/ZSWAP) Swap two complex vectors Copy real vector to complex vector
D1a6	Multiplication by s	
	F06EDF	(SSCAL/DSCAL) Multiply real vector by scalar
	F06FDF	Multiply real vector by scalar, preserving input vector
	FO6FGF FO6GDF	Negate real vector (CSCAL/ZSCAL) Multiply complex vector by complex scalar
	FO6HDF	Multiply complex vector by complex scalar, preserving input vector
	F06HGF	Negate complex vector
	F06JDF	(CSSCAL/ZDSCAL) Multiply complex vector by real scalar
D	FO6KDF	Multiply complex vector by real scalar, preserving input vector
D1a7	FOOECF	vectors x , y and scalar α) (SAXPY/DAXPY) Add scalar times real vector to real vector
	F06ETF	(SAXPYI/DAXPYI) Add scalar times real sparse vector to real sparse vector
	F06GCF	(CAXPY/ZAXPY) Add scalar times complex vector to complex vector
	F06GTF	(CAXPYI/ZAXPYI) Add scalar times complex sparse vector to complex sparse
D100	Elementary rotatio	vector on (Givens transformation)
D1a8	FOGAAF	(SROTG/DROTG) Generate real plane rotation
	F06BAF	Generate real plane rotation, storing tangent
	F06BEF	Generate real Jacobi plane rotation
	FO6BHF FO6CAF	Apply real similarity rotation to 2 by 2 symmetric matrix Generate complex plane rotation, storing tangent, real cosine
	FO6CBF	Generate complex plane rotation, storing tangent, real cosine
	F06CHF	Apply complex similarity rotation to 2 by 2 Hermitian matrix
	F06EPF	(SROT/DROT) Apply real plane rotation
	F06EXF	(SROTI/DROTI) Apply plane rotation to two real sparse vectors
	FO6FPF FO6FQF	Apply real symmetric plane rotation to two vectors Generate sequence of real plane rotations
	F06НРF	Apply complex plane rotation
	F06HQF	Generate sequence of complex plane rotations
	F06KPF	Apply real plane rotation to two complex vectors
D1a9	=	on (Householder transformation)
	FO6FRF FO6FSF	Generate real elementary reflection, NAG style Generate real elementary reflection, LINPACK style
	F06FTF	Apply real elementary reflection, NAG style
	F06FUF	Apply real elementary reflection, LINPACK style
	FOGHRF	Generate complex elementary reflection
D1-10	FO6HTF Convolutions	Apply complex elementary reflection
D1a10	CONVOIUTIONS CO6EKF	Circular convolution or correlation of two real vectors, no extra workspace
	CO6FEF	Circular convolution or correlation of two real vectors, extra workspace for greater
		speed
	CO6PKF	Circular convolution or correlation of two complex vectors
D1a11	CO6PKF Other vector opera	Circular convolution or correlation of two complex vectors
DINII	FO6EUF	(SGTHR/DGTHR) Gather real sparse vector
	F06EVF	(SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
	F06EWF	(SSCTR/DSCTR) Scatter real sparse vector
	F06FAF	Compute cosine of angle between two real vectors

	F06GUF	(CGTHR/ZGTHR) Gather complex sparse vector
	F06GVF	(CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
	F06GWF	(CSCTR/ZSCTR) Scatter complex sparse vector
	F06KLF	Last non-negligible element of real vector
D1b	Elementary matrix of F06QJF	Permute rows or columns, real rectangular matrix, permutations represented by an
	100431	integer array
	F06QKF	Permute rows or columns, real rectangular matrix, permutations represented by a
		real array
	F06VJF	Permute rows or columns, complex rectangular matrix, permutations represented
	PACUET	by an integer array Permute rows or columns, complex rectangular matrix, permutations represented
'	F06VKF	by a real array
D1b1	Initialize (e.g., to z	ero or identity)
D101	FO6QHF	Matrix initialisation, real rectangular matrix
	F06THF	Matrix initialisation, complex rectangular matrix
D1b2	Norm	No. of the (former in condition estimation) real matrix
	F04YCF	Norm estimation (for use in condition estimation), real matrix Norm estimation (for use in condition estimation), complex matrix
	F04ZCF F06RAF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real general matrix
	FO6RBF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real band matrix
	FOGRCF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix
	F06RDF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric matrix,
		packed storage
	FOGREF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real symmetric band matrix
	F06RJF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real trape-
	PACRE	zoidal/triangular matrix 1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular matrix,
	FOGREF	packed storage
	FOGRLF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular band matrix
	F06RMF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real Hessenberg matrix
	F06UAF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex general matrix
	F06UBF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex band matrix
	F06UCF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian matrix
	F06UDF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage
	F06UEF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hermitian band matrix
	F06UFF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex symmetric matrix
	F06UGF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage
	F06UHF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex symmetric band matrix
	F06UJF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex trape- zoidal/triangular matrix
	F06UKF	1-norm, co-norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage
	F06ULF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex triangular band matrix
	F06UMF	1-norm, ∞-norm, Frobenius norm, largest absolute element, complex Hessenberg matrix
D1b3	Transpose	marit.
D103	F01CRF	Matrix transposition
	F01CTF	Sum or difference of two real matrices, optional scaling and transposition
	F01CWF	Sum or difference of two complex matrices, optional scaling and transposition
D1b4	Multiplication by	vector
	FO6HCF	Multiply complex vector by complex diagonal matrix Multiply complex vector by real diagonal matrix
	FO6KCF FO6PAF	(SGEMV/DGEMV) Matrix-vector product, real rectangular matrix
	FO6PBF	(SGBMV/DGBMV) Matrix-vector product, real rectangular band matrix
	FO6PCF	(SSYMV/DSYMV) Matrix-vector product, real symmetric matrix
	FO6PDF	(SSBMV/DSBMV) Matrix-vector product, real symmetric band matrix
	F06PEF	(SSPMV/DSPMV) Matrix-vector product, real symmetric packed matrix
	F06PFF	(STRMV/DTRMV) Matrix-vector product, real triangular matrix
	FO6PGF	(STBMV/DTBMV) Matrix-vector product, real triangular band matrix (STPMV/DTPMV) Matrix-vector product, real triangular packed matrix
	FO6PHF	(CGEMV/ZGEMV) Matrix-vector product, real triangular packed matrix (CGEMV/ZGEMV) Matrix-vector product, complex rectangular matrix
	FO6SAF FO6SBF	(CGBMV/ZGBMV) Matrix-vector product, complex rectangular matrix (CGBMV/ZGBMV) Matrix-vector product, complex rectangular band matrix
	. 00001	

Index GAMS Index

	F06SCF	(CHEMV/ZHEMV) Matrix-vector product, complex Hermitian matrix
	F06SDF	(CHBMV/ZHBMV) Matrix-vector product, complex Hermitian band matrix
	F06SEF	(CHPMV/ZHPMV) Matrix-vector product, complex Hermitian packed matrix
	F06SFF	(CTRMV/ZTRMV) Matrix-vector product, complex triangular matrix
	F06SGF	(CTBMV/ZTBMV) Matrix-vector product, complex triangular band matrix
	FO6SHF	(CTPMV/ZTPMV) Matrix-vector product, complex triangular packed matrix
	F11XAF	Real sparse nonsymmetric matrix vector multiply
	F11XEF	Real sparse symmetric matrix vector multiply
	F11XWF	Complex sparse non-Hermitian matrix vector multiply
	F11XSF	Complex sparse Hermitian matrix vector multiply
D1b5	Addition, subtracti	on
1	F01CTF	Sum or difference of two real matrices, optional scaling and transposition
	F01CWF	Sum or difference of two complex matrices, optional scaling and transposition
	FO6PMF	(SGER/DGER) Rank-1 update, real rectangular matrix
	F06PPF	(SSYR/DSYR) Rank-1 update, real symmetric matrix
	F06PQF	(SSPR/DSPR) Rank-1 update, real symmetric packed matrix
	F06PRF	(SSYR2/DSYR2) Rank-2 update, real symmetric matrix
	F06PSF	(SSPR2/DSPR2) Rank-2 update, real symmetric packed matrix
	F06SMF	(CGERU/ZGERU) Rank-1 update, complex rectangular matrix, unconjugated
		vector
	F06S#F	(CGERC/ZGERC) Rank-1 update, complex rectangular matrix, conjugated vector
	F06SPF	(CHER/ZHER) Rank-1 update, complex Hermitian matrix
	F06SQF	(CHPR/ZHPR) Rank-1 update, complex Hermitian packed matrix
	F06SRF	(CHER2/ZHER2) Rank-2 update, complex Hermitian matrix
	F06SSF	(CHPR2/ZHPR2) Rank-2 update, complex Hermitian packed matrix
	F06YPF	(SSYRK/DSYRK) Rank-k update of real symmetric matrix
	F06ZPF	(CHERK/ZHERK) Rank-k update of complex Hermitian matrix
	F06ZRF	(CHER2K/ZHER2K) Rank-2k update of complex Hermitian matrix
		(CSYRK/ZSYRK) Rank-k update of complex symmetric matrix
	F06ZUF	(CSYR2K/ZHER2K) Rank-2k update of complex symmetric matrix
	F06ZWF	(OSTRZN/BIERZN) Rama-2x update of complex symmetric matrix
D1b6	Multiplication	Matrin multiplication
	FO1CKF	Matrix multiplication Multiply real vector by diagonal matrix
	F06FCF	(SGEMM/DGEMM) Matrix-matrix product, two real rectangular matrices
	FO6YAF	(SSYMM/DSYMM) Matrix-matrix product, one real symmetric matrix, one real
	F06YCF	
	PACKER	rectangular matrix (STRMM/DTRMM) Matrix matrix and dust one mal triangular matrix one real
	F06YFF	(STRMM/DTRMM) Matrix-matrix product, one real triangular matrix, one real
		rectangular matrix
	F06YRF	(SSYR2K/DSYR2K) Rank-2k update of real symmetric matrix
	F06ZAF	(CGEMM/ZGEMM) Matrix-matrix product, two complex rectangular matrices
	F06ZCF	(CHEMM/ZHEMM) Matrix-matrix product, one complex Hermitian matrix, one
		complex rectangular matrix
	F06ZFF	(CTRMM/ZTRMM) Matrix-matrix product, one complex triangular matrix, one
		complex rectangular matrix
	F06ZTF	(CSYMM/ZSYMM) Matrix-matrix product, one complex symmetric matrix, one
	0	complex rectangular matrix
D1b8	Сору	Maria and a standard
	FOGQFF	Matrix copy, real rectangular or trapezoidal matrix Matrix copy, complex rectangular or trapezoidal matrix
	F06TFF	
D1b9	Storage mode conve	
	FO1ZAF	Convert real matrix between packed triangular and square storage schemes
	FO1ZBF	Convert complex matrix between packed triangular and square storage schemes
	F01ZCF	Convert real matrix between packed banded and rectangular storage schemes
	FO1ZDF	Convert complex matrix between packed banded and rectangular storage schemes
	F11ZAF	Real sparse nonsymmetric matrix reorder routine
	F11ZBF	Real sparse symmetric matrix reorder routine
	F11ZPF	Complex sparse Hermitian matrix reorder routine
	F11Z#F	Complex sparse non-Hermitian matrix reorder routine
D1b10		n (Givens transformation)
	F06QMF	Orthogonal similarity transformation of real symmetric matrix as a sequence of
		plane rotations
	F06QVF	Compute upper Hessenberg matrix by sequence of plane rotations, real upper
		triangular matrix
	F06QWF	Compute upper spiked matrix by sequence of plane rotations, real upper triangular
		matrix
	F06QXF	Apply sequence of plane rotations, real rectangular matrix
	F06TMF	Unitary similarity transformation of Hermitian matrix as a sequence of plane
		rotations
	F06TVF	Compute upper Hessenberg matrix by sequence of plane rotations, complex upper
		triangular matrix
	F06TWF	Compute upper spiked matrix by sequence of plane rotations, complex upper
		triangular matrix

GAMS Index

	F06TXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and
	FOGTYF	complex sine Apply sequence of plane rotations, complex rectangular matrix, complex cosine and
		real sine
	F06VXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine linear equations (including inversion, LU and related decompositions)
D2	Solution of systems of Real nonsymmetric r	near equations (including inversion, Do and related decompositions)
D2a	General	Hatrices
D2a1	FOSAFF	LU factorization and determinant of real matrix
	FO4AAF	Solution of real simultaneous linear equations with multiple right-hand sides (Black Box)
1	FO4AEF	Solution of real simultaneous linear equations with multiple right-hand sides using
	FO4AHF	iterative refinement (Black Box) Solution of real simultaneous linear equations using iterative refinement (coefficient
	F04AJF	matrix already factorized by F03AFF) Solution of real simultaneous linear equations (coefficient matrix already factorized
		by F03AFF)
	F04ARF	Solution of real simultaneous linear equations, one right-hand side (Black Box)
	F04ATF	Solution of real simultaneous linear equations, one right-hand side using iterative refinement (Black Box)
	FO7ADF	(SGETRF/DGETRF) LU factorization of real m by n matrix
	FO7AEF	(SGETRS/DGETRS) Solution of real system of linear equations, multiple right-
	20132	hand sides, matrix already factorized by F07ADF
	F07AGF	(SGECON/DGECON) Estimate condition number of real matrix, matrix already
		factorized by F07ADF
	F07AHF	(SGERFS/DGERFS) Refined solution with error bounds of real system of linear equations, multiple right-hand sides
	F07AJF	(SGETRI/DGETRI) Inverse of real matrix, matrix already factorized by F07ADF
D2a2	Banded	(502114) 2-1-1-1
DZaz	F01LHF	LU factorization of real almost block diagonal matrix
	FO4LHF	Solution of real almost block diagonal simultaneous linear equations (coefficient
		matrix already factorized by F01LHF)
	FO7BDF	(SGBTRF/DGBTRF) LU factorization of real m by n band matrix (SGBTRS/DGBTRS) Solution of real band system of linear equations, multiple
	F07BEF	right-hand sides, matrix already factorized by F07BDF
	F07BGF	(SGBCON/DGBCON) Estimate condition number of real band matrix, matrix
		already factorized by F07BDF
	FO7BHF	(SGBRFS/DGBRFS) Refined solution with error bounds of real band system of
		linear equations, multiple right-hand sides (STBTRS/DTBTRS) Solution of real band triangular system of linear equations,
	F07VEF	multiple right-hand sides
	F07VGF	(STBCON/DTBCON) Estimate condition number of real band triangular matrix
	F07VHF	(STBRFS/DTBRFS) Error bounds for solution of real band triangular system of
		linear equations, multiple right-hand sides
D2a2a	Tridiagonal	LU factorization of real tridiagonal matrix
	FO1LEF FO4EAF	Solution of real tridiagonal simultaneous linear equations, one right-hand side (Black
		Box)
	F04LEF	Solution of real tridiagonal simultaneous linear equations (coefficient matrix already
_	m · · ·	factorized by F01LEF)
D2a3	Triangular F06PJF	(STRSV/DTRSV) System of equations, real triangular matrix
	FO6PKF	(STBSV/DTBSV) System of equations, real triangular band matrix
	F06PLF	(STPSV/DTPSV) System of equations, real triangular packed matrix
	F06YJF	(STRSM/DTRSM) Solves system of equations with multiple right-hand sides, real
		triangular coefficient matrix
	FO7TEF	(STRTRS/DTRTRS) Solution of real triangular system of linear equations, multiple right-hand sides
	F07TGF	(STRCON/DTRCON) Estimate condition number of real triangular matrix
	FO7THF	(STRRFS/DTRRFS) Error bounds for solution of real triangular system of linear
		equations, multiple right-hand sides
	FO7TJF	(STRTRI/DTRTRI) Inverse of real triangular matrix
	F07UEF	(STPTRS/DTPTRS) Solution of real triangular system of linear equations, multiple
	F07UGF	right-hand sides, packed storage (STPCON/DTPCON) Estimate condition number of real triangular matrix, packed
		storage
	F07UHF	(STPRFS/DTPRFS) Error bounds for solution of real triangular system of linear
		equations, multiple right-hand sides, packed storage (STPTRI/DTPTRI) Inverse of real triangular matrix, packed storage
	FO7UJF	(STPTRI/DTPTRI) inverse of real triangular matrix, packed storage (STBTRS/DTBTRS) Solution of real band triangular system of linear equations,
	F07VEF	multiple right-hand sides
	F07VGF	(STBCON/DTBCON) Estimate condition number of real band triangular matrix

GAMS.6 [NP3390/19]

Index GAMS Index

	FO7VHF	(STBRFS/DTBRFS) Error bounds for solution of real band triangular system of linear equations, multiple right-hand sides
D2a4	Sparse	
	F01BRF	LU factorization of real sparse matrix
	FO1BSF FO4AXF	LU factorization of real sparse matrix with known sparsity pattern Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
	FO4QAF	Sparse linear least-squares problem, m real equations in n unknowns .
	F11BAF	Real sparse nonsymmetric linear systems, set-up for F11BBF
	F11BBF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB
	F11BCF	Real sparse nonsymmetric linear systems, diagnostic for F11BBF
•	F11BDF	Real sparse nonsymmetric linear systems, set-up for F11BEF
	F11BEF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
	F11BFF	Real sparse nonsymmetric linear systems, diagnostic for F11BEF
	F11BRF	Complex sparse non-Hermitian linear systems, set-up for F11BSF
	F11BSF	Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or TFQMR method
	F11BTF	Complex sparse non-Hermitian linear systems, diagnostic for F11BSF
	F11DAF	Real sparse nonsymmetric linear systems, incomplete LU factorization
	F11DBF	Solution of linear system involving incomplete LU preconditioning matrix generated by F11DAF
	F11DCF	Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, preconditioner computed by F11DAF (Black Box)
	F11DDF	Solution of linear system involving preconditioning matrix generated by applying SSOR to real sparse nonsymmetric matrix
	F11DEF	Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method, Jacobi or SSOR preconditioner (Black Box)
D2b	Real symmetric matri	
D2b1	General	
D2b1a	Indefinite	
	F07MDF	(SSYTRF/DSYTRF) Bunch-Kaufman factorization of real symmetric indefinite matrix
	FO7MEF	(SSYTRS/DSYTRS) Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07MDF
	FO7MGF	(SSYCON/DSYCON) Estimate condition number of real symmetric indefinite matrix, matrix already factorized by F07MDF
	FO7MHF	(SSYRFS/DSYRFS) Refined solution with error bounds of real symmetric indefinite system of linear equations, multiple right-hand sides
	FO7MJF	(SSYTRI/DSYTRI) Inverse of real symmetric indefinite matrix, matrix already factorized by F07MDF
	F07PDF	(SSPTRF/DSPTRF) Bunch-Kaufman factorization of real symmetric indefinite matrix, packed storage
	F07PEF	(SSPTRS/DSPTRS) Solution of real symmetric indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07PDF, packed storage
	F07PGF	(SSPCON/DSPCON) Estimate condition number of real symmetric indefinite
	FO7PHF	matrix, matrix already factorized by F07PDF, packed storage (SSPRFS/DSPRFS) Refined solution with error bounds of real symmetric indefinite
	F07PJF	system of linear equations, multiple right-hand sides, packed storage (SSPTRI/DSPTRI) Inverse of real symmetric indefinite matrix, matrix already
	5	factorized by F07PDF, packed storage
D2b1b	Positive-definite	To the state of th
	FO1ABF	Inverse of real symmetric positive-definite matrix using iterative refinement
	F01ADF	Inverse of real symmetric positive-definite matrix $ULDL^TU^T$ factorization of real symmetric positive-definite band matrix
	F01BUF	LL^T factorization and determinant of real symmetric positive-definite matrix
	FOSAEF	Solution of real symmetric positive-definite simultaneous linear equations with
	F04ABF	multiple right-hand sides using iterative refinement (Black Box)
	F04AFF	Solution of real symmetric positive-definite simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AEF)
	F04AGF	Solution of real symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized by F03AEF)
	F04ASF	Solution of real symmetric positive-definite simultaneous linear equations, one right-
	F04FEF	hand side using iterative refinement (Black Box) Solution of the Yule-Walker equations for real symmetric positive-definite Toeplitz matrix, one right-hand side
	F04FFF	matrix, one right-hand side Solution of real symmetric positive-definite Toeplitz system, one right-hand side
	FO4PFF	Update solution of the Yule-Walker equations for real symmetric positive-definite
	F04NFF	Toeplitz matrix Update solution of real symmetric positive-definite Toeplitz system

GAMS Index

		10.40
	F07FDF	(SPOTRF/DPOTRF) Cholesky factorization of real symmetric positive-definite
		matrix (SPOTRS/DPOTRS) Solution of real symmetric positive-definite system of linear
	F07FEF	equations, multiple right-hand sides, matrix already factorized by F07FDF
	F07FGF	(SPOCON/DPOCON) Estimate condition number of real symmetric positive- definite matrix, matrix already factorized by F07FDF
	FO7FHF	(SPORFS/DPORFS) Refined solution with error bounds of real symmetric positive-
	PAZE IE	definite system of linear equations, multiple right-hand sides (SPOTRI/DPOTRI) Inverse of real symmetric positive-definite matrix, matrix
	F07FJF	already factorized by F07FDF
	F07GDF	(SPPTRF/DPPTRF) Cholesky factorization of real symmetric positive-definite matrix, packed storage
'	F07GEF	(SPPTRS/DPPTRS) Solution of real symmetric positive-definite system of linear
		equations, multiple right-hand sides, matrix already factorized by F07GDF, packed storage
	F07GGF	(SPPCON/DPPCON) Estimate condition number of real symmetric positive-definite matrix, matrix already factorized by F07GDF, packed storage
	FO7GHF	(SPPRFS/DPPRFS) Refined solution with error bounds of real symmetric positive-
	• • • • • • • • • • • • • • • • • • • •	definite system of linear equations, multiple right-hand sides, packed storage
	F07GJF	(SPPTRI/DPPTRI) Inverse of real symmetric positive-definite matrix, matrix already factorized by F07GDF, packed storage
D2b2	Positive-definite ba	
D202	FO1MCF	LDL^{T} factorization of real symmetric positive-definite variable-bandwidth matrix
	F04ACF	Solution of real symmetric positive-definite banded simultaneous linear equations
		with multiple right-hand sides (Black Box)
	FO4MCF	Solution of real symmetric positive-definite variable-bandwidth simultaneous linear
		equations (coefficient matrix already factorized by F01MCF)
	F07HDF	(SPBTRF/DPBTRF) Cholesky factorization of real symmetric positive-definite
		band matrix (SPBTRS/DPBTRS) Solution of real symmetric positive-definite band system of
	F07HEF	linear equations, multiple right-hand sides, matrix already factorized by F07HDF
	FO7HGF	(SPBCON/DPBCON) Estimate condition number of real symmetric positive-
	FOINGE	definite band matrix, matrix already factorized by F07HDF
	FO7HHF	(SPBRFS/DPBRFS) Refined solution with error bounds of real symmetric positive-
		definite band system of linear equations, multiple right-hand sides (SPBSTF/DPBSTF) Computes a split Cholesky factorization of real symmetric
	F08UFF	positive-definite band matrix A
	F08UTF	(CPBSTF/ZPBSTF) Computes a split Cholesky factorization of complex Hermitian
		positive-definite band matrix A
D2b2a	Tridiagonal	
	FO4FAF	Solution of real symmetric positive-definite tridiagonal simultaneous linear equa-
Del 4	Snama	tions, one right-hand side (Black Box)
D2b4	Sparse F11GAF	Real sparse symmetric linear systems, set-up for F11GBF
	F11GBF	Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos
	F11GCF	Real sparse symmetric linear systems, diagnostic for F11GBF
	F11JAF	Real sparse symmetric matrix, incomplete Cholesky factorization
	F11JBF	Solution of linear system involving incomplete Cholesky preconditioning matrix
		generated by F11JAF
	F11JCF	Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, preconditioner computed by F11JAF (Black Box)
	F11JDF	Solution of linear system involving preconditioning matrix generated by applying
		SSOR to real sparse symmetric matrix
	F11JEF	Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or SSOR preconditioner (Black Box)
D2 c	Complex non-Hermi	tian matrices
D2c1	General	
2201	F04ADF	Solution of complex simultaneous linear equations with multiple right-hand sides (Black Box)
	F07ARF	(CGETRF/ZGETRF) LU factorization of complex m by n matrix
	FO7ASF	(CGETRS/ZGETRS) Solution of complex system of linear equations, multiple
		right-hand sides, matrix already factorized by F07ARF
	F07AUF	(CGECON/ZGECON) Estimate condition number of complex matrix, matrix already factorized by F07ARF
	F07AVF	(CGERFS/ZGERFS) Refined solution with error bounds of complex system of
	FO7AUF	linear equations, multiple right-hand sides (CGETRI/ZGETRI) Inverse of complex matrix, matrix already factorized by
	PU/ AWP	F07ARF
	FO7 E RF	(CSYTRF/ZSYTRF) Bunch-Kaufman factorization of complex symmetric matrix
	F07#SF	(CSYTRS/ZSYTRS) Solution of complex symmetric system of linear equations,
		multiple right-hand sides, matrix already factorized by F07NRF
	FO7MUF	(CSYCON/ZSYCON) Estimate condition number of complex symmetric matrix, matrix already factorized by F07NRF
		manix already factorized by Pottate

GAMS.8 [NP3390/19]

Index GAMS Index

	FO7TVF	(CSYRFS/ZSYRFS) Refined solution with error bounds of complex symmetric
	FO7#WF	system of linear equations, multiple right-hand sides (CSYTRI/ZSYTRI) Inverse of complex symmetric matrix, matrix already factor-
	F07QRF	ized by F07NRF (CSPTRF/ZSPTRF) Bunch-Kaufman factorization of complex symmetric matrix,
	•	packed storage
	FO7QSF FO7QUF	(CSPTRS/ZSPTRS) Solution of complex symmetric system of linear equations, multiple right-hand sides, matrix already factorized by F07QRF, packed storage (CSPCON/ZSPCON) Estimate condition number of complex symmetric matrix,
	F07QVF	matrix already factorized by F07QRF, packed storage (CSPRFS/ZSPRFS) Refined solution with error bounds of complex symmetric
t	•	system of linear equations, multiple right-hand sides, packed storage
	F07QWF	(CSPTRI/ZSPTRI) Inverse of complex symmetric matrix, matrix already factorized by F07QRF, packed storage
D2c2	Banded	(COPTED (ZOPTED) III (, ' , ' , ' , ' , ' , ' , ' , ' , ' ,
	FO7BSF	(CGBTRF/ZGBTRF) LU factorization of complex m by n band matrix (CGBTRS/ZGBTRS) Solution of complex band system of linear equations, multiple right-hand sides, matrix already factorized by F07BRF
	F07BUF	(CGBCON/ZGBCON) Estimate condition number of complex band matrix, matrix already factorized by F07BRF
	F07BVF	(CGBRFS/ZGBRFS) Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides
	F07VSF	(CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides
	F07VUF	(CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix
	F07VVF	(CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
D2c3	Triangular	of infeat equations, multiple right-hand sides
D2C3	F06SJF	(CTRSV/ZTRSV) System of equations, complex triangular matrix
	F06SKF	(CTBSV/ZTBSV) System of equations, complex triangular matrix
	F06SLF	(CTPSV/ZTPSV) System of equations, complex triangular band matrix
	F06ZJF	(CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides,
	100231	complex triangular coefficient matrix
	F07TSF	(CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-hand sides
	F07TUF	(CTRCON/ZTRCON) Estimate condition number of complex triangular matrix
	F07TVF	(CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides
	FO7TWF	(CTRTRI/ZTRTRI) Inverse of complex triangular matrix
	F07USF	(CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
	F07UUF	(CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage
	F07UVF	(CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear equations, multiple right-hand sides, packed storage
	F07UWF	(CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage
	F07VSF	(CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple right-hand sides
	F07VUF	(CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix
	F07VVF	(CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear equations, multiple right-hand sides
D2c4	Sparse	or mices equations, mutiple right-name sides
DZC4	F11D U F	Complex sparse non-Hermitian linear systems, incomplete LU factorization
	F11DPF	Solution of complex linear system involving incomplete LU preconditioning matrix generated by F11DNF
	F11DQF	Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or TFQMR method, preconditioner computed by F11DNF (Black Box)
	F11DRF	Solution of linear system involving preconditioning matrix generated by applying
	F11DSF	SSOR to complex sparse non-Hermitian matrix Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-
Dod	Complex Us-:4!-	CGSTAB or TFQMR method, Jacobi or SSOR preconditioner (Black Box)
D2d	Complex Hermitian n	Hatrices
D2d1	General	
D2d1a	Indefinite	(CHETDE/7HETDE) Domest Works & Committee of the Committee
	FOTHER	(CHETRE/ZHETRE) Bunch-Kaufman factorization of complex Hermitian indefi- nite matrix
	FO7MSF	(CHETRS/ZHETRS) Solution of complex Hermitian indefinite system of linear equations, multiple right-hand sides, matrix already factorized by F07MRF
	F07MUF	(CHECON/ZHECON) Estimate condition number of complex Hermitian indefinite matrix, matrix already factorized by F07MRF

[NP3390/19]

GAMS Index

	FO7MVF	(CHERFS/ZHERFS) Refined solution with error bounds of complex Hermitian
	romm	indefinite system of linear equations, multiple right-hand sides
	FO7MWF	(CHETRI/ZHETRI) Inverse of complex Hermitian indefinite matrix, matrix already
		factorized by F07MRF (CHPTRF/ZHPTRF) Bunch-Kaufman factorization of complex Hermitian indefi-
	F07PRF	nite matrix packed storage
	F07PSF	(CUDTDS /7UDTRS) Solution of complex Hermitian indefinite system of linear
	••••	equations, multiple right-hand sides, matrix already factorized by F07PRF, packed
		storage (CHPCON/ZHPCON) Estimate condition number of complex Hermitian indefinite
	F07PUF	matrix, matrix already factorized by F07PRF, packed storage
	F07PVF	(CHPRES/ZHPRES) Refined solution with error bounds of complex Hermitian
•	10/11/1	indefinite system of linear equations, multiple right-hand sides, packed storage
	F07PWF	(CHPTRI/ZHPTRI) Inverse of complex Hermitian indefinite matrix, matrix already
	D 111 1 0 11	factorized by F07PRF, packed storage
D2d1b	Positive-definite FO7FRF	(CPOTRF/ZPOTRF) Cholesky factorization of complex Hermitian positive-
	FOITAT	definite matrix
	F07FSF	(CPOTRS/ZPOTRS) Solution of complex Hermitian positive-definite system of
		linear equations, multiple right-hand sides, matrix already factorized by F07FRF (CPOCON/ZPOCON) Estimate condition number of complex Hermitian positive-
	F07FUF	definite matrix, matrix already factorized by F07FRF
	F07FVF	(CPORFS/ZPORFS) Refined solution with error bounds of complex Hermitian
	FOITT	positive-definite system of linear equations, multiple right-hand sides
	FO7FWF	(CPOTRI/ZPOTRI) Inverse of complex Hermitian positive-definite matrix, matrix
		already factorized by F07FRF (CPPTRF/ZPPTRF) Cholesky factorization of complex Hermitian positive-definite
	F07GRF	matrix, packed storage
	F07GSF	(CPPTRS/ZPPTRS) Solution of complex Hermitian positive-definite system of
		linear equations, multiple right-hand sides, matrix already factorized by F07GRF,
		packed storage
	F07GUF	(CPPCON/ZPPCON) Estimate condition number of complex Hermitian positive-definite matrix, matrix already factorized by F07GRF, packed storage
	F07GVF	(CPPRFS/ZPPRFS) Refined solution with error bounds of complex Hermitian
	10/4/1	positive-definite system of linear equations, multiple right-hand sides, packed
		storage
	F07GWF	(CPPTRI/ZPPTRI) Inverse of complex Hermitian positive-definite matrix, matrix
Do 10	Positive-definite ba	already factorized by F07GRF, packed storage
D2d2	FO7HRF	(CPBTRF/ZPBTRF) Cholesky factorization of complex Hermitian positive-definite
		hand matrix
	F07HSF	(CPBTRS/ZPBTRS) Solution of complex Hermitian positive-definite band system of linear equations, multiple right-hand sides, matrix already factorized by F07HRF
	F07HUF	(CPBCON/ZPBCON) Estimate condition number of complex Hermitian positive-
	ro/nor	definite hand matrix, matrix already factorized by F07HRF
	FO7HVF	(CPBRFS/ZPBRFS) Refined solution with error bounds of complex Hermitian
		positive-definite band system of linear equations, multiple right-hand sides
D2d4	Sparse F11J E F	Complex sparse Hermitian matrix, incomplete Cholesky factorization
	F11JPF	Solution of complex linear system involving incomplete Cholesky preconditioning
		matrix generated by F11JNF
	F11JQF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos
	F11JRF	method, preconditioner computed by F11JNF (Black Box) Solution of linear system involving preconditioning matrix generated by applying
	FIIJE	SSOR to complex sparse Hermitian matrix
	F11JSF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos
		method, Jacobi or SSOR preconditioner (Black Box)
D2e	Associated operation	ns (e.g., matrix reorderings) Real sparse nonsymmetric matrix vector multiply
	F11XEF	Real sparse symmetric matrix vector multiply
	F11XWF	Complex sparse non-Hermitian matrix vector multiply
	F11XSF	Complex sparse Hermitian matrix vector multiply
	F11ZAF	Real sparse nonsymmetric matrix reorder routine Real sparse symmetric matrix reorder routine
	F11ZBF F11Z B F	Complex sparse non-Hermitian matrix reorder routine
	F11ZBF F11ZPF	Complex sparse Hermitian matrix reorder routine
D3	Determinants	
D3a	Real nonsymmetric	matrices
D3a1	General	Determinant of real matrix (Black Box)
	FO3AAF FO3AFF	LU factorization and determinant of real matrix
D3 b	Real symmetric ma	
D3b1	General	
17		

GAMS.10 [NP3390/19]

GAMS Index

D3b1b	Positive-definite	
D3D10	FOSABF	Determinant of real symmetric positive-definite matrix (Black Box)
	FOSAEF	LL^T factorization and determinant of real symmetric positive-definite matrix
D3b2	Positive-definite ba	nded
Do-	F03ACF Complex non-Hermiti	Determinant of real symmetric positive-definite band matrix (Black Box)
D3c D3c1	General	an matrices
2001	FO3ADF	Determinant of complex matrix (Black Box)
D4	Eigenvalues, eigenvector	
D4a	Ordinary eigenvalue p	$\operatorname{roblems}\left(Ax=\lambda x\right)$
D4a1	Real symmetric F02FAF	All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
	F02FCF	Selected eigenvalues and eigenvectors of real symmetric matrix (Black Box)
	F06BPF	Compute eigenvalue of 2 by 2 real symmetric matrix
	F08FCF	(SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer
	FOSGCF	(SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvectors of real sym-
		metric matrix, packed storage, using divide and conquer
	FOSHCF	(SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real sym-
D4a2	Real nonsymmetric	metric band matrix, using divide and conquer
D482	FO2EAF	All eigenvalues and Schur factorization of real general matrix (Black Box)
	FO2EBF	All eigenvalues and eigenvectors of real general matrix (Black Box)
	F02ECF	Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
D4a3	Complex Hermitian F02HAF	All eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
	FO2HCF	Selected eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
	FOSFQF	(CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex
		Hermitian matrix, using divide and conquer
	FOSGQF	(CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, packed storage, using divide and conquer
	F08HQF	(CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex
		Hermitian band matrix, using divide and conquer
D4a4	Complex non-Herm	itian All eigenvalues and Schur factorization of complex general matrix (Black Box)
	FO2GAF FO2GBF	All eigenvalues and eigenvectors of complex general matrix (Black Box)
	F02GCF	Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)
D4a5	Tridiagonal	(227711) (227711) (1)
	F08JCF	(SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvectors of real symmetric tridiagonal matrix, using divide and conquer
	F08JEF	(SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal
		matrix, reduced from real symmetric matrix using implicit QL or QR
	F08JFF	(SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, root-free
	FO8JGF	variant of QL or QR (SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric positive-
	roodr	definite tridiagonal matrix, reduced from real symmetric positive-definite matrix
	F08JJF	(SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix by
	200177	bisection (SCTEIN / DCTEIN) C. L. a. d. i i was a day of a sel assessment in the little of the selection of
	F08JKF	(SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array
D4a6	Banded	
	F08HCF	(SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real sym-
	FOSHQF	metric band matrix, using divide and conquer (CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex
		Hermitian band matrix, using divide and conquer
D4a7	Sparse	
70.41	F02FJF	Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box) e problems (e.g., $Ax = \lambda Bx$)
D4b D4b1	Real symmetric	e problems (e.g., $Ax = ADx$)
2101	FO2FDF	All eigenvalues and eigenvectors of real symmetric-definite generalized problem
		(Black Box)
Dako	F02FJF	Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
D4b2	Real general F02BJF	All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ
		algorithm, real matrices (Black Box)
D4b3	Complex Hermitian	
	FO2HDF	All eigenvalues and eigenvectors of complex Hermitian-definite generalized problem (Black Box)
D4b4	Complex general	
	F02GJF	All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by
D4b5	Banded	QZ algorithm (Black Box)
7200	Dunaca	

	FO2FHF	All eigenvalues of generalized banded real symmetric-definite eigenproblem (Black
	T-0.577	Box) Eigenvector of generalized real banded eigenproblem by inverse iteration
	F02SDF Associated operations	
D4c	F08QFF	(STREXC/DTREXC) Reorder Schur factorization of real matrix using orthogonal
		similarity transformation
	F08QGF	(STRSEN/DTRSEN) Reorder Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of
		sensitivities
	FOSQLF	(STRSNA/DTRSNA) Estimates of sensitivities of selected eigenvalues and eigen-
		vectors of real upper quasi-triangular matrix (CTREXC/ZTREXC) Reorder Schur factorization of complex matrix using unitary
1	FOSQTF	similarity transformation
	F08QUF	(CTRSEN/ZTRSEN) Reorder Schur factorization of complex matrix, form or-
		thonormal basis of right invariant subspace for selected eigenvalues, with estimates
		of sensitivities (CTRSNA/ZTRSNA) Estimates of sensitivities of selected eigenvalues and eigen-
	FOSQYF	vectors of complex upper triangular matrix
D4c1	Transform problem	Account of company app
D4cla	Balance matrix	(CORPLAN (DORDAL) D. L
	FOSTHF	(SGEBAL/DGEBAL) Balance real general matrix (CGEBAL/ZGEBAL) Balance complex general matrix
Darth	F08 T VF Reduce to compa	
D4c1b D4c1b1	Tridiagonal	
2 2022	F08FEF	(SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric
	F08FFF	tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction
	POOFFF	to tridiagonal form determined by F08FEF
	F08FSF	(CHETRD/ZHETRD) Unitary reduction of complex Hermitian matrix to real
	704757	symmetric tridiagonal form (CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to
	FOSFTF	tridiagonal form determined by F08FSF
	F08GEF	(SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric
		tridiagonal form, packed storage
	F08GFF	(SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08GEF
	FO8GSF	(CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real
		symmetric tridiagonal form, packed storage
	FOSGTF	(CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to
	FOSHEF	tridiagonal form determined by F08GSF (SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to
	POORE	symmetric tridiagonal form
	FOSHSF	(CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real
D. 41.0	Ussambana	symmetric tridiagonal form
D4c1b2	Hessenberg F08 E F	(SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper
		Hessenberg form
	F08#FF	(SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction
	F08ESF	to Hessenberg form determined by F08NEF (CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper
	100201	Hessenberg form
	F08 E TF	(CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to
Dartho	Other	Hessenberg form determined by F08NSF
D4c1b3	FOSLEF	(SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiag-
		onal form
	F08LSF	(CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form
D4c1c	Standardize prob	olem .
21010	F01BVF	Reduction to standard form, generalized real symmetric-definite banded
	PARCEE	eigenproblem (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite gener-
	FOSSEF	alized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by F07FDF
	FO8SSF	(CHEGST/ZHEGST) Reduction to standard form of complex Hermitian-definite
		generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by
	FOSTEF	F07FRF (SSPGST/DSPGST) Reduction to standard form of real symmetric-definite gen-
	LOOIBL	eralized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B
		factorized by F07GDF
	F08TSF	(CHPGST/ZHPGST) Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B
		generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ of $BAx = \lambda x$, packed storage, B factorized by F07GRF

Index GAMS Index

	F08UEF	(SSBGST/DSBGST) Reduction of real symmetric-definite banded generalized
		eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same
		bandwidth as A
	F08USF	(CHBGST/ZHBGST) Reduction of complex Hermitian-definite banded generalized
		eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same
D4c2	Compute eigenval	bandwidth as A ues of matrix in compact form
D4c2 D4c2a	Tridiagonal	ucs of matrix in compact form
Dacaa	FOSFCF	(SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real sym-
		metric matrix, using divide and conquer
	F08FQF	(CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex
1		Hermitian matrix, using divide and conquer
	FOSGCF	(SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvectors of real sym-
	FOSGQF	metric matrix, packed storage, using divide and conquer (CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvectors of complex
	rooder	Hermitian matrix, packed storage, using divide and conquer
	F08JCF	(SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvectors of real sym-
		metric tridiagonal matrix, using divide and conquer
	F08JEF	(SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal
		matrix, reduced from real symmetric matrix using implicit QL or QR
	F08JFF	(SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, root-free
	F08JGF	variant of QL or QR (SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric positive-
	FUOJGF	definite tridiagonal matrix, reduced from real symmetric positive-definite matrix
	F08JJF	(SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix by
		bisection
	F08JSF	(CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal
•		matrix, reduced from complex Hermitian matrix, using implicit QL or QR
	F08JUF	(CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric positive-
		definite tridiagonal matrix, reduced from complex Hermitian positive-definite matrix
D4c2b	Hessenberg	III dell'i A
	F08PEF	(SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upper Hessenberg
		matrix reduced from real general matrix
	F08PSF	(CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of complex upper Hes-
D4-0	Form electron	senberg matrix reduced from complex general matrix
D4c3	Form eigenvectors F08JKF	(SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by
	1000	inverse iteration, storing eigenvectors in real array
	FOSJXF	(CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by
		inverse iteration, storing eigenvectors in complex array
	FO8PKF	(SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upper Hessenberg
	EVODAE	matrix by inverse iteration (CUSEIN (ZUSEIN) Selected right and (an left circumsetors of complex comp
	FOSPXF	(CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
	F08QKF	(STREVC/DTREVC) Left and right eigenvectors of real upper quasi-triangular
		matrix
	F08QXF	(CTREVC/ZTREVC) Left and right eigenvectors of complex upper triangular
_		matrix
D4c4	Back transform eig	* *
	F08FGF F08FUF	(SORMTR/DORMTR) Apply orthogonal transformation determined by F08FEF (CUNMTR/ZUNMTR) Apply unitary transformation matrix determined by
	100101	F08FSF
	F08GGF	(SOPMTR/DOPMTR) Apply orthogonal transformation determined by F08GEF
	FOSGUF	(CUPMTR/ZUPMTR) Apply unitary transformation matrix determined by
		F08GSF
	F08 E GF	(SORMHR/DORMHR) Apply orthogonal transformation matrix from reduction to
	F08#JF	Hessenberg form determined by F08NEF (SGEBAK/DGEBAK) Transform eigenvectors of real balanced matrix to those of
	rvomjr	original matrix supplied to F08NHF
	F08MUF	(CUNMHR/ZUNMHR) Apply unitary transformation matrix from reduction to
		Hessenberg form determined by F08NSF
	FOSEWF	(CGEBAK/ZGEBAK) Transform eigenvectors of complex balanced matrix to those
_	0.D.1 =	of original matrix supplied to F08NVF
D5		am-Schmidt orthogonalization
	FO1QGF	RQ factorization of real m by n upper trapezoidal matrix $(m \le n)$
	FO1QJF FO1QKF	RQ factorization of real m by n matrix $(m \le n)$ Operations with orthogonal matrices, form rows of Q, after RQ factorization by
	LOIÁTL	F01QJF
	F01RGF	RQ factorization of complex m by n upper trapezoidal matrix $(m \leq n)$
	F01RJF	RQ factorization of complex m by n matrix $(m \le n)$
	F01RKF	Operations with unitary matrices, form rows of Q, after RQ factorization by F01RJF
	FOSAAF	Gram-Schmidt orthogonalisation of n vectors of order m

	F06QPF	QR factorization by sequence of plane rotations, rank-1 update of real upper
		triangular matrix
	F06QQF	QR factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row
	F06QRF	QR or RQ factorization by sequence of plane rotations, real upper Hessenberg
	roopar	matrix
	F06QSF	OR or RO factorization by sequence of plane rotations, real upper spiked matrix
	F06QTF	QR factorization of UZ or RQ factorization of ZU , U real upper triangular, Z a
		sequence of plane rotations
	F06TPF	QR factorization by sequence of plane rotations, rank-1 update of complex upper
	F06TQF	triangular matrix $QRxk$ factorization by sequence of plane rotations, complex upper triangular matrix
•	rooter	augmented by a full row
	F06TRF	QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg
		matrix
	FOOTSF	QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix QR factorization of UZ or RQ factorization of ZU , U complex upper triangular, Z
	FOGTTF	a sequence of plane rotations
	FOSAEF	(SGEORF/DGEQRF) QR factorization of real general rectangular matrix
	FORAFF	(SORGQR/DORGQR) Form all or part of orthogonal Q from QR factorization
		determined by F08AEF or F08BEF
	F08AGF	(SORMQR/DORMQR) Apply orthogonal transformation determined by F08AEF
	PAGANE	or F08BEF (SGELQF/DGELQF) LQ factorization of real general rectangular matrix
	FOSAHF FOSAJF	(SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization
	ruorjr	determined by F08AHF
	F08AKF	(SORMLQ/DORMLQ) Apply orthogonal transformation determined by F08AHF
	F08ASF	(CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix
	F08ATF	(CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by F08ASF or F08BSF
	FOSAUF	(CUNMQR/ZUNMQR) Apply unitary transformation determined by F08ASF or
	rookor	F08BSF
	F08AVF	(CGELQF/ZGELQF) LQ factorization of complex general rectangular matrix
	FOSAWF	(CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization
		determined by F08AVF
	FOSAXF	(CUNMLQ/ZUNMLQ) Apply unitary transformation determined by F08AVF (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with
	FOSBEF	column pivoting
	F08BSF	(CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with
		column pivoting
$\mathbf{D}6$	Singular value decompo	sition QR factorization, possibly followed by SVD
	FO2WDF FO2WEF	SVD of real matrix (Black Box)
	FO2WUF	SVD of real upper triangular matrix (Black Box)
	F02XEF	SVD of complex matrix (Black Box)
	F02XUF	SVD of complex upper triangular matrix (Black Box)
	F08KEF	(SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to
	F08KFF	bidiagonal form (SORGBR/DORGBR) Generate orthogonal transformation matrices from reduc-
	POORT	tion to bidiagonal form determined by F08KEF
	F08KGF	(SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidi-
		agonal form determined by F08KEF
	F08KSF	(CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to
	F08KTF	bidiagonal form (CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction
	LOOMIL	to bidiagonal form determined by F08KSF
	F08KUF	(CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal
		form determined by F08KSF
	FOSMEF	(SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general
	F08MSF	matrix (CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general
	roonar	matrix
D8	Other matrix equations	(e.g., AX + XB = C)
	F08QHF	(STRSYL/DTRSYL) Solve real Sylvester matrix equation $AX + XB = C$, A and
	PAGGUE	B are upper quasi-triangular or transposes (CTRSYL/ZTRSYL) Solve complex Sylvester matrix equation $AX + XB = C$, A
	FOSQVF	and B are upper triangular or conjugate-transposes $B = 0$, $A = 0$, $A = 0$
D 9	Singular, overdetermine	ed or underdetermined systems of linear equations, generalized inverses
D9a	Unconstrained	
D9a1	Least squares (L_2)	
	F04AMF	Least-squares solution of m real equations in n unknowns, rank $= n$, $m \ge n$ using iterative refinement (Black Box)
		sociative termiente (Disea Dea)

	FO4JAF FO4JDF FO4JGF FO4JLF FO4KLF FO4QAF	Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$ Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$ Least-squares (if rank $= n$) or minimal least-squares (if rank $< n$) solution of m real equations in n unknowns, rank $\leq n, m \geq n$ Real general Gauss-Markov linear model (including weighted least-squares) Complex general Gauss-Markov linear model (including weighted least-squares) Sparse linear least-squares problem, m real equations in n unknowns
D9a2	F04YAF (L_{∞}) so E02GCF	
D9a3	Least absolute valu E02GAF	L_∞ -approximation by general linear function let (L_1) solution L_1 -approximation by general linear function
D9b	Constrained	
D9b1	Least squares (L_2) E04 E CF	solution Convex QP problem or linearly-constrained linear least-squares problem (dense)
	FO4JMF FO4KMF	Equality-constrained real linear least-squares problem Equality-constrained complex linear least-squares problem
D 9b3	Least absolute valu	\ = <i>r</i>
	EO2GBF	L_1 -approximation by general linear function subject to linear inequality constraints
D9c	Generalized inverses	Provide inverse and rank of real m by a matrix (m > n)
E	F01BLF Interpolation	Pseudo-inverse and rank of real m by n matrix $(m \ge n)$
E1	Univariate data (curve	fitting)
E1a	•	iecewise polynomials)
	E01BAF	Interpolating functions, cubic spline interpolant, one variable
	E01BEF	Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one
		variable
Dak.	E02BAF Polynomials	Least-squares curve cubic spline fit (including interpolation)
E1b	E01AAF	Interpolated values, Aitken's technique, unequally spaced data, one variable
	E01ABF	Interpolated values, Everett's formula, equally spaced data, one variable
	E01AEF	Interpolating functions, polynomial interpolant, data may include derivative values,
		one variable
	E02AFF	Least-squares polynomial fit, special data points (including interpolation)
E1c	, -	rational, trigonometric)
TO 0	E01RAF	Interpolating functions, rational interpolant, one variable
E2 E2a	Multivariate data (surfa Gridded	sce niting)
DZa	E01DAF	Interpolating functions, fitting bicubic spline, data on rectangular grid
E2b	Scattered	. 0 , 0
	E01SAF	Interpolating functions, method of Renka and Cline, two variables
	E01SEF	Interpolating functions, modified Shepard's method, two variables
	E01SGF	Interpolating functions, modified Shepard's method, two variables
	E01SHF	Interpolated values, evaluate interpolant computed by E01SGF, function and first derivatives, two variables
	E01TGF	Interpolating functions, modified Shepard's method, three variables
	EO1THF	Interpolated values, evaluate interpolant computed by E01TGF, function and first
		derivatives, three variables
E3	Service routines for interpolation	
E3a	Evaluation of fitted functions, including quadrature	
E3a1	Function evaluation E01BFF	n Interpolated values, interpolant computed by E01BEF, function only, one variable
	E01RBF	Interpolated values, evaluate rational interpolant computed by E01RAF, one
		variable
	E01SBF	Interpolated values, evaluate interpolant computed by E01SAF, two variables
	E01SFF	Interpolated values, evaluate interpolant computed by E01SEF, two variables
	E02AEF	Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
	E02AKF	Evaluation of fitted polynomial in one variable from Chebyshev series form
	E02BBF	Evaluation of fitted cubic spline, function only
	E02BCF	Evaluation of fitted cubic spline, function and derivatives
	E02CBF	Evaluation of fitted polynomial in two variables
	EO2DEF EO2DFF	Evaluation of fitted bicubic spline at a vector of points Evaluation of fitted bicubic spline at a mesh of points
E3a2	Derivative evaluation	
	E01BGF	Interpolated values, interpolant computed by E01BEF, function and first derivative,
	E02AHF	one variable Derivative of fitted polynomial in Chebyshev series form
	EO2RF EO2BCF	Evaluation of fitted cubic spline, function and derivatives
E3a3	Quadrature	
	EO1BHF	Interpolated values, interpolant computed by E01BEF, definite integral, one variable

	EO2AJF EO2BDF	Integral of fitted polynomial in Chebyshev series form Evaluation of fitted cubic spline, definite integral	
E3d	Other E02ZAF	Sort two-dimensional data into panels for fitting bicubic splines	
F	Solution of nonlinear equations		
F1	Single equation		
F1a	Polynomial	·	
F1a1	Real coefficients CO2AGF	All zeros of real polynomial, modified Laguerre method	
	CO2AJF	All zeros of real quadratic	
F1a2	Complex coefficient	ts	
1	CO2AFF	All zeros of complex polynomial, modified Laguerre method	
	CO2AHF	All zeros of complex quadratic	
F1b	Nonpolynomial	Zero of continuous function in given interval, Bus and Dekker algorithm	
	CO5ADF CO5AGF	Zero of continuous function, Bus and Dekker algorithm, from given starting value,	
	CODAGI	binary search for interval	
	CO5AJF	Zero of continuous function, continuation method, from a given starting value	
	CO5AVF	Binary search for interval containing zero of continuous function (reverse	
	COSAXF	communication) Zero of continuous function by continuation method, from given starting value	
	CORRI	(reverse communication)	
	CO5AZF	Zero in given interval of continuous function by Bus and Dekker algorithm (reverse	
		communication)	
F2	System of equations COSIBF	Solution of system of nonlinear equations using function values only (easy-to-use)	
	COSTCF	Solution of system of nonlinear equations using function values only (comprehensive)	
	CO5#DF	Solution of system of nonlinear equations using function values only (reverse	
	******	communication) Solution of system of nonlinear equations using first derivatives (easy-to-use)	
	CO5PBF CO5PCF	Solution of system of nonlinear equations using first derivatives (comprehensive)	
	COSPDF	Solution of system of nonlinear equations using first derivatives (reverse	
		communication)	
F3	Service routines (e.g., check user-supplied derivatives) CO5ZAF Check user's routine for calculating first derivatives		
	CO5ZAF EO4HCF	Check user's routine for calculating first derivatives of function	
	E04HDF	Check user's routine for calculating second derivatives of function	
G	Optimization (search also		
G1	Unconstrained		
G1a	Univariate		
G1a1	Smooth function User provides no	darivativas	
G1a1a	E04ABF	Minimum, function of one variable using function values only	
G1a1b	User provides fir	st derivatives	
	E04BBF	Minimum, function of one variable, using first derivative	
G1b	Multivariate Smooth function		
G1b1 G1b1b	User provides fir	rst derivatives	
GIDID	E04DGF	Unconstrained minimum, preconditioned conjugate gradient algorithm, function of	
	~ 14 · · · · ·	several variables using first derivatives (comprehensive)	
G1b2	General function (: E04CCF	no smoothness assumed) Unconstrained minimum, simplex algorithm, function of several variables using	
	1001001	function values only (comprehensive)	
G2	Constrained		
G2a	Linear programming		
G2a1	Dense matrix of co	onstraints LP problem (dense)	
	E04#CF	Convex QP problem or linearly-constrained linear least-squares problem (dense)	
	E04#FF	QP problem (dense)	
	HO2BFF	Interpret MPSX data file defining IP or LP problem, optimize and print solution	
G0 0	HO2CBF	Integer QP problem (dense)	
G2a2	Sparse matrix of c	LP or QP problem (sparse)	
	E04UGF	NLP problem (sparse)	
	HO2CEF	Integer LP or QP problem (sparse)	
G2b	Transportation and	assignments problem Transportation problem, modified 'stepping stone' method	
G2c	HO3ABF Integer programming		
G2c G2c1	Zero/one	o	
	HO2BBF	Integer LP problem (dense)	
G2c6	Pure integer progr		
	HO2BBF	Integer LP problem (dense)	

GAMS Index

Index

G2c7	Mixed integer pro	
	HO2BBF	Integer LP problem (dense)
	HO2BFF	Interpret MPSX data file defining IP or LP problem, optimize and print solution
G2d		k reliability search class M)
G2d1	Shortest path HO3ADF	Shortest path problem, Dijkstra's algorithm
G2e	Quadratic programn	
G2e1	· · · · · · · · · · · · · · · · · · ·	essian (i.e., convex problem)
G2C1	E04BCF	Convex QP problem or linearly-constrained linear least-squares problem (dense)
	E04#FF	QP problem (dense)
	E04#KF	LP or QP problem (sparse)
ı	E04UGF	NLP problem (sparse)
	HO2CBF	Integer QP problem (dense)
	HO2CEF	Integer LP or QP problem (sparse)
G2e2	Indefinite Hessian	OD 11 (1)
	E04#FF	QP problem (dense)
	E04 u kf E04ugf	LP or QP problem (sparse) NLP problem (sparse)
	HO2CBF	Integer QP problem (dense)
	HO2CEF	Integer LP or QP problem (sparse)
G2h	General nonlinear pr	
G2h1	Simple bounds	, ,
G2h1a	Smooth function	ı
G2h1a1	User provides	no derivatives
	E04JYF	Minimum, function of several variables, quasi-Newton algorithm, simple bounds,
		using function values only (easy-to-use)
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communication, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
	201011	straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
G2h1a2		first derivatives
	E04KDF	Minimum, function of several variables, modified Newton algorithm, simple bounds,
	E04KYF	using first derivatives (comprehensive) Minimum, function of several variables, quasi-Newton algorithm, simple bounds,
	DOTAIT	using first derivatives (easy-to-use)
	E04KZF	Minimum, function of several variables, modified Newton algorithm, simple bounds,
		using first derivatives (easy-to-use)
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communica- tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
	201011	straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
G2h1a3	-	first and second derivatives
	E04LBF	Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and second derivatives (comprehensive)
	E04LYF	Minimum, function of several variables, modified Newton algorithm, simple bounds,
		using first and second derivatives (easy-to-use)
G2h2	Linear equality or	inequality constraints
G2h2a	Smooth function	
G2h2a1	User provides	
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (forward communication, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
	20101.	straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
G2h2a2	-	first derivatives
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and antimally first desiration (forward)
		straints, using function values and optionally first derivatives (forward communication, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear con-
		straints, using function values and optionally first derivatives (reverse communi-
		cation, comprehensive)

	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
	NIli aamatmaira	function values and optionally first derivatives (comprehensive)
G2h3	Nonlinear constrair Equality constrai	
G2h3a	-	on and constraints
G2h3a1	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (forward communication, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (reverse communication, comprehensive)
•	E04UMF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
G2h3b	Equality and ine	quality constraints
G2h3b1	Smooth function	on and constraints
G2h3b1a		es no derivatives
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (forward communication, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (reverse communication, comprehensive)
	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
G2h3b1b	User provide	es first derivatives of function and constraints Minimum, function of several variables, sequential QP method, nonlinear con-
	E040CF	straints, using function values and optionally first derivatives (forward communication, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (reverse communi-
	E04UTF	cation, comprehensive) Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function values and optionally first derivatives (comprehensive)
G4	Service routines	Idition value and opvious, is a series (* 1
G4a	Problem input (e.g.,	matrix generation)
	E04MZF	Converts MPSX data file defining LP or QP problem to format required by E04NKF
	EO4UQF HO2BUF	Read optional parameter values for E04UNF from external file Convert MPSX data file defining IP or LP problem to format required by H02BBF
a .	Charleman aumilied	or E04MFF
G4c	Check user-supplied of E04HCF	Check user's routine for calculating first derivatives of function
	E04HDF	Check user's routine for calculating second derivatives of function
	E04YAF	Check user's routine for calculating Jacobian of first derivatives
	E04YBF	Check user's routine for calculating Hessian of a sum of squares
	E04ZCF	Check user's routines for calculating first derivatives of function and constraints
G4d	Find feasible point	()
	E04MFF	LP problem (dense) Convex QP problem or linearly-constrained linear least-squares problem (dense)
	E04MCF	
	E04NFF E04NKF	QP problem (dense) LP or QP problem (sparse)
	E04UCF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (forward communica-
		tion, comprehensive)
	E04UFF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using function values and optionally first derivatives (reverse communi-
	E04UGF	cation, comprehensive) NLP problem (sparse)
	E04UFF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
	HO2CBF	Integer QP problem (dense)
G4f	HO2CEF Other	Integer LP or QP problem (sparse)
G-11	E04DJF	Read optional parameter values for E04DGF from external file
	E04DKF	Supply optional parameter values to E04DGF
	E04MGF	Read optional parameter values for E04MFF from external file
	E04MHF	Supply optional parameter values to E04MFF
	E04IDF	Read optional parameter values for E04NCF from external file
	E04TEF	Supply optional parameter values to E04NCF Read optional parameter values for E04NFF from external file
	EO4NGF EO4NHF	Supply optional parameter values to E04NFF
	E04NLF	Read optional parameter values for E04NKF from external file
	E04IMF	Supply optional parameter values to E04NKF
	E04UDF	Read optional parameter values for E04UCF or E04UFF from external file

	E04UEF	Supply optional parameter values to E04UCF or E04UFF
	E04UHF	Read optional parameter values for E04UGF from external file
	E04UJF	Supply optional parameter values to E04UGF
	EO4UQF EO4URF	Read optional parameter values for E04UNF from external file Supply optional parameter values to E04UNF
	E04XAF	Estimate (using numerical differentiation) gradient and/or Hessian of a function
	HO2BVF	Print IP or LP solutions with user specified names for rows and columns
	HO2BZF	Integer programming solution, supplies further information on solution obtained by
		H02BBF
	HO2CCF	Read optional parameter values for H02CBF from external file
	HO2CDF	Supply optional parameter values to H02CBF
•	HO2CFF	Read optional parameter values for H02CEF from external file
	HO2CGF	Supply optional parameter values to H02CEF
H	Differentiation, integration Numerical differentiation	•
H1	DO4AAF	Numerical differentiation, derivatives up to order 14, function of one real variable
	E04XAF	Estimate (using numerical differentiation) gradient and/or Hessian of a function
H2	Quadrature (numerical	evaluation of definite integrals)
H2a	One-dimensional integ	
H2a1	Finite interval (gen	eral integrand)
H2a1a	· ·	le via user-defined procedure
H2a1a1	•	er need only specify required accuracy)
	DO1AHF	One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for well-behaved integrands
	DO1AJF	One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and
	202	de Doncker, allowing for badly-behaved integrands
	DO1 ARF	One-dimensional quadrature, non-adaptive, finite interval with provision for indefi-
		nite integrals
	DO1ATF	One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient
	DO1BDF	on vector machines One-dimensional quadrature, non-adaptive, finite interval
H2a1a2	Nonautomatic	One-unitensional quadrature, non-adaptive, infine interval
1120102	DO1BAF	One-dimensional Gaussian quadrature
H2a1b	Integrand availab	
H2a1b2	Nonautomatic	
	DO1GAF	One-dimensional quadrature, integration of function defined by data values, Gill-
77.0	Finite internal (m.	Miller method cific or special type integrand including weight functions, oscillating and singular
H2a2		all value integrals, splines, etc.)
H2a2a		le via user-defined procedure
H2a2a1	•	er need only specify required accuracy)
	DO1AKF	One-dimensional quadrature, adaptive, finite interval, method suitable for oscillation of method suitable for oscillations.
	DO1ALF	ing functions One-dimensional quadrature, adaptive, finite interval, allowing for singularities at
	DOIRE	user-specified break-points
	DO1ANF	One-dimensional quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or
		$\sin(\omega x)$
	DO1APF	One-dimensional quadrature, adaptive, finite interval, weight function with end-
	204.422	point singularities of algebraico-logarithmic type
	DO1AQF	One-dimensional quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform)
	DO1AUF	One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient
		on vector machines
H2a2b	Integrand availab	· · · · · · · · · · · · · · · · · · ·
H2a2b1	•	er need only specify required accuracy)
	E02AJF	Integral of fitted polynomial in Chebyshev series form Evaluation of fitted cubic spline, definite integral
Was a	E02BDF	al (including e^{-x} weight function)
H2a3 H2a3a		le via user-defined procedure
H2a3a1		er need only specify required accuracy)
	DO1AHF	One-dimensional quadrature, adaptive, infinite or semi-infinite interval
	DO1ASF	One-dimensional quadrature, adaptive, semi-infinite interval, weight function
TT0-0-0	Nonautomatia	$\cos(\omega x)$ or $\sin(\omega x)$
H2a3a2	Nonautomatic D01BAF	One-dimensional Gaussian quadrature
TT0- 4		cluding e^{-x^2} weight function)
H2a4 H2a4a		cluding e - weight function) le via user-defined procedure
H2a4a1		er need only specify required accuracy)
LDIDDES	DO1AMF	One-dimensional quadrature, adaptive, infinite or semi-infinite interval
H2a4a2	Nonautomatic	
	DO1BAF	One-dimensional Gaussian quadrature

H2b	Multidimensional inte	grals
H2b1	One or more hyper-	rectangular regions (includes iterated integrals)
H2b1a	Integrand availab	le via user-defined procedure
H2b1a1		er need only specify required accuracy)
	DO1DAF	Two-dimensional quadrature, finite region Multi-dimensional adaptive quadrature over hyper-rectangle, multiple integrands
	DO1EAF	Multi-dimensional adaptive quadrature over hyper-rectangle Multi-dimensional adaptive quadrature over hyper-rectangle
	DO1FCF	Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
	DO1GBF	Multi-dimensional quadrature over hyper-rectangle, monto
H2b1a2	Nonautomatic	Multi-dimensional Gaussian quadrature over hyper-rectangle
	DO1FBF	Multi-dimensional quadrature, Sag-Szekeres method, general product region or n-
	DO1FDF	
		sphere Multi-dimensional quadrature, general product region, number-theoretic method
	DO1GCF	Multi-dimensional quadrature, general product region, number-theoretic method,
	DO1GDF	variant of D01GCF efficient on vector machines
		variant of Durger engler region
H2b2	n-dimensional quad	rature on a nonrectangular region
H2b2a	Integrand availab	le via user-defined procedure er need only specify required accuracy)
H2b2a1		Multi-dimensional quadrature over an n-sphere, allowing for badly-behaved
	DO1 JAF	integrands
	Nonautomatic	IliteRt and
H2b2a2	DO1PAF	Multi-dimensional quadrature over an n-simplex
	Si routings (e.g.	compute weights and nodes for quadrature formulas)
H2 c	DO1BBF	Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice
	DOIBBI	of rule
	DO1BCF	Calculation of weights and abscissae for Gaussian quadrature rules, general choice
	201201	of rule
	DO1GYF	Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points
		is prime
	DO1GZF	Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points
		is product of two primes
I	Differential and integral e	quations
Ī1	Ordinary differential eq	uations (ODE's)
I1a	Initial value problems	
I1a1	General, nonstiff or	mildly stiff
I1a1a	One-step method	ls (e.g., Runge-Kutta)
	DO2BGF	ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value
		(simple driver)
	DO2BHF	ODEs, IVP, Runge-Kutta-Merson method, until function of solution is zero (simple
		driver) ODEs, IVP, Runge-Kutta method, until function of solution is zero, integration
	DO2BJF	over range with intermediate output (simple driver)
	2007 45	Second-order ODEs, IVP, Runge-Kutta-Nystrom method
	DO2LAF DO2PCF	ODEs, IVP, Runge-Kutta method, integration over range with output
	DO2PDF	ODEs, IVP, Runge-Kutta method, integration over one step
Ta 43		ds (e.g., Adams predictor-corrector)
I1a1b	DO2CJF	ODEs, IVP, Adams method, until function of solution is zero, intermediate output
	202001	(simple driver)
	DO2QFF	ODEs, IVP, Adams method with root-finding (forward communication,
		comprehensive)
	DO2QGF	ODEs, IVP, Adams method with root-finding (reverse communication,
	-	comprehensive)
I1a2	Stiff and mixed alg	gebraic- differential equations
	DO2EJF	ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output
		(simple driver)
	DO2 EBF	Explicit ODEs, stiff IVP, full Jacobian (comprehensive)
	DO2MCF	Explicit ODEs, stiff IVP, banded Jacobian (comprehensive)
	DO2 T DF	Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive)
	DO2 E GF	Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive)
	DO2WHF	Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive)
	DO2#JF	Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive)
	DO2MF	Explicit ODEs, stiff IVP (reverse communication, comprehensive)
	DO2EEF	Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive)
	DO3PKF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box
		discretisation, one space variable General system of parabolic PDEs, coupled DAEs, method of lines, finite differences,
	DOSPPF	General system of parabone r Drs, coupled DAEs, method of mics, made differences,
		remeshing, one space variable General system of first-order PDEs, coupled DAEs, method of lines, Keller box
	DOSPRF	discretisation, remeshing, one space variable
Til	Multipoint boundar	
I1b	Linear	
I1b1	DO2GBF	ODEs, boundary value problem, finite difference technique with deferred correction,
		general linear problem
		•

Index GAMS Index

	DO2JAF	ODEs, boundary value problem, collocation and least-squares, single nth-order
		linear equation
	DO2JBF	ODEs, boundary value problem, collocation and least-squares, system of first-order
	DO2TGF	nth-order linear ODEs, boundary value problem, collocation and least-squares
I1b2	Nonlinear	Will-Order Initial ODES, Doubleau, Value problem, confection and removed a
1102	DO2AGF	ODEs, boundary value problem, shooting and matching technique, allowing interior
		matching point, general parameters to be determined
	DO2GAF	ODEs, boundary value problem, finite difference technique with deferred correction,
	2001142	simple nonlinear problem ODEs, boundary value problem, shooting and matching, boundary values to be
	DO2HAF	determined
·	DO2HBF	ODEs, boundary value problem, shooting and matching, general parameters to be
		determined
	DO2RAF	ODEs, general nonlinear boundary value problem, finite difference technique with
	DO2SAF	deferred correction, continuation facility ODEs, boundary value problem, shooting and matching technique, subject to extra
	DU25AF	algebraic equations, general parameters to be determined
	DO2TKF	ODEs, general nonlinear boundary value problem, collocation technique
I1b3	Eigenvalue (e.g., St	
	DO2AGF	ODEs, boundary value problem, shooting and matching technique, allowing interior
		matching point, general parameters to be determined
	DO2HBF	ODEs, boundary value problem, shooting and matching, general parameters to be determined
	DO2KAF	Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only
	DO2KDF	Second-order Sturm-Liouville problem, regular/singular system, finite/infinite
		range, eigenvalue only, user-specified break-points
	DO2KEF	Second-order Sturm-Liouville problem, regular/singular system, finite/infinite
I1c	Service routines (e.g.	range, eigenvalue and eigenfunction, user-specified break-points interpolation of solutions, error handling, test programs)
110	DO2LXF	Second-order ODEs, IVP, set-up for D02LAF
	DO2LYF	Second-order ODEs, IVP, diagnostics for D02LAF
	DO2LZF	Second-order ODEs, IVP, interpolation for D02LAF
	DO2NVF	ODEs, IVP, DASSL method, set-up for D02M-N routines
	DO2MZF	ODEs, IVP, interpolation for D02M-N routines, natural interpolant
	DO2WRF DO2WSF	ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine ODEs, IVP, for use with D02M-N routines, full Jacobian, linear algebra set-up
	DO283F DO28TF	ODEs, IVP, for use with D02M-N routines, handed Jacobian, linear algebra set-up
	DO2TUF	ODEs, IVP, for use with D02M-N routines, sparse Jacobian, linear algebra set-up
	DO2TVF	ODEs, IVP, BDF method, set-up for D02M-N routines
	DO2WWF	ODEs, IVP, Blend method, set-up for D02M-N routines
	DO2#XF	ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M-N routines
	DO2TYF	ODEs, IVP, integrator diagnostics, for use with D02M-N routines
	DO2#ZF	ODEs, IVP, set-up for continuation calls to integrator, for use with D02M-N
		routines
	DO2PVF	ODEs, IVP, set-up for D02PCF and D02PDF
	DO2PWF	ODEs, IVP, resets end of range for D02PDF
	DO2PXF	ODEs, IVP, interpolation for D02PDF
	DO2PYF DO2PZF	ODEs, IVP, integration diagnostics for D02PCF and D02PDF ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
	DO2QWF	ODEs, IVP, set-up for D02QFF and D02QGF
	DO2QXF	ODEs, IVP, diagnostics for D02QFF and D02QGF
	DO2QYF	ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF
	DO2QZF	ODEs, IVP, interpolation for D02QFF or D02QGF
	DO2TVF DO2TXF	ODEs, general nonlinear boundary value problem, set-up for D02TKF ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
	DO2TYF	ODEs, general nonlinear boundary value problem, interpolation for D02TKF
	DO2TZF	ODEs, general nonlinear boundary value problem, diagnostics for D02TKF
	DO2XJF	ODEs, IVP, interpolation for D02M-N routines, natural interpolant
	DO2XKF	ODEs, IVP, interpolation for D02M-N routines, C_1 interpolant
T-	DO2ZAF	ODEs, IVP, weighted norm of local error estimate for D02M-N routines
I2	Partial differential equa Initial boundary value	
I2a I2a1	Parabolic	hionome
I2a1 I2a1a	One spatial dime	nsion
_	DOSPCF	General system of parabolic PDEs, method of lines, finite differences, one space
		variable
	DO3PDF	General system of parabolic PDEs, method of lines, Chebyshev C^0 collocation, one
	DO3PEF	space variable General system of first-order PDEs, method of lines, Keller box discretisation, one
	500. 2.	space variable

GAMS Index

	DOSPHF	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences,
		one space variable
	DO3PJF	General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C^0
		collocation, one space variable General system of first-order PDEs, coupled DAEs, method of lines, Keller box
	DOSPKF	discretisation, one space variable
	DOODDE	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences,
	DO3PPF	remeshing one space variable
	DOSPRF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box
	2001.	discretisation, remeshing, one space variable
	DO3PYF	PDEs spatial interpolation with D03PDF or D03PJF
1	DO3PZF	PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF,
		D03PLF, D03PPF, D03PRF or D03PSF
I2a1b	Two or more spa	tial dimensions General system of second-order PDEs, method of lines, finite differences, remeshing,
	DOSRAF	two space variables, rectangular region
	DO3RBF	General system of second-order PDEs, method of lines, finite differences, remeshing,
	DOSEDE	two space variables, rectilinear region
	DOSRYF	Check initial grid data in D03RBF
	DOSRZF	Extract grid data from D03RBF
I2a2	Hyperbolic	
1242	DOSPFF	General system of convection-diffusion PDEs with source terms in conservative form,
		method of lines, upwind scheme using numerical flux function based on Riemann
-		solver, one space variable
	DO3PLF	General system of convection-diffusion PDEs with source terms in conservative form,
		coupled DAEs, method of lines, upwind scheme using numerical flux function based
		on Riemann solver, one space variable General system of convection-diffusion PDEs with source terms in conservative form,
	DO3PSF	coupled DAEs, method of lines, upwind scheme using numerical flux function based
		on Riemann solver, remeshing, one space variable
	DO3PUF	Roe's approximate Riemann solver for Euler equations in conservative form, for use
	200.00	with D03PFF, D03PLF and D03PSF
	DO3PVF	Osher's approximate Riemann solver for Euler equations in conservative form, for
		use with D03PFF, D03PLF and D03PSF
	DO3PWF	Modified HLL Riemann solver for Euler equations in conservative form, for use with
		D03PFF, D03PLF and D03PSF
	DO3PXF	Exact Riemann Solver for Euler equations in conservative form, for use with
	T. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	D03PFF, D03PLF and D03PSF
I2b	Elliptic boundary va Linear	tue problems
I2b1 I2b1a	Second order	
1251a 1251a1		
	Poisson (Lapl	ace) or Helmholtz equation
	Poisson (Lapl Rectangula	ace) or Helmholtz equation r domain (or topologically rectangular in the coordinate system)
I2b1a1a	Poisson (Lapl Rectangula DO3FAF	ace) or Helmholtz equation r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates
	Rectangula DO3FAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain
I2b1a1a	Rectangula DO3FAF Nonrectang DO3EAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates ular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
I2b1a1a	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems
I2b1a1a I2b1a1b I2b1a3	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates ular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain
I2b1a1a I2b1a1b	Rectangula D03FAF Nonrectang D03EAF Nonseparable D03EEF Service routines	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle
I2b1a1a I2b1a1b I2b1a3	Rectangula D03FAF Nonrectang D03EAF Nonseparable D03EEF Service routines D03EEF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle
I2b1a1a I2b1a1b I2b1a3	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF
I2b1a1a I2b1a1b I2b1a3	Rectangula D03FAF Nonrectang D03EAF Nonseparable D03EEF Service routines D03EEF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates gular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PFF, D03PHF, D03PKF,
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P)
I2b1a1a I2b1a1b I2b1a3	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates ular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two-
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three-
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three- dimensional molecule, iterate to convergence
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EEF DO3ECF DO3EDF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EEF DO3ECF DO3EDF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three-
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3EDF DO3UAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration
I2b1a1a I2b1a1b I2b1a3 I2b4	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3ECF DO3EDF DO3UAF DO3UBF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration
I2b1a1a I2b1a3 I2b4 I2b4a I2b4b	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3EDF DO3UAF DO3UAF LINESTAL EQUATIONS DO5AAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Linear non-singular Fredholm integral equation, second kind, split kernel
I2b1a1a I2b1a3 I2b4 I2b4a I2b4b	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3ECF DO3UAF DO3UAF Integral equations DO5AAF DO5ABF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates rular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional molecule, one iteration Linear non-singular Fredholm integral equation, second kind, split kernel Linear non-singular Fredholm integral equation, second kind, smooth kernel
I2b1a1a I2b1a3 I2b4 I2b4a I2b4b	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3EOF DO3UAF Locations DO5AAF DO5AAF DO5AAF DO5AAF DO5BAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates ular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Linear non-singular Fredholm integral equation, second kind, split kernel Linear non-singular Fredholm integral equation, second kind, smooth kernel Nonlinear Volterra convolution equation, second kind
I2b1a1a I2b1a3 I2b4 I2b4a I2b4b	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3EDF DO3UAF LO3UAF DO3UBF Integral equations DO5AAF DO5ABF DO5BAF DO5BDF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates ular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PHF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Linear non-singular Fredholm integral equation, second kind, split kernel Linear non-singular Fredholm integral equation, second kind, smooth kernel Nonlinear Convolution Volterra-Abel equation, second kind, weakly singular
I2b1a1a I2b1a3 I2b4 I2b4a I2b4b	Rectangula DO3FAF Nonrectang DO3EAF Nonseparable DO3EEF Service routines DO3EEF DO3PYF DO3PZF Domain triangu DO3MAF Solution of disc DO3EBF DO3ECF DO3EOF DO3UAF Locations DO5AAF DO5AAF DO5AAF DO5AAF DO5BAF	r domain (or topologically rectangular in the coordinate system) Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates ular domain Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain problems Discretize a second-order elliptic PDE on a rectangle Discretize a second-order elliptic PDE on a rectangle PDEs, spatial interpolation with D03PDF or D03PJF PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF lation (search also class P) Triangulation of plane region retized elliptic equations Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP for seven-point three- dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by SIP, five-point two- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Elliptic PDE, solution of finite difference equations by SIP, seven-point three- dimensional molecule, one iteration Linear non-singular Fredholm integral equation, second kind, split kernel Linear non-singular Fredholm integral equation, second kind, smooth kernel Nonlinear Volterra convolution equation, second kind

GAMS.22 [NP3390/19]

Index GAMS Index

	DOSBYF	Generate weights for use in solving weakly singular Abel-type equations
J	Integral transforms	
J1		ms including fast Fourier transforms
J1a	One-dimensional	
J1a1	Real CO6EAF	Single one-dimensional real discrete Fourier transform, no extra workspace
	COGFAF	Single one-dimensional real discrete Fourier transform, no extra workspace for greater
	000. A.	speed
	CO6FPF	Multiple one-dimensional real discrete Fourier transforms
	CO6PAF	Single 1D real and Hermitian complex discrete Fourier transform, using complex
		data format for Hermitian sequences
•	CO6PAF	Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex data format for Hermitian sequences
	CO6PPF	Multiple 1D real and Hermitian complex discrete Fourier transforms, using complex
	333.77	data format for Hermitian sequences
	CO6PPF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms,
		using complex data format for Hermitian sequences
	CO6PQF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms,
J1a2	Complex	using complex data format for Hermitian sequences and sequences stored as columns
J182	CO6EBF	Single one-dimensional Hermitian discrete Fourier transform, no extra workspace
	COGECF	Single one-dimensional complex discrete Fourier transform, no extra workspace
	CO6FBF	Single one-dimensional Hermitian discrete Fourier transform, extra workspace for
		greater speed
	CO6FCF	Single one-dimensional complex discrete Fourier transform, extra workspace for
	CO6FFF	greater speed One-dimensional complex discrete Fourier transform of multi-dimensional data
	CO6FQF	Multiple one-dimensional Hermitian discrete Fourier transforms
	CO6FRF	Multiple one-dimensional complex discrete Fourier transforms
	COGGBF	Complex conjugate of Hermitian sequence
	CO6GCF	Complex conjugate of complex sequence
	COGGQF	Complex conjugate of multiple Hermitian sequences
	COGGSF	Convert Hermitian sequences to general complex sequences
	CO6PCF CO6PCF	Single 1D complex discrete Fourier transform, complex data format Single one-dimensional complex discrete Fourier transform, complex data format
	COOPEF	1D complex discrete Fourier transform of multi-dimensional data (using the complex
	300111	data type)
	CO6PFF	One-dimensional complex discrete Fourier transform of multi-dimensional data
		(using complex data type)
	COGPRF	Multiple 1D complex discrete Fourier transforms using complex data format
	CO6PRF	Multiple one-dimensional complex discrete Fourier transforms using complex data format
	CO6PSF	Multiple one-dimensional complex discrete Fourier transforms using complex data
	333.21	format and sequences stored as columns
J1a3	Sine and cosine tra	<u>-</u>
	CO6HAF	Discrete sine transform
	COGHBF	Discrete cosine transform
	CO6HCF CO6HDF	Discrete quarter-wave sine transform
	COGRAF	Discrete quarter-wave cosine transform Discrete sine transform (easy-to-use)
	COGRAF	Discrete sine transform (easy-to-use)
	CO6RBF	Discrete cosine transform (easy-to-use)
	CO6RBF	Discrete cosine transform (easy-to-use)
	COGRCF	Discrete quarter-wave sine transform (easy-to-use)
	COGRCF	Discrete quarter-wave sine transform (easy-to-use)
	CO6RDF CO6RDF	Discrete quarter-wave cosine transform (easy-to-use) Discrete quarter-wave cosine transform (easy-to-use)
J1b	Multidimensional	Discrete quarter-wave cosme transform (easy-to-use)
310	CO6FJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data
	CO6FUF	Two-dimensional complex discrete Fourier transform
	CO6FXF	Three-dimensional complex discrete Fourier transform
	CO6PJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data
		(using complex data type)
	CO6PJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data
	CO6PUF	(using complex data type) 2D complex discrete Fourier transform, complex data format
	CO6PUF	Two-dimensional complex discrete Fourier transform, complex data format
	CO6PXF	3D complex discrete Fourier transform, complex data format
	CO6PXF	Three-dimensional complex discrete Fourier transform, complex data format
J2	Convolutions	
	CO6EKF	Circular convolution or correlation of two real vectors, no extra workspace

	CO6FEF	Circular convolution or correlation of two real vectors, extra workspace for greater speed
	CO6PKF	Circular convolution or correlation of two complex vectors
	CO6PKF	Circular convolution or correlation of two complex vectors
J 3	Laplace transforms CO6LAF	Inverse Laplace transform, Crump's method
	CO6LBF	Inverse Laplace transform, modified Weeks' method
	CO6LCF	Evaluate inverse Laplace transform as computed by C06LBF
J4	Hilbert transforms D01AQF	One-dimensional quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform)
w.	Approximation (search al.	
K' K1	Least squares (L_2) appr	roximation
K1a	Linear least squares (search also classes D5, D6, D9)
K1a1	Unconstrained	(
K1a1a	Univariate data	curve nums) lines (piecewise polynomials)
K1a1a1	Folynomial sp.	Least-squares curve cubic spline fit (including interpolation)
	EO2BEF	Least-squares cubic spline curve fit, automatic knot placement
K1a1a2	Polynomials	
	EO2ADF	Least-squares curve fit, by polynomials, arbitrary data points
	E02AFF	Least-squares polynomial fit, special data points (including interpolation)
K1a1b		a (surface fitting) Least-squares surface fit by polynomials, data on lines
	EO2CAF EO2DAF	Least-squares surface fit, bicubic splines
	EO2DCF	Least-squares surface fit by bicubic splines with automatic knot placement, data on
	2020-	rectangular grid
	EO2DDF	Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
K1a2	Constrained	
K1a2a	Linear constrain	ts Least-squares polynomial fit, values and derivatives may be constrained, arbitrary
	E02AGF	data points
K1b	Nonlinear least squar	
K1b1	Unconstrained	•
K1b1a	Smooth function	
K1b1a1		no derivatives
	E04FCF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (comprehensive)
	E04FYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm using function values only (easy-to-use)
K1b1a2		first derivatives Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-
	E04GBF	Newton algorithm using first derivatives (comprehensive)
	E04GDF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified
		Newton algorithm using first derivatives (comprehensive)
	E04GYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-
		Newton algorithm, using first derivatives (easy-to-use) Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
	E04GZF	Newton algorithm using first derivatives (easy-to-use)
K1b1a3	User provides	first and second derivatives
KIDIAO	E04HEF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
		Newton algorithm, using second derivatives (comprehensive)
	E04HYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton algorithm, using second derivatives (easy-to-use)
K1b2	Constrained	Newton algorithm, using second derivatives (easy-to-use)
K1b2 K1b2b	Nonlinear const	raints
111020	E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
		function values and optionally first derivatives (comprehensive)
K2	Minimax (L_{∞}) approx	imation Minimax curve fit by polynomials
77.4	Cther analytic approx	imations (e.g., Taylor polynomial, Padé)
K4	E02RAF	Padé-approximants
K 6	Service routines for ap	proximation
K6a		functions, including quadrature
K6a1	Function evaluation	Evaluation of fitted polynomial in one variable from Chebyshev series form
	E02AEF	(simplified parameter list)
	E02AKF	Evaluation of fitted polynomial in one variable from Chebyshev series form
	E02BBF	Evaluation of fitted cubic spline, function only Evaluation of fitted cubic spline, function and derivatives
	EO2BCF EO2CBF	Evaluation of fitted polynomial in two variables
	BOZOBI	_ ·

Index GAMS Index

	E02RBF	Evaluation of fitted rational function as computed by E02RAF
K6a2	Derivative evaluat	ion
	E02AHF	Derivative of fitted polynomial in Chebyshev series form
	E02BCF	Evaluation of fitted cubic spline, function and derivatives
K6a3	Quadrature	The state of the s
	E02AJF	Integral of fitted polynomial in Chebyshev series form
K6d	EO2BDF Other	Evaluation of fitted cubic spline, definite integral
Nou	E02ZAF	Sort two-dimensional data into panels for fitting bicubic splines
L	Statistics, probability	2010 0110 minutes and minutes are more of an are of a are o
L ₁	Data summarization	
L1a	One-dimensional dat	a
L1a1	Raw data	
	GO1 AAF	Mean, variance, skewness, kurtosis, etc, one variable, from raw data
	GO1ALF GO7DAF	Computes a five-point summary (median, hinges and extremes) Robust estimation, median, median absolute deviation, robust standard deviation
	GO7DBF	Robust estimation, M-estimates for location and scale parameters, standard weight
	40.22.	functions
	GO7DCF	Robust estimation, M-estimates for location and scale parameters, user-defined
		weight functions
	G07DDF	Computes a trimmed and winsorized mean of a single sample with estimates of their
T 1 - 9	Grouped data	variance
L1a3	GO1ADF	Mean, variance, skewness, kurtosis, etc., one variable, from frequency table
L1b		a (search also class L1c)
	GO1ABF	Mean, variance, skewness, kurtosis, etc, two variables, from raw data
L1c	Multi-dimensional da	ta
L1c1	Raw data	
	GO2BDF	Correlation-like coefficients (about zero), all variables, no missing values
	GO2BKF G11BAF	Correlation-like coefficients (about zero), subset of variables, no missing values Computes multiway table from set of classification factors using selected statistic
	G11BBF	Computes multiway table from set of classification factors using given
		percentile/quantile
L1c1b	Covariance, corre	
	GO2BAF	Pearson product-moment correlation coefficients, all variables, no missing values
	GO2BGF	Pearson product-moment correlation coefficients, subset of variables, no missing values
	GO2B#F	Kendall/Spearman non-parametric rank correlation coefficients, no missing values,
	44221	overwriting input data
	GO2BQF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values,
		preserving input data
	GO2BTF	Update a weighted sum of squares matrix with a new observation
	GO2BUF	Computes a weighted sum of squares matrix
	GO2BWF GO2BXF	Computes a correlation matrix from a sum of squares matrix Computes (optionally weighted) correlation and covariance matrices
	GO2BYF	Computes partial correlation/variance-covariance matrix from correlation/variance-
		covariance matrix computed by G02BXF
	GO2HKF	Calculates a robust estimation of a correlation matrix, Huber's weight function
	GO2HLF	Calculates a robust estimation of a correlation matrix, user-supplied weight function
	COUNT	plus derivatives
L1c2	GO2HMF	Calculates a robust estimation of a correlation matrix, user-supplied weight function ag missing values (search also class L1c1)
DICZ	GO2BBF	Pearson product-moment correlation coefficients, all variables, casewise treatment
		of missing values
	G02BCF	Pearson product-moment correlation coefficients, all variables, pairwise treatment
		of missing values
	GO2BEF	Correlation-like coefficients (about zero), all variables, casewise treatment of missing values
	GO2BFF	Correlation-like coefficients (about zero), all variables, pairwise treatment of missing
		values
	GO2BHF	Pearson product-moment correlation coefficients, subset of variables, casewise
		treatment of missing values
	GO2BJF	Pearson product-moment correlation coefficients, subset of variables, pairwise
	GO2BLF	treatment of missing values Correlation-like coefficients (about zero), subset of variables, casewise treatment of
	WO2DLF	missing values
	GO2BNF	Correlation-like coefficients (about zero), subset of variables, pairwise treatment of
		missing values
	GO2BPF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment
	AAABBS	of missing values, overwriting input data
	GO2BRF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing values, preserving input data
		A THE AND ADDRESS OF THE WAR GOOD

GAMS Index

	GO2BSF	Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment
		of missing values
L2	Data manipulation	Louis Titant No and NO
L2a	Transform (search als	o classes L10a1, N6, and N8) Produces standardized values (z-scores) for a data matrix
Tob	Tally	1 Toddees stated about tastes (* ******)
L2b	GO1AEF	Frequency table from raw data
	G11BAF	Computes multiway table from set of classification factors using selected statistic
	G11BBF	Computes multiway table from set of classification factors using given
		percentile/quantile
	G11BCF	Computes marginal tables for multiway table computed by G11BAF or G11BBF
	G11SBF	Frequency count for G11SAF
L2c	Subset G02CEF	Service routines for multiple linear regression, select elements from vectors and matrices
T 0	Flomentary statistical o	raphics (search also class Q)
L3 L3a	One-dimensional data	
L3a L3a1	Histograms	
LJAI	GO1AJF	Lineprinter histogram of one variable
L3a3	EDA (e.g., box-plo	ts)
	GO1ARF	Constructs a stem and leaf plot
	GO1ASF	Constructs a box and whisker plot
L3b		a (search also class L3e)
L3b3	Scatter diagrams	
L3b3a	Y vs. X	Lineprinter scatterplot of two variables
.	Elementary data analys	
L4	One-dimensional data	
L4a L4a1	Raw data	
L4a1a	Parametric analy	/sis
L4a1a2	Probability ple	
L4a1a2n	Negative bir	nomial, normal
	GO1AHF	Lineprinter scatterplot of one variable against Normal scores
	GO1DCF	Normal scores, approximate variance-covariance matrix
	GO1DHF	Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
L4a1a4		imates and tests
L4a1a4b	Binomial GO7AAF	Computes confidence interval for the parameter of a binomial distribution
7 4 - 1 - 4	Normal	Computes confidence inserval for the parameter of a succession
L4a1a4n	GO1DDF	Shapiro and Wilk's W test for Normality
	GO7BBF	Computes maximum likelihood estimates for parameters of the Normal distribution
		from grouped and/or censored data
	GO7CAF	Computes t-test statistic for a difference in means between two Normal populations,
		confidence interval
L4a1a4p	Poisson	Computes confidence interval for the parameter of a Poisson distribution
	G07ABF	Computes confidence interval for the parameter of a 1 offson distribution
L4a1a4w	Weibull GO7BEF	Computes maximum likelihood estimates for parameters of the Weibull distribution
T4-11	Nonparametric a	
L4a1b L4a1b1	Estimates and	tests regarding location (e.g., median), dispersion, and shape
Danie	GO7EAF	Robust confidence intervals, one-sample
	GO7EBF	Robust confidence intervals, two-sample
	GOSAGF	Performs the Wilcoxon one-sample (matched pairs) signed rank test
	GO8AHF	Performs the Mann-Whitney U test on two independent samples
	G08AJF	Computes the exact probabilities for the Mann-Whitney U statistic, no ties in
		pooled sample Computes the exact probabilities for the Mann–Whitney U statistic, ties in pooled
	GOBAKF	
L4a1b2	Density funct	sample ion estimation
L4a1D2	G10BAF	Kernel density estimate using Gaussian kernel
L4a1c	Goodness-of-fit	tests
21410	GOSCBF	Performs the one-sample Kolmogorov-Smirnov test for standard distributions
	G08CCF	Performs the one-sample Kolmogorov-Smirnov test for a user-supplied distribution
	G08CDF	Performs the two-sample Kolmogorov-Smirnov test
	G08CGF	Performs the χ^2 goodness of fit test, for standard continuous distributions
L4a1d		quence of numbers (search also class L10a)
	GOSEAF	Performs the runs up or runs down test for randomness
	GO8EBF	Performs the pairs (serial) test for randomness
	GOSECF	Performs the triplets test for randomness Performs the gaps test for randomness
	G08EDF	Lettoring the Rabs test for randomness

GAMS.26 [NP3390/19]

L4a3	Grouped and/or c	encored data
Laas	G10uped and/of C	Computes maximum likelihood estimates for parameters of the Normal distribution
		from grouped and/or censored data
	GO7BEF	Computes maximum likelihood estimates for parameters of the Weibull distribution
L4a5	Categorical data	2
L4b	G11AAF Two dimensional day	χ^2 statistics for two-way contingency table ta (search also class L4c)
L4b1	Pairwise independ	
L4b1b		analysis (e.g., rank tests)
	G08ACF	Median test on two samples of unequal size
w 41 a	GOSBAF	Mood's and David's tests on two samples of unequal size
L4b3	Pairwise depender	nt data Sign test on two paired samples
L4c		ata (search also classes L4b and L7a1)
L4c1	Independent data	()
L4c1b	Nonparametric a	analysis
_	GO8DAF	Kendall's coefficient of concordance
L5	Function evaluation (se	earch also class C)
L5a L5a1	Univariate Cumulative distrib	oution functions, probability density functions
Doar	GO1ENF	Computes probability for the Studentized range statistic
	GO1EPF	Computes bounds for the significance of a Durbin-Watson statistic
	GO1 JDF	Computes lower tail probability for a linear combination of (central) χ^2 variables
L5a1b	Beta, binomial	Discounted discoultant on the state
	GO1BJF GO1EEF	Binomial distribution function Computes upper and lower tail probabilities and probability density function for
	OVI III	the beta distribution
	G01GEF	Computes probabilities for the non-central beta distribution
L5a1c	Cauchy, χ^2	
	G01ECF	Computes probabilities for χ^2 distribution
	GO1GCF GO1JCF	Computes probabilities for the non-central χ^2 distribution Computes probability for a positive linear combination of χ^2 variables
L5a1e		exponential, extreme value
20020	S15ADF	Complement of error function $erfc(x)$
	S15AEF	Error function $erf(x)$
L5a1f	F distribution	Commenter and allifety for E. Marchael
	GO1EDF GO1GDF	Computes probabilities for F -distribution Computes probabilities for the non-central F -distribution
L5a1g	Gamma, general	
_	GO1EFF	Computes probabilities for the gamma distribution
L5a1h	Halfnormal, hyp	- II
L5a1k	GO1BLF Kendell F statis	Hypergeometric distribution function tic, Kolmogorov-Smirnov
LJAIR	GO1EYF	Computes probabilities for the one-sample Kolmogorov-Smirnov distribution
	G01EZF	Computes probabilities for the two-sample Kolmogorov-Smirnov distribution
L5a1n	Negative binomi	·
	GO1EAF	Computes probabilities for the standard Normal distribution
	GO1MBF S15ABF	Computes reciprocal of Mills' Ratio Cumulative normal distribution function $P(x)$
	S15ACF	Complement of cumulative normal distribution function $Q(x)$
L5a1p	Pareto, Poisson	
_	GO1BKF	Poisson distribution function
L5a1t	t distribution	Computes probabilities for Students 4 distribution
	GO1EBF GO1GBF	Computes probabilities for Student's t-distribution Computes probabilities for the non-central Student's t-distribution
L5a1v	Von Mises	
	G01ERF	Computes probability for von Mises distribution
L5a2		n functions, sparsity functions
77.01	GO1FNF	Computes deviates for the Studentized range statistic
L5a2b	Beta, binomial G01FEF	Computes deviates for the beta distribution
L5a2c	Cauchy, χ^2	
	GO1FCF	Computes deviates for the χ^2 distribution
L5a2f	F distribution	
7	GO1FDF	Computes deviates for the F-distribution
L5a2g	Gamma, general G01FFF	, geometric Computes deviates for the gamma distribution
L5a2n		al, normal, normal order statistics
	GO1DAF	Normal scores, accurate values
	GO1DBF	Normal scores, approximate values
	GO1FAF	Computes deviates for the standard Normal distribution

L5a2t	t distribution	Computes deviates for Student's t-distribution
7.04	GO1FBF Multivariate	
L5b	GO1#AF	Cumulants and moments of quadratic forms in Normal variables
	GO1 H BF	Moments of ratios of quadratic forms in Normal variables, and related statistics
L5b1		ariate distribution functions, probability density functions
L5b1n	Normal	Computes probability for the bivariate Normal distribution
	GO1HAF GO1HBF	Computes probabilities for the multivariate Normal distribution
L6	Random number genera	
L6a	Univariate	
1	G05EYF	Pseudo-random integer from reference vector
L6a2	Beta, binomial, Bo GO5DZF	olean Pseudo-random logical (boolean) value
	GOSEDF	Set up reference vector for generating pseudo-random integers, binomial distribution
	GOSFEF	Generates a vector of pseudo-random numbers from a beta distribution
L6a3	Cauchy, χ^2	
	GO5DFF	Pseudo-random real numbers, Cauchy distribution
	GO5DHF	Pseudo-random real numbers, χ^2 distribution
L6a5	Exponential, extremed G05DBF	Pseudo-random real numbers, (negative) exponential distribution
	GO5FBF	Generates a vector of random numbers from an (negative) exponential distribution
L6a6	F distribution	
	GO5DKF	Pseudo-random real numbers, F-distribution
L6a7		ontinuous, discrete), geometric Set up reference vector from supplied cumulative distribution function or probability
	GOSEXF	distribution function
	G05FFF	Generates a vector of pseudo-random numbers from a gamma distribution
L6a8	Halfnormal, hyperg	geometric
	G05EFF	Set up reference vector for generating pseudo-random integers, hypergeometric
T 0 - 10	Lambda, logistic, l	distribution
L6a12	GO5DCF	Pseudo-random real numbers, logistic distribution
	GO5DEF	Pseudo-random real numbers, log-normal distribution
L6a14		normal, normal order statistics
	GO5DDF GO5EEF	Pseudo-random real numbers, Normal distribution Set up reference vector for generating pseudo-random integers, negative binomial
	12200	distribution
	G05FDF	Generates a vector of random numbers from a Normal distribution
L6a16		mutations, Poisson
	GOSDRF	Pseudo-random integer, Poisson distribution Set up reference vector for generating pseudo-random integers, Poisson distribution
	GO5ECF GO5EHF	Pseudo-random permutation of an integer vector
L6a19	Samples, stable dis	stribution
20020	GO5EJF	Pseudo-random sample from an integer vector
L6a20	t distribution, time	e series, triangular Pseudo-random real numbers, Student's t-distribution
	GO5DJF GO5EGF	Set up reference vector for univariate ARMA time series model
	GO5EWF	Generate next term from reference vector for ARMA time series model
L6a21		us, discrete), uniform order statistics
	GO5CAF	Pseudo-random real numbers, uniform distribution over $(0,1)$
	GO5DAF	Pseudo-random real numbers, uniform distribution over (a,b) Pseudo-random integer from uniform distribution
	GO5DYF GO5 EB F	Set up reference vector for generating pseudo-random integers, uniform distribution
	GOSFAF	Generates a vector of random numbers from a uniform distribution
L6a22	Von Mises	
	G05FSF	Generates a vector of pseudo-random variates from von Mises distribution
L6a23	Weibull GO5DPF	Pseudo-random real numbers, Weibull distribution
L6b	Multivariate	
Lob	GOSHDF	Generates a realisation of a multivariate time series from a VARMA model
L6b3		, correlation matrix
	GO5GBF	Computes random correlation matrix
L6b14	Normal G05EAF	Set up reference vector for multivariate Normal distribution
	GOSEZF	Pseudo-random multivariate Normal vector from reference vector
L6b15	Orthogonal matri	x
	GO5GAF	Computes random orthogonal matrix
L6c	Service routines (e.g GO5CBF	;., seed) Initialise random number generating routines to give repeatable sequence
	GO5CCF	Initialise random number generating routines to give non-repeatable sequence
	300031	

```
COSCEE
                                        Save state of random number generating routines
                             G05CGF
                                        Restore state of random number generating routines
 L7
                Analysis of variance (including analysis of covariance)
 L7a
                  One-way
                    Parametric
 T.7a1
                             GO4BBF
                                        Analysis of variance, randomized block or completely randomized design, treatment
                                        means and standard errors
                             GO4DAF
                                        Computes sum of squares for contrast between means
                             GO4DBF
                                        Computes confidence intervals for differences between means computed by G04BBF
                                        or G04BCF
 L7a2
                    Nonparametric
                                        Kruskal-Wallis one-way analysis of variance on k samples of unequal size
                             GOSAFF
                 Two-way (search also
 L7b
                                        class L7d)
                             GO4AGF
                                        Two-way analysis of variance, hierarchical classification, subgroups of unequal size
                             GO4RRF
                                        Analysis of variance, randomized block or completely randomized design, treatment
                                        means and standard errors
                             GO8AEF
                                        Friedman two-way analysis of variance on k matched samples
                             GO8ALF
                                        Performs the Cochran Q test on cross-classified binary data
 L7c
                 Three-way (e.g., Latin squares) (search also class L7d)
                             GO4BCF
                                        Analysis of variance, general row and column design, treatment means and standard
                 Multi-way
 T.7d
 L7d1
                    Balanced complete data (e.g., factorial designs)
                            GO4CAF
                                        Analysis of variance, complete factorial design, treatment means and standard errors
 L7d2
                   Balanced incomplete data
                            F04JLF
                                        Real general Gauss-Markov linear model (including weighted least-squares)
 L7f
                 Generate experimental designs
                            GO2DAF
                                        Fits a general (multiple) linear regression model
                            GO2DEF
                                        Computes estimable function of a general linear regression model and its standard
L7g
                 Service routines
                            GO4EAF
                                        Computes orthogonal polynomials or dummy variables for factor/classification
                                        variable
L8
               Regression (search also classes D5, D6, D9, G, K)
L8a
                 Simple linear (i.e., y = b_0 + b_1 x) (search also class L8h)
L8a1
                   Ordinary least squares
L8a1a
                     Parameter estimation
                        Unweighted data
L8ala1
                            GO2CAF
                                        Simple linear regression with constant term, no missing values
                            GO2CRE
                                        Simple linear regression without constant term, no missing values
                            GO2CCF
                                        Simple linear regression with constant term, missing values
                            GO2CDF
                                        Simple linear regression without constant term, missing values
L8a2
                   L_p for p different from 2 (e.g., least absolute value, minimax)
                            E02GAF
                                        L_1-approximation by general linear function
                            E02GCF
                                        L_{\infty}-approximation by general linear function
L8b
                 Polynomial (e.g., y = b_0 + b_1 x + b_2 x^2) (search also class L8c)
L8b1
                   Ordinary least squares
L8b1b
                     Parameter estimation
L8b1b2
                        Using orthogonal polynomials
                            EO2ADF
                                       Least-squares curve fit, by polynomials, arbitrary data points
                 Multiple linear (i.e., y = b_0 + b_1x_1 + ... + b_px_p)
L8c
                            FO4JLF
                                       Real general Gauss-Markov linear model (including weighted least-squares)
                                       Equality-constrained real linear least-squares problem
                            FO4JMF
                   Ordinary least squares
L8c1
L8c1a
                     Variable selection
                                        Calculates \mathbb{R}^2 and \mathbb{C}_P values from residual sums of squares
                            GO2ECF
L8c1a1
                       Using raw data
                            GO2DDF
                                       Estimates of linear parameters and general linear regression model from updated
                            GO2DEF
                                       Add a new variable to a general linear regression model
                            GO2DFF
                                       Delete a variable from a general linear regression model
                            GO2EAF
                                       Computes residual sums of squares for all possible linear regressions for a set of
                                       independent variables
                            GO2EEF
                                       Fits a linear regression model by forward selection
L8c1b
                     Parameter estimation (search also class L8c1a)
L8c1b1
                       Using raw data
                            GO2DAF
                                       Fits a general (multiple) linear regression model
                            GO2DCF
                                       Add/delete an observation to/from a general linear regression model
                            GO2DDF
                                       Estimates of linear parameters and general linear regression model from updated
                                       model
                            GO2DEF
                                       Add a new variable to a general linear regression model
                            GO2DFF
                                       Delete a variable from a general linear regression model
```

	GO2DKF	Estimates and standard errors of parameters of a general linear regression model
	COORE	for given constraints Computes estimable function of a general linear regression model and its standard
	GO2D W F	error
L8c1b2	Using correlati	on data
	GO2CGF GO2CHF	Multiple linear regression, from correlation coefficients, with constant term Multiple linear regression, from correlation-like coefficients, without constant term
L8c1c		also classes L8c1a and L8c1b)
Docte	GO2FAF	Calculates standardized residuals and influence statistics
L8c1d	Inference (search GO2DWF	also classes L8c1a and L8c1b) Computes estimable function of a general linear regression model and its standard
	GOZDEF	error
·	GO2FCF	Computes Durbin-Watson test statistic
L8c2	Several regressions	Fits a general linear regression model for new dependent variable
T 9 - 4	GO2DGF Robust	rits a general lineal regression model for new dependent values of
L8c4	GO2HAF	Robust regression, standard M-estimates
	GO2HBF	Robust regression, compute weights for use with G02HDF
	GO2HDF	Robust regression, compute regression with user-supplied functions and weights Robust regression, variance-covariance matrix following G02HDF
	GO2HFF Models based on ra	
L8c6	GOSRAF	Regression using ranks, uncensored data
	GOSRBF	Regression using ranks, right-censored data
L8e	Nonlinear (i.e., $y = F$	(X,b)) (search also class L8h)
	GO2GBF	Fits a generalized linear model with binomial errors
	GO2GCF	Fits a generalized linear model with Poisson errors
	GO2GDF GO2GKF	Fits a generalized linear model with gamma errors Estimates and standard errors of parameters of a general linear model for given
	GOZGAF	constraints
	GO2G#F	Computes estimable function of a generalized linear model and its standard error
L8e1	Ordinary least squa	
L8 e1b		ation (search also class L8e1a) Covariance matrix for nonlinear least-squares problem (unconstrained)
	E04YCF	Fits a generalized linear model with Normal errors
To-111	GO2GAF	sta, user provides no derivatives
L8e1b1	E04FCF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
	2. 2. 2.	Newton algorithm using function values only (comprehensive)
	E04FYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified
	DOMINE	Newton algorithm using function values only (easy-to-use) Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
	E04UNF	function values and optionally first derivatives (comprehensive)
L8e1b2	Unweighted da	ata, user provides derivatives
	E04GBF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-
	70.4477	Newton algorithm using first derivatives (comprehensive) Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified
	E04GDF	Newton algorithm using first derivatives (comprehensive)
	E04GYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and quasi-
		Newton algorithm, using first derivatives (easy-to-use)
	E04GZF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified
	TO AITH	Newton algorithm using first derivatives (easy-to-use) Minimum of a sum of squares, nonlinear constraints, sequential QP method, using
	E04U T F	function values and optionally first derivatives (comprehensive)
L8g	Spline (i.e., piecewise	polynomial)
Ö	E02BAF	Least-squares curve cubic spline fit (including interpolation)
	E02BEF	Least-squares cubic spline curve fit, automatic knot placement
	G10ABF	Fit cubic smoothing spline, smoothing parameter given Fit cubic smoothing spline, smoothing parameter estimated
Tob	G10ACF EDA (e.g., smoothin	-
L8h	G10CAF	Compute smoothed data sequence using running median smoothers
L8i		, matrix manipulation for variable selection)
	GO2CEF	Service routines for multiple linear regression, select elements from vectors and
	400 ATT	matrices Service routines for multiple linear regression, re-order elements of vectors and
	GO2CFF	matrices
	GO4EAF	Computes orthogonal polynomials or dummy variables for factor/classification
		variable
	G10ZAF	Reorder data to give ordered distinct observations
L9	Categorical data analys	sis
	G11BAF G11BBF	Computes multiway table from set of classification factors using selected statistic Computes multiway table from set of classification factors using given
	GIIDDF	percentile/quantile
	G11BCF	Computes marginal tables for multiway table computed by G11BAF or G11BBF

	G11CAF G12ZAF	Returns parameter estimates for the conditional analysis of stratified data Creates the risk sets associated with the Cox proportional hazards model for fixed					
L9b	covariates Two-way tables (search also class L9d)						
Tan.	GO1AFF	Two-way contingency table analysis, with χ^2 /Fisher's exact test					
	G11AAF	χ^2 statistics for two-way contingency table					
L9c	Log-linear model	A Statistics for two way contingency table					
Doc	GO2GCF	Fits a generalized linear model with Poisson errors					
	GO2GKF	Estimates and standard errors of parameters of a general linear model for given					
		constraints					
	GO2G#F	Computes estimable function of a generalized linear model and its standard error					
L10	Time series analysis (s						
L10a	- •	so classes L3a6 and L3a7)					
L10a1	Transformations	,					
L10a1c	Filters (search a	Filters (search also class K5)					
L10a1c1	Difference						
	G13AAF	Univariate time series, seasonal and non-seasonal differencing					
L10a1c4	Other						
	G13BBF	Multivariate time series, filtering by a transfer function model					
L10a2	Time domain anal	ysis					
L10a2a	Summary statist						
	G13AUF	Computes quantities needed for range-mean or standard deviation-mean plot					
L10a2a1		ons and autocovariances					
	G13ABF	Univariate time series, sample autocorrelation function					
L10a2a2	Partial autoco						
710.01	G13ACF	Univariate time series, partial autocorrelations from autocorrelations					
L10a2b	•	lysis (search also class L10a2a)					
T 10020	G13AUF	Computes quantities needed for range-mean or standard deviation-mean plot					
L10a2c L10a2c1	Autoregressive n Model identifi						
Divazci	G13ACF	Univariate time series, partial autocorrelations from autocorrelations					
L10a2d		MA models (including Box-Jenkins methods)					
L10a2d1	Model identifi						
	G13ADF	Univariate time series, preliminary estimation, seasonal ARIMA model					
L10a2d2	Parameter est						
	G13AEF	Univariate time series, estimation, seasonal ARIMA model (comprehensive)					
	G13AFF	Univariate time series, estimation, seasonal ARIMA model (easy-to-use)					
	G13ASF	Univariate time series, diagnostic checking of residuals, following G13AEF or					
		G13AFF					
	G13BEF	Multivariate time series, estimation of multi-input model					
L10a2d3	Forecasting						
	G13AGF	Univariate time series, update state set for forecasting					
	G13AHF	Univariate time series, forecasting from state set					
	G13AJF	Univariate time series, state set and forecasts, from fully specified seasonal ARIMA					
L10a2e	model						
Divaze	State-space analysis (e.g., Kalman filtering) G13EAF Combined measurement and time update, one iteration of Kalman filter, t						
	varying, square root covariance filter						
	G13EBF	Combined measurement and time update, one iteration of Kalman filter, time-					
		invariant, square root covariance filter					
L10a2f	Analysis of a loc	ally stationary series					
	G13DXF	Calculates the zeros of a vector autoregressive (or moving average) operator					
L10a3	Frequency domain	analysis (search also class J1)					
L10a3a	Spectral analysis						
L10a3a3		nation using the periodogram					
	G13CBF	Univariate time series, smoothed sample spectrum using spectral smoothing by the					
L10a3a4	Smaatmum aatim	trapezium frequency (Daniell) window					
L10a3a4	G13CAF	nation using the Fourier transform of the autocorrelation function Univariate time series, smoothed sample spectrum using rectangular, Bartlett,					
	diooni ,	Tukey or Parzen lag window					
L10b	Two time series (sear	ch also classes L3b3c, L10c, and L10d)					
L10b2	Time domain analy	· · · · · · · · · · · · · · · · · · ·					
L10b2a	Summary statisti	cs (e.g., cross-correlations)					
	G13BCF	Multivariate time series, cross-correlations					
L10b2b	Transfer function	models					
	G13BAF	Multivariate time series, filtering (pre-whitening) by an ARIMA model					
	G13BDF	Multivariate time series, preliminary estimation of transfer function model					
	G13BEF	Multivariate time series, estimation of multi-input model					
	G13BGF	Multivariate time series, update state set for forecasting from multi-input model					
	G13BHF	Multivariate time series, forecasting from state set of multi-input model					
	G13BJF	Multivariate time series, state set and forecasts from fully specified multi-input model					
		model					

L10b3	Frequency domain analysis (search also class J1)				
L10b3a	Cross-spectral analysis				
L10b3a3	Cross-spectrum estimation using the cross-periodogram G13CDF Multivariate time series, smoothed sample cross spectrum using spectral smoothing				
	G13CDF	L. Abs temporium frequency (Daniell) window			
T 4 0 1 0 - 4	Cross-spectrum	estimation using the Fourier transform of the cross-correlation or cross-covariance			
L10b3a4	function				
	G13CCF	Multivariate time series, smoothed sample cross spectrum using rectangular,			
		Bartlett, Tukey or Parzen lag window			
L10b3a6	Spectral function	Multivariate time series, cross amplitude spectrum, squared coherency, bounds,			
	G13CEF	univariate and hivariate (cross) spectra			
1	G13CFF	Multivariate time series, gain, phase, bounds, univariate and bivariate (cross)			
	415011	enectra			
	G13CGF	Multivariate time series, noise spectrum, bounds, impulse response function and its			
		standard error			
L10c	Multivariate time seri	es (search also classes J1, L3e3 and L10b)			
	G13DBF	Multivariate time series, multiple squared partial autocorrelations			
	G13DCF	Multivariate time series, estimation of VARMA model			
	G13DJF	Multivariate time series, forecasts and their standard errors			
	G13DKF	Multivariate time series, updates forecasts and their standard errors			
	G13DLF	Multivariate time series, differences and/or transforms (for use before G13DCF)			
	G13DMF	Multivariate time series, sample cross-correlation or cross-covariance matrices			
	G13D W F	Multivariate time series, sample cross correlation matrices, χ^2 statistics and			
		significance levels			
	G13DPF	Multivariate time series, partial autoregression matrices			
	G13DSF	Multivariate time series, diagnostic checking of residuals, following G13DCF			
	G13DXF	Calculates the zeros of a vector autoregressive (or moving average) operator			
L12	Discriminant analysis				
2	GOSACF	Performs canonical variate analysis			
	GO3DAF	Computes test statistic for equality of within-group covariance matrices and			
		matrices for discriminant analysis			
	GO3DBF	Computes Mahalanobis squared distances for group or pooled variance-covariance			
		matrices (for use after G03DAF)			
	GO3DCF	Allocates observations to groups according to selected rules (for use after G03DAF)			
L13	Covariance structure me	odels			
L13a	Factor analysis	and the second section of the s			
	GO3BAF	Computes orthogonal rotations for loading matrix, generalized orthomax criterion			
	GO3BCF	Computes Procrustes rotations			
	GO3CAF	Computes maximum likelihood estimates of the parameters of a factor analysis			
		model, factor loadings, communalities and residual correlations			
	GO3CCF	Computes factor score coefficients (for use after G03CAF)			
	G11SAF	Contingency table, latent variable model for binary data			
L13 b	Principal components	s analysis			
	GOSAAF	Performs principal component analysis			
L13 c	Canonical correlation				
	GOSACF	Performs canonical variate analysis Performs canonical correlation analysis			
	GOSADF	Performs canonical contraction analysis			
L14	Cluster analysis				
L14a	One-way				
L14a1	Unconstrained				
L14a1a	Nested	:			
L14a1a1	Joining (e.g., s GO3ECF	Hierarchical cluster analysis			
	GOSEHF	Constructs dendrogram (for use after G03ECF)			
	GOSEJF	Computes cluster indicator variable (for use after G03ECF)			
-	Non-nested (e.g.				
L14a1b	GO3EFF	K-means cluster analysis			
T+43		, compute distance matrix)			
L14d	GOSEAF	Computes distance matrix			
7 4 5	Life testing, survival a	nalveie			
L15	G11CAF	Returns parameter estimates for the conditional analysis of stratified data			
	G12AAF	Computes Kaplan-Meier (product-limit) estimates of survival probabilities			
	G12BAF	Fits Cox's proportional hazard model			
L16	Multidimensional scali	ng			
TIO	GO3FAF	Performs principal co-ordinate analysis, classical metric scaling			
	GOSFCF	Performs non-metric (ordinal) multidimensional scaling			
M		odelling (search also classes L6 and L10)			
M N	Data handling (search al	so class L2)			
N N1	Input, output				
111	XO4ACF	Open unit number for reading, writing or appending, and associate unit with named			
		file			

Index GAMS Index

	XO4ADF	Close file associated with given unit number
	XO4BAF	Write formatted record to external file
	XO4BBF	Read formatted record from external file
	XO4CAF XO4CBF	Print real general matrix (easy-to-use) Print real general matrix (comprehensive)
	X04CGF X04CCF	Print real packed triangular matrix (easy-to-use)
	XO4CDF	Print real packed triangular matrix (comprehensive)
	X04CEF	Print real packed banded matrix (easy-to-use)
	X04CFF	Print real packed banded matrix (comprehensive)
	XO4DAF	Print complex general matrix (easy-to-use)
	XO4DBF	Print complex general matrix (comprehensive)
	XO4DCF	Print complex packed triangular matrix (easy-to-use)
	XO4DDF	Print complex packed triangular matrix (comprehensive)
	XO4DEF	Print complex packed banded matrix (easy-to-use)
	XO4DFF	Print complex packed banded matrix (comprehensive)
	XO4EAF	Print integer matrix (easy-to-use)
	XO4EBF	Print integer matrix (comprehensive)
N4		e.g., stacks, heaps, trees)
	F06EUF	(SGTHR/DGTHR) Gather real sparse vector
	F06EVF	(SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
	F06EWF	(SSCTR/DSCTR) Scatter real sparse vector
	FOGGUF	(CGTHR/ZGTHR) Gather complex sparse vector
	FO6GVF FO6GWF	(CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
N5	Searching	(CSCTR/ZSCTR) Scatter complex sparse vector
N5a N5a	Extreme value	
1100	FO6FLF	Elements of real vector with largest and smallest absolute value
	F06JLF	(ISAMAX/IDAMAX) Index, real vector element with largest absolute value
	F06JNF	(ICAMAX/IZAMAX) Index, complex vector element with largest absolute value
	F06KLF	Last non-negligible element of real vector
N6	Sorting	
N6a	Internal	
N6a1	Passive (i.e., const	ruct pointer array, rank)
	MO1DZF	Rank arbitrary data
N6a1a	Integer	·
	MO1DBF	Rank a vector, integer numbers
	MO1DFF	Rank rows of a matrix, integer numbers
	MO1DKF	Rank columns of a matrix, integer numbers
N6a1b	Real	
	GO1DHF	Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores
	MO1DAF	Rank a vector, real numbers
	MO1DEF MO1DJF	Rank rows of a matrix, real numbers
N6a1c	Character	Rank columns of a matrix, real numbers
Noaic	MO1DCF	Rank a vector, character data
N6a2	Active	reals a vector, character data
N6a2a	Integer	
1.0020	MO1CBF	Sort a vector, integer numbers
N6a2b	Real	Total Distriction in the Control of
	HO1CAF	Sort a vector, real numbers
N6a2c	Character	
	MO1CCF	Sort a vector, character data
N8	Permuting	
	F06QJF	Permute rows or columns, real rectangular matrix, permutations represented by an
		integer array
	F06QKF	Permute rows or columns, real rectangular matrix, permutations represented by a
		real array
	F06VJF	Permute rows or columns, complex rectangular matrix, permutations represented
		by an integer array
	F06VKF	Permute rows or columns, complex rectangular matrix, permutations represented
	****	by a real array
	MO1EAF	Rearrange a vector according to given ranks, real numbers
	MO1EBF	Rearrange a vector according to given ranks, integer numbers
	MO1ECF	Rearrange a vector according to given ranks, character data
	MO1EDF	Rearrange a vector according to given ranks, complex numbers
	MO1ZAF	Invert a permutation
	MO1ZBF	Check validity of a permutation
P	M012CF	Decompose a permutation into cycles
r	DOSMAF	(search also classes G and Q) Triangulation of plane region
	DOSHA	Transferentiat at highe teliant

Q	Graphics (search also class L3)				
~	GO1ARF	Constructs a stem and leaf plot			
	GO1ASF	Constructs a box and whisker plot			
R.	Service routines				
	AOOAAF	Prints details of the NAG Fortran Library implementation			
	XOSAAF	Return date and time as an array of integers			
	X05ABF	Convert array of integers representing date and time to character string			
	XOSACF	Compare two character strings representing date and time			
	XO5BAF	Return the CPU time			
R1	Machine-dependent con	stants			
	XO1AAF	Provides the mathematical constant π			
1	XO1ABF	Provides the mathematical constant γ (Euler's Constant)			
	XO2AHF	The largest permissible argument for sin and cos			
	XO2AJF	The machine precision			
	XO2AKF	The smallest positive model number			
	XO2ALF	The largest positive model number			
	XO2AMF	The safe range parameter			
	XO2AUF	The safe range parameter for complex floating-point arithmetic			
	XO2BBF	The largest representable integer			
	XO2BEF	The maximum number of decimal digits that can be represented			
	XO2BHF	The floating-point model parameter, b			
	XO2BJF	The floating-point model parameter, p			
	XO2BKF	The floating-point model parameter e_{\min}			
	XO2BLF	The floating-point model parameter e_{max}			
	XO2DAF	Switch for taking precautions to avoid underflow			
	XO2DJF	The floating-point model parameter ROUNDS			
R.3	Error handling				
R3b	Set unit number for	error messages			
2002	XO4AAF	Return or set unit number for error messages			
	XO4ABF	Return or set unit number for advisory messages			
R3c	Other utilities				
	PO1ABF	Return value of error indicator/terminate with error message			

References

- [1] Boisvert R F, Howe S E and Kahaner D K (1990) The guide to available mathematical software problem classification scheme. *Report NISTIR 4475* Applied and Computational Mathematics Division, National Institute of Standards and Technology.
- [2] Boisvert R F, Howe S E and Kahaner D K (1985) GAMS a framework for the management of scientific software. ACM Trans. Math. Software 11 313-355.
- [3] Boisvert R F (1989) The guide to available mathematical software advisory system. Math. Comput. Simul. 31 453-464.

GAMS.34 (last) [NP3390/19]

Implementation-specific Details for Users of the NAG Fortran Library

The NAG Fortran Library is available in a number of different implementations, each certified under a particular computing system; the NAG Fortran Library Manual is generally applicable to all of them. Any information that applies solely to a specific implementation (e.g. the IBM 360/370 Fortran Double Precision Implementation) is provided in printed form and in a Users' Note file on the Library Release Tape for that implementation; i.e. the information is distributed in machine-readable form to installations which use that implementation.

Your installation must make that information available, either by giving you access to the Users' Note file via the computing system or by including the information in local user documentation. In either case, we strongly recommend that you obtain a copy of the information and place it behind the tabbed divider provided in your NAG Fortran Library Manual. Please ensure that the information is up-to-date; if the note relates to your implementation but to a previous Mark please discard it (see the Contents at the front of Volume 1 of the Manual for the current Mark).

[NP1692/14] Page 1 (last)

NAG Fortran Library, Mark 19

FLSOL19DA

Sun SPARC (Solaris) Double Precision

Installer's Note

Contents

- 1. Introduction
- 2. Implementation Provided
 - O 2.1. Applicability
 - O 2.2. Derivation
- 3. Distribution Medium
 - O 3.1. Recording Details
 - O 3.2. Contents
 - O 3.3. File Sizes
- 4. Library Installation
 - O 4.1. Installation
 - O 4.2. Checking Accessibility
 - O 4.3. Release to Users
 - O 4.4. Further Information
 - 4.4.1. Output Unit Dependencies (X04)
 - 4.4.2. Example Programs
 - 4.4.3. Maintenance Level
 - 5. Documentation
 - 6. Support from NAG
- Appendix Contact Addresses

1. Introduction

This document is essential reading for whoever is responsible for the installation of the NAG Fortran Library Implementation specified in the title. The installer will be supplied with a printed copy of this document. Both this (doc/in.html) and the Users' Note (doc/un.html) are supplied on the distribution medium.

Whenever the NAG Fortran Library has been supplied in compiled form, that form is considered to be the standard library file. The use of all supplied software must be in accordance with the terms and conditions of the Software Licence signed by NAG and each site. In particular, users must not have free access to the text of the library routines. Any request to use NAG software on a computer other than the one licensed must be referred to NAG (see Section 6).

2. Implementation Provided

2.1. Applicability

This implementation is a compiled, tested, ready-to-use version of the NAG Fortran Library that is considered suitable for operation on the computer systems detailed below:

hardware:

all SPARC systems

operating system: Solaris 2.7 or compatible

Fortran compiler: Sun Fortran 77 v4.2 or compatible

For information about implementations of the NAG Fortran Library for use on other computer systems please contact NAG.

2.2. Derivation

This implementation was produced at NAG Inc., Downers Grove, IL on the computing system detailed below:

hardware:

Sun Ultra Enterprise 2

operating system: Solaris 2.7

compiler options: -04 -fsimple=1 -dalign

Fortran compiler: Sun Fortran 77 v5.0

The entire NAG Fortran Library, Mark 19, was compiled with full optimization (-04) except for routine F07BDF which had to be compiled without optimization for the library library library. 19.

ake eliberie.

in the same of the

2 1 15 1 11 67 .

The libraries librag.so.19 and librag-spl.so.19 were also compiled with the additional flags -mt -PIC -stackvar.

The -dalign flag must always be used when compiling an application which is to be linked with one of the NAG object libraries. When linking a multi-threaded driver with the library, the and -stackvar flags must also be used.

The librag.a and librag.so.19 object libraries have been tested using the Basic Linear Algebra Subprograms (BLAS) and linear algebra routines (LAPACK) provided by NAG (see the Chapter Introductions for F06, F07 and F08 in the NAG Fortran Library Manual). The libnag-spl.a and libnag-spl.so.19 object libraries do not contain BLAS/LAPACK entries and were tested using the SPARC-specific BLAS/LAPACK routines in the (optional) Sun Performance Library (v5.0).

3. Distribution Medium

3.1. Recording Details

The implementation is distributed in tar format on CD-ROM, unless otherwise indicated on the medium and accompanying despatch note.

For further details, refer to other documentation supplied or contact NAG (see Section 6). and the state of the same of t

3.2. Contents

Significant Company

The following shows the directory/file organization of the materials as they will be installed:

and the second of the second

Charles Con Carlot Berlin 1 1 1 2 2 20 1 20 1

Canada in the Communication in the Care The state of the s

```
white a or and and a
                       -- in.html
                       -- un.html
                       -- nag_fl_un.3
                       -- essint
                       -- summary
   - doc -- news
-- replaced
-- calls
                       -- blas_lapack_to_nag
                       -- nag_to_blas_lapack
flsol19da --
            -- libnag.a (compiled static library -- NAG BLAS/LAPACK)
    -- libnag.so.19 (compiled dynamic library -- NAG BLAS/LAPACK)
             -- libnag-spl.a (compiled static library -- no BLAS/LAPACK)
             -- libnag-spl.so.19 (compiled dynamic library -- no BLAS/LAPACK)
             -- source --- -- ??????e.f -- data ---- -- ??????e.d -- results -- -- ??????e.r
             -- source ---- |-- [a-y] ---- |-- ??????t.f
|-- use_sunperf -- |-- f0????t.f
              -- scripts --- | *
```

3.3. File Sizes

The files require approximately the following disk space:

```
compiled libraries, libnag.a:
                                 16.8 Mb
                                 10.9 Mb or many the throne conversal of
                 libnag.so.19:
    4 QBÉ
                                 16.7 Mb
                 libnag-spl.a:
                 libnag-spl.so.19: 10.8 Mb
example program material:
                                 5.9 Mb
                                 documentation files:
scripts
library source code:
                                 21.2 Mb
(not needed on disk permanently)
```

4. Library Installation

4.1. Installation

To install all material (including source), use the Unix tar utility, e.g.

```
a contract and reference in
tar xvf /cdrom/fl19.tar
(assuming the CD-ROM has been mounted as /cdrom).
                                                                               431
```

A site may not need to install all four of the object libraries provided in this distribution. After installing all material as described above, you may wish to delete some material if it is not required. To decide which is the most suitable object library for your site, determine:

- Does your site have the Sun Performance Library? Look for libsunperf.so in /opt/SUNWspro/lib. If you do have this optional library (part of the Sun Performance Workshop), then you will probably wish to install the libnag-spl.a or libnag-spl.so.19 library. These object libraries do not include entry points for the BLAS and LAPACK routines; in other words calls to these routines will be resolved when the libsunperf.so library is linked in. Since the code in the Sun Performance Library has been written in assembler, it will typically run faster than NAG's all-Fortran code, and the benefits will be extended to other NAG routines which call BLAS and LAPACK routines.
- If you do not have the Sun Performance Library, then you have a choice between a static object library (libnag.a) or a dynamic object library (libnag.so.19) both of which contain entry points for all BLAS and LAPACK routines.

The static and shareable versions of all libraries are functionally equivalent. Sites should determine whether they prefer one type of library to the other. The advantages (briefly) of using static libraries are:

The same of

of Section 1

- the executables are self-contained and therefore more portable
- executables may run slightly faster

The main advantage of using a dynamic library is that executables are kept significantly smaller.

After taking the above remarks into consideration, you may decide to delete some of the libraries.

Source should be needed only for reference by whoever is responsible for the installation of the library. This material should not be made available to users, so you may decide also to delete the source directory.

The object libraries (libnag.a, libnag.so.19, etc.) should be moved to a directory, such as /usr/lib, in the default search path of the linker, if possible, so that linkage is convenient. If you decided to install the shareable versions of the libraries, then once the libraries are in place symbolic links should be made to point to the shareable libraries, e.g.

```
ln -s libnag.so.19 libnag.so
ln -s libnag-spl.so.19 libnag-spl.so
```

Unless this is done, the linker, ld, will not be able to find the shareable libraries.

The script nagexample refers to the local directory containing the example programs. The file should be copied to (for example) /usr/local/bin, modified to reflect the local installation, and its protection set to world execute.

The man page, which directs users to the HTML form of the Users' Note, should be moved to a directory in the man search path, e.g.

```
cd doc
mv nag_fl_un.3 /usr/local/man/man3
```

4.2. Checking Accessibility

The installer should ensure that the advice given to users in Section 3.1 of the Users' Note (doc/un.html) is suitable for the installation. This can be done by running a few example programs

following that advice; a suitable sample would be A02AAF, G05FFF and X03AAF. The installation can also be tested using the script nagexample.

If the user advice refers to more than one compiled NAG library then each should be checked as above. If any externally-provided library of Basic Linear Algebra Subprograms (BLAS) is to be used then the following example programs should also be run:

ser a land to sur

```
The second of th
F06EAF - testing real Level 1 BLAS
F06GAF - testing complex Level 1 BLAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           F06ERF - testing real sparse Level 1 BLAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 21
F06GRF: testing complex sparse Level 1 BLAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             The state of the s
F06PAF - testing real Level 2 BLAS
F06SAF - testing complex Level 2 BLAS
F06YAF - testing real Level 3 BLAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F06ZAF - testing complex Level 3 BLAS
```

Note that the last four example programs take longer to execute than the average example program. The Users' Note may contain extra information needed when running these tests.

4.3. Release to Users

3. 1. 2 7 mm

The Users' Note (doc/un.html) should be checked and amended as necessary (particularly Section 1). 3.1). It can then be made available to users directly, or be absorbed into local access information. and the same of th

The following material should also be made accessible to users:

```
topic or relative to be between the common
                                                           o la constant de la company de la company
documentation files:
```

```
Section 17 Co
doc/essint
doc/summary
                                                                                                                                                                                                                                                                                                                                                                                                                ger in the constant of the median con-
doc/news
                                                                                                                                                                                                                                                                                                                                                                                            in the second of the second second
doc/replaced
                                                                                                                                                                                                                                                                                                                                                                                       The second secon
doc/calls.
doc/called
                                                                                                                                                                                                                                                                                                                                                                                      of singurance of the College of Mile
doc/blas_lapack_to_nag
doc/nag_to_blas_lapack
                                                                                                                                                                                                                                                                                                                                                                                                        o gustin seneralis
Savetit sala i e salatan di en
```

one or more of the compiled libraries:

```
Commence of the second of the second
libnag.a
libnag.so (symbolic link pointing at libnag.so.19)
                                        La Landanar i da xolatik basil
libnag-spl.a
libnag-spl.so (symbolic link pointing at libnag-spl.so.19)
                                                  THEORY OF THE WAR TONE
example program material:
```

```
is the second of the second control of the s
examples/source/?????e.f
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              TO SECURE A OF BARBARA
examples/data/?????e.d
examples/results/?????e.r
 scripts/nagexample
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         upate durate tu to Si
```

Note that the example material has been adapted, if necessary, from that printed in the NAG Fortran Library Manual, so that programs are suitable for execution with this implementation with no further changes (but see Section 4.4.2 for comments about possible differences in results obtained). Making the example material directly available to users provides them with easily adaptable

templates for their own problems.

4.4. Further Information

4.4.1. Output Unit Dependencies (X04)

Certain NAG routines use explicit WRITE statements to produce output directly. The choice of output unit used can be controlled by using X04AAF and X04ABF, described in the NAG Fortran Library Manual. The defaults for this implementation are given in the Users' Note.

4.4.2. Example Programs

The example results distributed were generated at Mark 19, using the software described in Section 2.2. These example results may not be exactly reproducible if the example programs are run in a slightly different environment (for example, a different Fortran compiler, a different compiler library, different arithmetic hardware, or a different set of BLAS or LAPACK routines). The results which are most sensitive to such differences are: eigenvectors (which may differ by a scalar multiple, often -1, but sometimes complex); numbers of iterations and function evaluations; and residuals and other "small" quantities of the same order as the machine precision.

The "example programs" for the routines in the F06 chapter are not typical example programs and they are not in the Library Manual. They are test programs, which are supplied to sites for use in an installation test of the Library. Some of them take much longer to run than other example programs. Routines which are equivalent to BLAS, are tested twice: once when called by their NAG F06 names, and once when called by their BLAS names.

4.4.3. Maintenance Level

The maintenance level of the library can be determined either by inspecting the source of routine A00AAZ or by writing a simple program to call A00AAF, which prints out details of the implementation, including title and product code, compiler and precision used, mark and maintenance level.

5. Documentation

Each supported NAG Fortran Library site is currently provided with a printed copy of the NAG Fortran Library Manual (or Update) and Introductory Guide. Additional copies are available for purchase; please refer to the NAG documentation order form (available on the NAG Website, see Section 6 (c)) for details of current prices.

On-line documentation is bundled with this implementation. Please see the Readme file on the distribution medium for further information.

6. Support from NAG

(a) Contact with NAG

Queries concerning this document or the implementation generally should be directed initially to your local Advisory Service. If you have difficulty in making contact locally, you can write to NAG directly at one of the addresses given in the Appendix. Users subscribing to the support service are encouraged to contact one of the NAG Response Centres (see below).

(b) NAG Response Centres

The NAG Response Centres are available for general enquiries from all users and also for technical queries from sites with an annually licensed product or support service.

The Response Centres are open during office hours, but contact is possible by fax, email and phone (answering machine) at all times.

When contacting a Response Centre please quote your NAG site reference and NAG product code (in this case FLSOL19DA).

(c) NAG Website

The NAG Website is an information service providing items of interest to users and prospective users of NAG products and services. The information is reviewed and updated regularly and includes implementation availability, descriptions of products, downloadable software, product documentation and technical reports. The NAG Website can be accessed at

http://www.nag.co.uk/

or

http://www.nag.com/ (in the USA)

Appendix - Contact Addresses

NAG Ltd

Wilkinson House Jordan Hill Road OXFORD OX2 8DR United Kingdom

Tel: +44 (0)1865 511245 Fax: +44 (0)1865 310139

NAG Inc

1400 Opus Place, Suite 200 Downers Grove IL 60515-5702 USA

Tel: +1 630 971 2337 Fax: +1 630 971 2706

NAG GmbH

Schleissheimerstrasse 5 85748 Garching Deutschland email: naggmbh@nag.co.uk

Tel: +49 (0)89 320 7395 Fax: +49 (0)89 320 7396

Nihon NAG KK

Yaesu Nagaoka Building No. 6 1-9-8 Minato Chuo-ku

NAG Ltd Response Centre email: infodesk@nag.co.uk

to the tight?

many a prosto

a. The and mil

Sometimes and the second of the second

grand the state of the state of

Tel: +44 (0)1865 311744 Fax: +44 (0)1865 311755

NAG Inc Response Center email: infodesk@nag.com

Tel: +1 630 971 2345 Fax: +1 630 971 2346 Tokyo

Japan email: help@nag-j.co.jp

Tel: +81 (0)3 5542 6311 Fax: +81 (0)3 5542 6312

[NP3454/IN]

Chapter A02 - Complex Arithmetic

Note. Please refer to the Users' Note for your implementation to check that a routine is available.

Routine Name	Mark of Introduction	Purpose	
A02AAF	2	Square root of a complex number	
A02ABF	2	Modulus of a complex number	
A02ACF	2	Quotient of two complex numbers	

Chapter A02

Complex Arithmetic

Contents

1	Scope of the Chapter	2
2	Background to the Problems	2
3	Recommendations on Choice and Use of Available Routines	2
4	Index	2

[NP3086/18] A02.1

1 Scope of the Chapter

This chapter provides facilities for arithmetic operations involving complex numbers.

2 Background to the Problems

Of the several representations used for complex numbers, perhaps the most common is a + ib, where a and b are real numbers, and i represents the **imaginary** number $\sqrt{-1}$. The number a is the **real part**, and ib the **imaginary part**.

For the basic arithmetic operations of addition, subtraction and multiplication, the inclusion of routines was not considered worthwhile. Their coding would be short and no special techniques need be used.

In complex number operations of a more complicated nature, special precautions may have to be taken to avoid unnecessary overflow and underflow at intermediate stages of the computation. This has led to the inclusion of routines in this chapter.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users' Note for your implementation to check that a routine is available.

The routines were originally written for use by NAG Library routines which compute eigensystems of real and complex matrices (Chapter F02). They may, however, be of general use to programmers using complex numbers.

Fortran programmers may prefer to use the COMPLEX facilities in that language rather than carrying the real and imaginary parts of the numbers in different variables.

4 Index

Complex Numbers, Square Root Modulus Division

A02AAF A02ABF A02ACF

A02.2 (last)

A02AAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

A02AAF evaluates the square root of the complex number $x = (x_r, x_i)$.

2. Specification

3. Description

The method of evaluating $y = \sqrt{x}$ depends on the value of x_r .

For $x_r \geq 0$,

$$y_r = \sqrt{\frac{x_r + \sqrt{x_r^2 + x_i^2}}{2}}, \qquad y_i = \frac{x_i}{2y_r}.$$

For $x_r < 0$

$$y_i = \operatorname{sign}(x_i) \times \sqrt{\frac{|x_r| + \sqrt{x_r^2 + x_i^2}}{2}}, \qquad y_r = \frac{x_i}{2y_i}.$$

Overflow is avoided when squaring x_i and x_r by calling A02ABF to evaluate $\sqrt{x_r^2 + x_i^2}$.

4. References

[1] WILKINSON, J.H. and REINSCH, C. Handbook for Automatic Computation, (Vol. II, Linear Algebra). Springer-Verlag, pp. 357-358, 1971.

5. Parameters

1: XR - real.
2: XI - real.
Input
Input

On entry: x_r and x_i , the real and imaginary parts of x, respectively.

On exit: y_r and y_i , the real and imaginary parts of y, respectively.

6. Error Indicators and Warnings

None.

7. Accuracy

The result should be correct to machine precision.

8. Further Comments

The time taken by the routine is negligible.

9. Example

To find the square root of -1.7 + 2.6i.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
A02AAF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                       NIN, NOUT
      PARAMETER
                        (NIN=5, NOUT=6)
      .. Local Scalars ..
      real
                       XI, XR, YI, YR
      .. External Subroutines ..
      EXTERNAL
                       A02AAF
      .. Executable Statements ..
      WRITE (NOUT,*) 'A02AAF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
      READ (NIN, *) XR, XI
      CALL A02AAF(XR, XI, YR, YI)
      WRITE (NOUT, *)
      WRITE (NOUT, *) '
                         XR
                                ΧI
                                                  YI'
                                        YR
      WRITE (NOUT, 99999) XR, XI, YR, YI
99999 FORMAT (1X,2F6.1,2F9.4)
      END
```

9.2. Program Data

```
A02AAF Example Program Data -1.7 2.6
```

9.3. Program Results

A02AAF Example Program Results

XR XI YR YI -1.7 2.6 0.8386 1.5502

Page 2 (last) [NP1692/14]

A02ABF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

A02ABF returns the value of the modulus of the complex number $x = (x_i, x_i)$.

2. Specification

3. Description

The function evaluates $\sqrt{x_r^2 + x_i^2}$ by using $a\sqrt{1 + \left(\frac{b}{a}\right)^2}$ where a is the larger of x_r and x_i , and b is the smaller of x_r and x_i . This ensures against unnecessary overflow and loss of accuracy when calculating $(x_r^2 + x_i^2)$.

4. References

[1] WILKINSON, J.H. and REINSCH, C. Handbook for Automatic Computation, (Vol. II, Linear Algebra). Springer-Verlag, pp. 357-358, 1971.

5. Parameters

1: XR - real.
2: XI - real.
Input
Input

On entry: x_r and x_i , the real and imaginary parts of x, respectively.

6. Error Indicators and Warnings

None.

7. Accuracy

The result should be correct to machine precision.

8. Further Comments

None.

9. Example

To find the modulus of -1.7+2.6i.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
* A02ABF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

real XI, XR, Y
```

9.2. Program Data

A02ABF Example Program Data -1.7 2.6

9.3. Program Results

A02ABF Example Program Results

XR XI Y -1.7 2.6 3.1064

Page 2 (last) [NP1692/14]

A02ACF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details. The routine name may be precision-dependent.

1. **Purpose**

A02ACF divides one complex number, $x = (x_r, x_i)$, by a second complex number, $y = (y_r, y_i)$, returning the result in $z = (z_r, z_i)$.

Specification

Description 3.

 $z = \frac{x}{y}$ is calculated using the following formulae:

If
$$|y_r| > |y_i|$$
,

$$z_r = \frac{x_r + \theta x_i}{\theta y_i + y_r}, \quad z_i = \frac{x_i - \theta x_r}{\theta y_i + y_r} \quad \text{where } \theta = \frac{y_i}{y_r}$$

If
$$|y_r| \leq |y_i|$$
,

$$z_r = \frac{\phi x_r + x_i}{\phi y_r + y_i},$$
 $z_i = \frac{\phi x_i - x_r}{\phi y_r + y_i}$ where $\phi = \frac{y_r}{y_i}$

These formulae ensure that no unnecessary overflow or underflow occurs at intermediate stages of the computation.

References

WILKINSON, J.H. and REINSCH, C. Handbook for Automatic Computation, (Vol. II, Linear Algebra). Springer-Verlag, pp. 357-358, 1971.

5. **Parameters**

XR - real. Input 1: 2: XI - real.Input

On entry: x_r and x_i , the real and imaginary parts of x, respectively.

On entry: y_i , and y_i , the real and imaginary parts of y, respectively.

On exit: z_r and z_i , the real and imaginary parts of z, respectively.

Error Indicators and Warnings

None.

7. **Accuracy**

The result should be correct to machine precision.

8. Further Comments

The time taken by the routine is negligible.

This routine must not be called with YR = 0.0 and YI = 0.0.

9. Example

To find the value of (-1.7+2.6i)/(-3.1-0.9i).

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
A02ACF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
      INTEGER
                        NIN, NOUT
      PARAMETER
                        (NIN=5, NOUT=6)
      .. Local Scalars ..
      real
                        XI, XR, YI, YR, ZI, ZR
      .. External Subroutines ..
      EXTERNAL
                       A02ACF
      .. Executable Statements ..
      WRITE (NOUT, *) 'A02ACF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
      READ (NIN, *) XR, XI, YR, YI
      CALL A02ACF(XR, XI, YR, YI, ZR, ZI)
      WRITE (NOUT, *)
                     ,
      WRITE (NOUT, *)
                          XR
                                       YR
                                             ΥI
                                                     ZR
                                                               ZI'
                                XI
      WRITE (NOUT, 99999) XR, XI, YR, YI, ZR, ZI
99999 FORMAT (1X, 4F6.1, 2F9.4)
      END
```

9.2. Program Data

```
A02ACF Example Program Data -1.7 2.6 -3.1 -0.9
```

9.3. Program Results

A02ACF Example Program Results

```
XR XI YR YI ZR ZI
-1.7 2.6 -3.1 -0.9 0.2812 -0.9203
```

Page 2 (last) [NP1692/14]

Chapter C02 – Zeros of Polynomials

Note. Please refer to the Users' Note for your implementation to check that a routine is available.

Routine Name	Mark of Introduction	Purpose
CO2AFF	14	All zeros of complex polynomial, modified Laguerre method
CO2AGF	13	All zeros of real polynomial, modified Laguerre method
CO2AHF	14	All zeros of complex quadratic
CO2AJF	14	All zeros of real quadratic

Chapter C02

Zeros of Polynomials

Contents

1	Scope of the Chapter	2
2	Background to the Problems	2
3	Recommendations on Choice and Use of Available Routines 3.1 Discussion	3
4	Index	3
5	Routines Withdrawn or Scheduled for Withdrawal	3
6	References	3

1 Scope of the Chapter

This chapter is concerned with computing the zeros of a polynomial with real or complex coefficients.

2 Background to the Problems

Let f(z) be a polynomial of degree n with complex coefficients a_i :

$$f(z) \equiv a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n, \quad a_0 \neq 0.$$

A complex number z_1 is called a zero of f(z) (or equivalently a root of the equation f(z) = 0), if:

$$f(z_1) = 0.$$

If z_1 is a zero, then f(z) can be divided by a factor $(z - z_1)$:

$$f(z) = (z - z_1)f_1(z) \tag{1}$$

where $f_1(z)$ is a polynomial of degree n-1. By the Fundamental Theorem of Algebra, a polynomial f(z) always has a zero, and so the process of dividing out factors $(z-z_i)$ can be continued until we have a complete factorization of f(z):

$$f(z) \equiv a_0(z - z_1)(z - z_2) \dots (z - z_n).$$

Here the complex numbers z_1, z_2, \ldots, z_n are the zeros of f(z); they may not all be distinct, so it is sometimes more convenient to write:

$$f(z) \equiv a_0(z-z_1)^{m_1}(z-z_2)^{m_2}\dots(z-z_k)^{m_k}, \quad k \le n,$$

with distinct zeros z_1, z_2, \ldots, z_k and multiplicities $m_i \geq 1$. If $m_i = 1, z_i$ is called a **simple** or **isolated** zero; if $m_i > 1, z_i$ is called a **multiple** or **repeated** zero; a multiple zero is also a zero of the derivative of f(z).

If the coefficients of f(z) are all real, then the zeros of f(z) are either real or else occur as pairs of conjugate complex numbers x + iy and x - iy. A pair of complex conjugate zeros are the zeros of a quadratic factor of f(z), $(z^2 + rz + s)$, with real coefficients r and s.

Mathematicians are accustomed to thinking of polynomials as pleasantly simple functions to work with. However the problem of numerically computing the zeros of an arbitrary polynomial is far from simple. A great variety of algorithms have been proposed, of which a number have been widely used in practice; for a fairly comprehensive survey, see Householder [1]. All general algorithms are iterative. Most converge to one zero at a time; the corresponding factor can then be divided out as in equation (1) above — this process is called **deflation** or, loosely, dividing out the zero — and the algorithm can be applied again to the polynomial $f_1(z)$. A pair of complex conjugate zeros can be divided out together — this corresponds to dividing f(z) by a quadratic factor.

Whatever the theoretical basis of the algorithm, a number of practical problems arise: for a thorough discussion of some of them see Peters and Wilkinson [2] and Wilkinson [3], Chapter 2. The most elementary point is that, even if z_1 is mathematically an exact zero of f(z), because of the fundamental limitations of computer arithmetic the **computed** value of $f(z_1)$ will not necessarily be exactly 0.0. In practice there is usually a small region of values of z about the exact zero at which the computed value of f(z) becomes swamped by rounding errors. Moreover in many algorithms this inaccuracy in the computed value of f(z) results in a similar inaccuracy in the computed step from one iterate to the next. This limits the precision with which any zero can be computed. Deflation is another potential cause of trouble, since, in the notation of equation (1), the computed coefficients of $f_1(z)$ will not be completely accurate, especially if z_1 is not an exact zero of f(z); so the zeros of the computed $f_1(z)$ will deviate from the zeros of f(z).

A zero is called **ill-conditioned** if it is sensitive to small changes in the coefficients of the polynomial. An ill-conditioned zero is likewise sensitive to the computational inaccuracies just mentioned. Conversely a zero is called **well-conditioned** if it is comparatively insensitive to such perturbations. Roughly speaking a zero which is well separated from other zeros is well-conditioned, while zeros which are close together are ill-conditioned, but in talking about 'closeness' the decisive factor is not the absolute distance between neighbouring zeros but their **ratio**: if the ratio is close to one the zeros are ill-conditioned. In particular, multiple zeros are ill-conditioned. A multiple zero is usually split into a cluster of zeros by perturbations in the polynomial or computational inaccuracies.

C02.2 [NP3086/18]

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users' Note for your implementation to check that a routine is available.

3.1 Discussion

Four routines are available: C02AFF for polynomials with complex coefficients, C02AGF for polynomials with real coefficients, C02AHF for quadratic equations with complex coefficients and C02AJF for quadratic equations with real coefficients.

C02AFF and C02AGF both use a variant of Laguerre's Method to calculate each zero until the degree of the deflated polynomial is less than three, whereupon the remaining zeros are obtained by carefully evaluating the 'standard' closed formulae for a quadratic or linear equation.

For the solution of quadratic equations, C02AHF and C02AJF are simplified versions of the above routines.

The accuracy of the roots will depend on how ill-conditioned they are. Peters and Wilkinson [2] describe techniques for estimating the errors in the zeros after they have been computed.

4 Index

Zeros of a complex polynomial	CO2AFF
Zeros of a real polynomial	CO2AGF
Zeros of a quadratic equation with complex coefficients	CO2AHF
Zeros of a quadratic equation with real coefficients	CO2AJF

5 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines is given in the document 'Advice on Replacement Calls for Withdrawn/Superseded Routines'.

C02ADF C02AEF

6 References

- [1] Householder A S (1970) The Numerical Treatment of a Single Nonlinear Equation McGraw-Hill
- [2] Peters G and Wilkinson J H (1971) Practical problems arising in the solution of polynomial equations J. Inst. Maths. Applies. 8 16-35
- [3] Wilkinson J H (1963) Rounding Errors in Algebraic Processes HMSO

[NP3086/18] C02.3 (last)

C02AFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C02AFF finds all the roots of a complex polynomial equation, using a variant of Laguerre's Method.

2. Specification

```
SUBROUTINE CO2AFF (A, N, SCALE, Z, W, IFAIL)

INTEGER

N, IFAIL

real

A(2,N+1), Z(2,N), W(4*(N+1))

LOGICAL

SCALE
```

3. Description

The routine attempts to find all the roots of the nth degree complex polynomial equation

$$P(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n = 0.$$

The roots are located using a modified form of Laguerre's Method, originally proposed by Smith [2].

The method of Laguerre [3] can be described by the iterative scheme

$$L(z_k) = z_{k+1} - z_k = \frac{-n \times P(z_k)}{P'(z_k) \pm \sqrt{H(z_k)}},$$

where $H(z_k) = (n-1) \times [(n-1) \times (P'(z_k))^2 - n \times P(z_k)P''(z_k)]$, and z_0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at z_k , viz. $|L(z_k)|$, is as small as possible. The method can be shown to be cubically convergent for isolated roots (real or complex) and linearly convergent for multiple roots.

The routine generates a sequence of iterates $z_1, z_2, z_3,...$, such that $|P(z_{k+1})| < |P(z_k)|$ and ensures that $z_{k+1} + L(z_{k+1})$ 'roughly' lies inside a circular region of radius |F| about z_k known to contain a zero of P(z); that is, $|L(z_{k+1})| \le |F|$, where F denotes the Féjer bound (see Marden [1]) at the point z_k . Following Smith [2], F is taken to be $\min(B, 1.445 \times n \times R)$, where B is an upper bound for the magnitude of the smallest zero given by

$$B = 1.0001 \times \min \left(\sqrt{n} \times L(z_k), |r_1|, |a_n/a_0|^{1/n} \right),$$

 r_1 is the zero X of smaller magnitude of the quadratic equation

$$(P''(z_k)/(2\times n\times (n-1)))X^2 + (P'(z_k)/n)X + \frac{1}{2}P(z_k) = 0$$

and the Cauchy lower bound R for the smallest zero is computed (using Newton's Method) as the positive root of the polynomial equation

$$|a_0|z^n + |a_1|z^{n-1} + |a_2|z^{n-2} + \dots + |a_{n-1}|z - |a_n| = 0.$$

Starting from the origin, successive iterates are generated according to the rule $z_{k+1}=z_k+L(z_k)$ for k=1,2,3,... and $L(z_k)$ is 'adjusted' so that $|P(z_{k+1})|<|P(z_k)|$ and $|L(z_{k+1})|\leq |F|$. The iterative procedure terminates if $P(z_{k+1})$ is smaller in absolute value than the bound on the rounding error in $P(z_{k+1})$ and the current iterate $z_p=z_{k+1}$ is taken to be a zero of P(z). The deflated polynomial $\tilde{P}(z)=P(z)/(z-z_p)$ of degree n-1 is then formed, and the above procedure is repeated on the deflated polynomial until n<3, whereupon the remaining roots are obtained via the 'standard' closed formulae for a linear (n=1) or quadratic (n=2) equation.

To obtain the roots of a quadratic polynomial, C02AHF can be used.

4. References

[1] MARDEN, M.

Geometry of Polynomials. Mathematical Surveys. Am. Math. Soc., Providence, Rhode Island, USA, 3, 1966.

[2] SMITH, B.T.

ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre's Method. Technical Report, Department of Computer Science, University of Toronto, Canada, 1967.

[3] WILKINSON, J.H.

The Algebraic Eigenvalue Problem.

Clarendon Press, 1965.

5. Parameters

1: A(2,N+1) - real array.

Input

On entry: if A is declared with bounds (2,0:N), then A(1,i) and A(2,i) must contain the real and imaginary parts of a_i (i.e. the coefficient of z^{n-i}), for i=0,1,...,n.

Constraint: $A(1,0) \neq 0.0 \text{ or } A(2,0) \neq 0.0.$

2: N - INTEGER.

Input

On entry: the degree of the polynomial, n.

Constraint: $N \ge 1$.

3: SCALE - LOGICAL.

Input

On entry: indicates whether or not the polynomial is to be scaled. See Section 8 for advice on when it may be preferable to set SCALE = .FALSE. and for a description of the scaling strategy.

Suggested value: SCALE = .TRUE..

4: Z(2,N) - real array.

Output

On exit: the real and imaginary parts of the roots are stored in Z(1,i) and Z(2,i) respectively, for i = 1, 2, ..., n.

5: W(4*(N+1)) - real array.

Workspace

6: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, A(1,0) = 0.0 and A(2,0) = 0.0, or N < 1.

IFAIL = 2

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does, please contact NAG immediately, as some basic assumption for the arithmetic has been violated. See also Section 8.

IFAIL = 3

Either overflow or underflow prevents the evaluation of P(z) near some of its zeros. This error is very unlikely to occur. If it does, please contact NAG immediately. See also Section 8.

7. Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem complete accuracy cannot be guaranteed.

8. Further Comments

If SCALE = .TRUE., then a scaling factor for the coefficients is chosen as a power of the base B of the machine so that the largest coefficient in magnitude approaches THRESH = B^{EMAX-P} . Users should note that no scaling is performed if the largest coefficient in magnitude exceeds THRESH, even if SCALE = .TRUE.. (For definition of B, EMAX and P see the Chapter Introduction X02.)

However, with SCALE = .TRUE., overflow may be encountered when the input coefficients $a_0, a_1, a_2, ..., a_n$ vary widely in magnitude, particularly on those machines for which $B^{(4\times P)}$ overflows. In such cases, SCALE should be set to .FALSE, and the coefficients scaled so that the largest coefficient in magnitude does not exceed $B^{(EMAX-2\times P)}$.

Even so, the scaling strategy used in C02AFF is sometimes insufficient to avoid overflow and/or underflow conditions. In such cases, the user is recommended to scale the independent variable (z) so that the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use the routine to locate the zeros of the polynomial $d \times P(cz)$ for some suitable values of c and d. For example, if the original polynomial was $P(z) = 2^{-100}i + 2^{100}z^{20}$, then choosing $c = 2^{-10}$ and $d = 2^{100}$, for instance, would yield the scaled polynomial $i + z^{20}$, which is well-behaved relative to overflow and underflow and has zeros which are 2^{10} times those of P(z).

If the routine fails with IFAIL = 2 or 3, then the real and imaginary parts of any roots obtained before the failure occurred are stored in Z in the reverse order in which they were found. Let n_R denote the number of roots found before the failure occurred. Then Z(1,n) and Z(2,n) contain the real and imaginary parts of the 1st root found, Z(1,n-1) and Z(2,n-1) contain the real and imaginary parts of the 2nd root found, ..., $Z(1,n_R)$ and $Z(2,n_R)$ contain the real and imaginary parts of the n_R th root found. After the failure has occurred, the remaining $2 \times (n-n_R)$ elements of Z contain a large negative number (equal to $-1/(X02AMF().\sqrt{2})$).

9. Example

```
To find the roots of the polynomial a_0z^5 + a_1z^4 + a_2z^3 + a_3z^2 + a_4z + a_5 = 0, where a_0 = (5.0+6.0i), a_1 = (30.0+20.0i), a_2 = -(0.2+6.0i), a_3 = (50.0+100000.0i), a_4 = -(2.0-40.0i) and a_5 = (10.0+1.0i).
```

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO2AFF Example Program Text
Mark 14 Release. NAG Copyright 1989.
.. Parameters ..
                 NIN, NOUT
INTEGER
                 (NIN=5, NOUT=6)
PARAMETER
INTEGER
                 MAXDEG
PARAMETER
                 (MAXDEG=100)
LOGICAL
                 SCALE
PARAMETER
                 (SCALE=.TRUE.)
.. Local Scalars ..
INTEGER
                 I, IFAIL, N
```

[NP2478/16] Page 3

```
.. Local Arrays ..
          real
                            A(2,0:MAXDEG), W(4*MAXDEG+4), Z(2,MAXDEG)
           .. External Subroutines
          EXTERNAL
                            C02AFF
          .. Executable Statements ..
          WRITE (NOUT, *) 'C02AFF Example Program Results'
          Skip heading in data file
          READ (NIN, *)
          READ (NIN, *) N
          IF (N.GT.O .AND. N.LE.MAXDEG) THEN
              READ (NIN, *) (A(1,I),A(2,I),I=0,N)
              IFAIL = 0
              CALL CO2AFF(A,N,SCALE,Z,W,IFAIL)
              WRITE (NOUT, *)
             WRITE (NOUT, 99999) 'Degree of polynomial = ', N
             WRITE (NOUT, *)
             WRITE (NOUT, *) 'Roots of polynomial'
             WRITE (NOUT, *)
DO 20 I = 1, N
                 WRITE (NOUT, 99998) 'z = ', Z(1,I), Z(2,I), '*i'
       20
              CONTINUE
          ELSE
             WRITE (NOUT, *) 'N is out of range'
          END IF
          STOP
    99999 FORMAT (1X,A,14)
99998 FORMAT (1X,A,1P,e12.4,SP,e14.4,A)
          F:ND
9.2. Program Data
    C02AFF Example Program Data
                   6.0
        5.0
       30.0
                  20.0
       -0.2
                  -6.0
       50.0
             100000.0
       -2.0
                  40.0
       10.0
                   1.0
9.3. Program Results
     CO2AFF Example Program Results
     Degree of polynomial =
     Roots of polynomial
     z = -2.4328E+01
                         -4.8555E+00*i
           5.2487E+00
                        +2.2736E+01*i
     z =
          1.4653E+01
                         -1.6569E+01*i
     z =
          -6.9264E-03
                         -7.4434E-03*i
           6.5264E-03
                        +7.4232E-03*i
```

Page 4 (last)

C02AGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C02AGF finds all the roots of a real polynomial equation, using a variant of Laguerre's Method.

2. Specification

```
SUBROUTINE C02AGF (A, N, SCALE, Z, W, IFAIL)

INTEGER

N, IFAIL

real

A(N+1), Z(2,N), W(2*(N+1))

LOGICAL

SCALE
```

3. Description

The routine attempts to find all the roots of the nth degree real polynomial equation

$$P(z) = a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_{n-1} z + a_n = 0.$$

The roots are located using a modified form of Laguerre's Method, originally proposed by Smith [2].

The method of Laguerre [3] can be described by the iterative scheme

$$L(z_k) = z_{k+1} - z_k = \frac{-n \times P(z_k)}{P'(z_k) \pm \sqrt{H(z_k)}},$$

where $H(z_k) = (n-1) \times [(n-1) \times (P'(z_k))^2 - n \times P(z_k)P''(z_k)]$, and z_0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at z_k , viz. $|L(z_k)|$, is as small as possible. The method can be shown to be cubically convergent for isolated roots (real or complex) and linearly convergent for multiple roots.

The routine generates a sequence of iterates $z_1, z_2, z_3,...$, such that $|P(z_{k+1})| < |P(z_k)|$ and ensures that $z_{k+1} + L(z_{k+1})$ 'roughly' lies inside a circular region of radius |F| about z_k known to contain a zero of P(z); that is, $|L(z_{k+1})| \le |F|$, where F denotes the Féjer bound (see Marden [1]) at the point z_k . Following Smith [2], F is taken to be $\min(B, 1.445 \times n \times R)$, where B is an upper bound for the magnitude of the smallest zero given by

$$B = 1.0001 \times \min(\sqrt{n} \times L(z_k), |r_1|, |a_n/a_0|^{1/n}),$$

 r_1 is the zero X of smaller magnitude of the quadratic equation

$$(P''(z_k)/(2\times n\times (n-1)))X^2 + (P'(z_k)/n)X + \frac{1}{2}P(z_k) = 0$$

and the Cauchy lower bound R for the smallest zero is computed (using Newton's Method) as the positive root of the polynomial equation

$$|a_0|z^n + |a_1|z^{n-1} + |a_2|z^{n-2} + \dots + |a_{n-1}|z - |a_n| = 0.$$

Starting from the origin, successive iterates are generated according to the rule $z_{k+1}=z_k+L(z_k)$ for k=1,2,3,... and $L(z_k)$ is 'adjusted' so that $|P(z_{k+1})|<|P(z_k)|$ and $|L(z_{k+1})|\leq |F|$. The iterative procedure terminates if $P(z_{k+1})$ is smaller in absolute value than the bound on the rounding error in $P(z_{k+1})$ and the current iterate $z_p=z_{k+1}$ is taken to be a zero of P(z) (as is its conjugate \bar{z}_p if z_p is complex). The deflated polynomial $\tilde{P}(z)=P(z)/(z-z_p)$ of degree n-1 if z_p is real $(\tilde{P}(z)=P(z)/((z-z_p)(z-\bar{z}_p))$ of degree n-2 if z_p is complex) is then formed, and the above procedure is repeated on the deflated polynomial until n<3, whereupon the remaining roots are obtained via the 'standard' closed formulae for a linear (n=1) or quadratic (n=2) equation.

To obtain the roots of a quadratic polynomial, C02AJF can be used.

4. References

[1] MARDEN, M.

Geometry of Polynomials. Mathematical Surveys. Am. Math. Soc., Providence, Rhode Island, USA, 3, 1966.

[2] SMITH, B.T.

ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre's Method. Technical Report, Department of Computer Science, University of Toronto, Canada, 1967.

[3] WILKINSON, J.H.

The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

5. Parameters

1: A(N+1) - real array.

Input

On entry: if A is declared with bounds (0:N), then A(i) must contain a_i (i.e. the coefficient of z^{n-i}), for i = 0, 1, ..., n.

Constraint: $A(0) \neq 0.0$.

2: N - INTEGER.

Input

On entry: the degree of the polynomial, n.

Constraint: $N \ge 1$.

3: SCALE – LOGICAL.

Input

On entry: indicates whether or not the polynomial is to be scaled. See Section 8 for advice on when it may be preferable to set SCALE = .FALSE. and for a description of the scaling strategy.

Suggested value: SCALE = .TRUE..

4: Z(2,N) - real array.

Output

On exit: the real and imaginary parts of the roots are stored in Z(1,i) and Z(2,i) respectively, for i = 1,2,...,n. Complex conjugate pairs of roots are stored in consecutive pairs of elements of Z; that is, Z(1,i+1) = Z(1,i) and Z(2,i+1) = -Z(2,i).

5: W(2*(N+1)) - real array.

Workspace

6: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, A(0) = 0.0, or N < 1.

IFAIL = 2

The iterative procedure has failed to converge. This error is very unlikely to occur. If it does, please contact NAG immediately, as some basic assumption for the arithmetic has been violated. See also Section 8.

IFAIL = 3

Either overflow or underflow prevents the evaluation of P(z) near some of its zeros. This error is very unlikely to occur. If it does, please contact NAG immediately. See also Section 8.

7. Accuracy

All roots are evaluated as accurately as possible, but because of the inherent nature of the problem complete accuracy cannot be guaranteed.

8. Further Comments

If SCALE = .TRUE., then a scaling factor for the coefficients is chosen as a power of the base B of the machine so that the largest coefficient in magnitude approaches THRESH = B^{EMAX-P} . Users should note that no scaling is performed if the largest coefficient in magnitude exceeds THRESH, even if SCALE = .TRUE.. (For definition of B, EMAX and P see the Chapter Introduction X02.)

However, with SCALE = .TRUE., overflow may be encountered when the input coefficients $a_0, a_1, a_2, ..., a_n$ vary widely in magnitude, particularly on those machines for which $B^{(4\times P)}$ overflows. In such cases, SCALE should be set to .FALSE. and the coefficients scaled so that the largest coefficient in magnitude does not exceed $B^{(EMAX-2\times P)}$.

Even so, the scaling strategy used in C02AGF is sometimes insufficient to avoid overflow and/or underflow conditions. In such cases, the user is recommended to scale the independent variable (z) so that the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use the routine to locate the zeros of the polynomial $d \times P(cz)$ for some suitable values of c and d. For example, if the original polynomial was $P(z) = 2^{-100} + 2^{100}z^{20}$, then choosing $c = 2^{-10}$ and $d = 2^{100}$, for instance, would yield the scaled polynomial $1 + z^{20}$, which is well-behaved relative to overflow and underflow and has zeros which are 2^{10} times those of P(z).

If the routine fails with IFAIL = 2 or 3, then the real and imaginary parts of any roots obtained before the failure occurred are stored in Z in the reverse order in which they were found. Let n_R denote the number of roots found before the failure occurred. Then Z(1,n) and Z(2,n) contain the real and imaginary parts of the 1st root found, Z(1,n-1) and Z(2,n-1) contain the real and imaginary parts of the 2nd root found, ..., $Z(1,n_R)$ and $Z(2,n_R)$ contain the real and imaginary parts of the n_R th root found. After the failure has occurred, the remaining $2 \times (n-n_R)$ elements of Z contain a large negative number (equal to $-1/(X02AMF().\sqrt{2})$).

9. Example

To find the roots of the 5th degree polynomial $z^5 + 2z^4 + 3z^3 + 4z^2 + 5z + 6 = 0$.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C02AGF Example Program Text
*
     Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                       NIN, NOUT
      PARAMETER
                       (NIN=5, NOUT=6)
                       ZERO
     real
      PARAMETER
                       (ZERO=0.0e0)
      INTEGER
                       MAXDEG
      PARAMETER
                       (MAXDEG=100)
     LOGICAL
                       SCALE
                       (SCALE=.TRUE.)
     PARAMETER
      .. Local Scalars ..
      INTEGER
                       I, IFAIL, N, NROOT
      .. Local Arrays .
     real
                       A(0:MAXDEG), W(2*MAXDEG+2), Z(2,MAXDEG)
```

```
.. External Subroutines ..
          EXTERNAL
                          C02AGF
    *
          .. Intrinsic Functions ..
          INTRINSIC
                          ABS
          .. Executable Statements ..
          WRITE (NOUT, *) 'C02AGF Example Program Results'
          Skip heading in data file
          READ (NIN, *)
          READ (NIN, *) N
          IF (N.GT.O .AND. N.LE.MAXDEG) THEN
             READ (NIN, \star) (A(I), I=0, N)
             WRITE (NOUT, *)
             WRITE (NOUT, 99999) 'Degree of polynomial = ', N
             IFAIL = 0
             CALL CO2AGF(A, N, SCALE, Z, W, IFAIL)
             WRITE (NOUT, *)
             WRITE (NOUT, *) 'Roots of polynomial'
             WRITE (NOUT, *)
             NROOT = 1
       20
             IF (NROOT.LE.N) THEN
                IF (Z(2, NROOT).EQ.ZERO) THEN
                   WRITE (NOUT, 99998) 'Z = ', Z(1, NROOT)
                   NROOT = NROOT + 1
                   WRITE (NOUT, 99998) 'Z = ', Z(1, NROOT), ' +/- ', ABS(Z(2, NROOT)), '*i'
         +
                   NROOT = NROOT + 2
                END IF
                GO TO 20
             END IF
          ELSE
             WRITE (NOUT, *) 'N is out of range'
          END IF
          STOP
    99999 FORMAT (1X,A,I4)
    99998 FORMAT (1X,A,1P,e12.4,A,1P,e12.4,A)
9.2. Program Data
    C02AGF Example Program Data
     5
                2.0
                        3.0
                              4.0 5.0 6.0
9.3. Program Results
     C02AGF Example Program Results
     Degree of polynomial =
     Roots of polynomial
     z = -1.4918E+00
                             1.2533E+00*i
          5.5169E-01 +/-
     z = -8.0579E-01 +/- 1.2229E+00*i
```

Page 4 (last) [NP2478/16]

C02AHF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C02AHF determines the roots of a quadratic equation with complex coefficients.

2. Specification

SUBROUTINE CO2AHF (AR, AI, BR, BI, CR, CI, ZSM, ZLG, IFAIL)

INTEGER

IFAIL

real

AR, AI, BR, BI, CR, CI, ZSM(2), ZLG(2)

3. Description

The routine attempts to find the roots of the quadratic equation $az^2 + bz + c = 0$ (where a, b and c are complex coefficients), by carefully evaluating the 'standard' closed formula

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

It is based on the routine CQDRTC from Smith [1].

Note: it is not necessary to scale the coefficients prior to calling the routine.

4. References

[1] SMITH, B.T.

ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre's Method. Technical Report, Department of Computer Science, University of Toronto, Canada, 1967.

5. Parameters

1: AR - real.

Input

2: AI - real.

Input

On entry: AR and AI must contain the real and imaginary parts respectively of a, the coefficient of z^2 .

3: BR - *real*.

Input

4: BI - real.

Input

On entry: BR and BI must contain the real and imaginary parts respectively of b, the coefficient of z.

5: CR - real.

Input

6: CI – *real*.

Input

On entry: CR and CI must contain the real and imaginary parts respectively of c, the constant coefficient.

7: ZSM(2) - real array.

Output

On exit: the real and imaginary parts of the smallest root in magnitude are stored in ZSM(1) and ZSM(2) respectively.

8: ZLG(2) - real array.

Output

On exit: the real and imaginary parts of the largest root in magnitude are stored in ZLG(1) and ZLG(2) respectively.

9: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, (AR,AI) = (0,0). In this case, ZSM(1) and ZSM(2) contain the real and imaginary parts respectively of the root -c/b.

IFAIL = 2

On entry, (AR,AI) = (0,0) and (BR,BI) = (0,0). In this case, ZSM(1) contains the largest machine representable number (see X02ALF) and ZSM(2) contains zero.

IFAIL = 3

On entry, (AR,AI) = (0,0) and the root -c/b overflows. In this case, ZSM(1) contains the largest machine representable number (see X02ALF) and ZSM(2) contains zero.

IFAIL = 4

On entry, (CR,CI) = (0,0) and the root -b/a overflows. In this case, both ZSM(1) and ZSM(2) contain zero.

IFAIL = 5

On entry, \tilde{b} is so large that \tilde{b}^2 is indistinguishable from $\tilde{b}^2 - 4\tilde{a}\tilde{c}$ and the root -b/a overflows, where $\tilde{b} = \max(|BR|, |BI|)$, $\tilde{a} = \max(|AR|, |AI|)$ and $\tilde{c} = \max(|CR|, |CI|)$. In this case, ZSM(1) and ZSM(2) contain the real and imaginary parts respectively of the root -c/b.

If IFAIL > 0 on exit, then ZLG(1) contains the largest machine representable number (see X02ALF) and ZLG(2) contains zero.

7. Accuracy

If IFAIL = 0 on exit, then the computed roots should be accurate to within a small multiple of the *machine precision* except when underflow (or overflow) occurs, in which case the true roots are within a small multiple of the underflow (or overflow) threshold of the machine.

8. Further Comments

None.

9. Example

To find the roots of the quadratic equation $z^2 - (3.0-1.0i)z + (8.0+1.0i) = 0$.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C02AHF Example Program Text
      Mark 14 Release. NAG Copyright 1989.
      .. Parameters ..
                         NIN, NOUT
      INTEGER
      PARAMETER
                         (NIN=5, NOUT=6)
      .. Local Scalars .
      real
                         AI, AR, BI, BR, CI, CR
      INTEGER
                         IFAIL
      .. Local Arrays ..
      real
                         ZLG(2), ZSM(2)
       .. External Subroutines ..
      EXTERNAL
                         C02AHF
       .. Executable Statements ..
      WRITE (NOUT, *) 'C02AHF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
      READ (NIN, *) AR, AI, BR, BI, CR, CI
      IFAIL = 0
      CALL CO2AHF(AR, AI, BR, BI, CR, CI, ZSM, ZLG, IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, *)
                       'Roots of quadratic equation'
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) 'z = ', ZSM(1), ZSM(2), '*i' WRITE (NOUT, 99999) 'z = ', ZLG(1), ZLG(2), '*i'
      STOP
99999 FORMAT (1X,A,1P,e12.4,SP,e14.4,A)
```

9.2. Program Data

```
C02AHF Example Program Data
1.0 0.0 -3.0 1.0 8.0 1.0 :AR AI BR BI CR CI
```

9.3. Program Results

```
C02AHF Example Program Results
```

Roots of quadratic equation

```
z = 1.0000E+00 +2.0000E+00*i

z = 2.0000E+00 -3.0000E+00*i
```

[NP2136/15]

C02AJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C02AJF determines the roots of a quadratic equation with real coefficients.

2. Specification

3. Description

The routine attempts to find the roots of the quadratic equation $az^2 + bz + c = 0$ (where a, b and c are real coefficients), by carefully evaluating the 'standard' closed formula

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

It is based on the routine QDRTC from Smith [1].

Note: it is not necessary to scale the coefficients prior to calling the routine.

4. References

[1] SMITH, B.T.

ZERPOL: A Zero Finding Algorithm for Polynomials Using Laguerre's Method. Technical Report, Department of Computer Science, University of Toronto, Canada, 1967.

5. Parameters

1: A - real. Input

On entry: A must contain a, the coefficient of z^2 .

2: B - real. Input

On entry: B must contain b, the coefficient of z.

3: C-real.

On entry: C must contain c, the constant coefficient.

4: ZSM(2) – real array. Output

On exit: the real and imaginary parts of the smallest root in magnitude are stored in ZSM(1) and ZSM(2) respectively.

S: ZLG(2) - real array. Output

On exit: the real and imaginary parts of the largest root in magnitude are stored in ZLG(1) and ZLG(2) respectively.

6: IFAIL – INTEGER. Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP2136/15] Page 1

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, A = 0. In this case, ZSM(1) contains the root -c/b and ZSM(2) contains zero.

IFAIL = 2

On entry, A = 0 and B = 0. In this case, ZSM(1) contains the largest machine representable number (see X02ALF) and ZSM(2) contains zero.

IFAIL = 3

On entry, A = 0 and the root -c/b overflows. In this case, ZSM(1) contains the largest machine representable number (see X02ALF) and ZSM(2) contains zero.

IFAIL = 4

On entry, C = 0 and the root -b/a overflows. In this case, both ZSM(1) and ZSM(2) contain zero.

IFAIL = 5

On entry, b is so large that b^2 is indistinguishable from $b^2 - 4ac$ and the root -b/a overflows. In this case, ZSM(1) contains the root -c/b and ZSM(2) contains zero.

If IFAIL > 0 on exit, then ZLG(1) contains the largest machine representable number (see X02ALF) and ZLG(2) contains zero.

7. Accuracy

If IFAIL = 0 on exit, then the computed roots should be accurate to within a small multiple of the *machine precision* except when underflow (or overflow) occurs, in which case the true roots are within a small multiple of the underflow (or overflow) threshold of the machine.

8. Further Comments

None.

9. Example

To find the roots of the quadratic equation $z^2 + 3z - 10 = 0$.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C02AJF Example Program Text
      Mark 14 Release. NAG Copyright 1989.
*
      .. Parameters ..
                        NIN, NOUT
      INTEGER
      PARAMETER
                        (NIN=5, NOUT=6)
      real
                        ZERO
      PARAMETER
                        (ZERO=0.0e0)
      .. Local Scalars ..
      real
                        A, B, C
      INTEGER
                        IFAIL
      .. Local Arrays ..
                        ZLG(2), ZSM(2)
      .. External Subroutines ..
      EXTERNAL
                        C02AJF
```

```
.. Intrinsic Functions ..
          INTRINSIC
                             ABS
           .. Executable Statements ..
          WRITE (NOUT, *) 'CO2AJF Example Program Results'
          Skip heading in data file
          READ (NIN, *)
          READ (NIN, *) A, B, C
          IFAIL = 0
          CALL CO2AJF(A, B, C, ZSM, ZLG, IFAIL)
          WRITE (NOUT, *)
          WRITE (NOUT, *) 'Roots of quadratic equation'
          WRITE (NOUT, *)
          IF (ZSM(2).EQ.ZERO) THEN
             2 real roots.
             WRITE (NOUT, 99999) 'z = ', ZSM(1)
WRITE (NOUT, 99999) 'z = ', ZLG(1)
          ELSE
             2 complex roots.
             WRITE (NOUT, 99998) 'z = ', ZSM(1), ' +/- ', ABS(ZSM(2)), '*i'
          END IF
          STOP
    99999 FORMAT (1X,A,1P, €12.4)
    99998 FORMAT (1X, A, 1P, e12.4, A, e12.4, A)
9.2. Program Data
    C02AJF Example Program Data
     1.0
           3.0 -10.0
                                     :A B C
9.3. Program Results
     C02AJF Example Program Results
     Roots of quadratic equation
          2.0000E+00
     z =
     z = -5.0000E+00
```

Chapter C05 – Roots of One or More Transcendental Equations

Note. Please refer to the Users' Note for your implementation to check that a routine is available.

Routine Name	Mark of Introduction	Purpose	
COSADF	8	Zero of continuous function in given interval, Bus and Dekker algorithm	
C05AGF	8	Zero of continuous function, Bus and Dekker algorithm, from given starting value, binary search for interval	
COSAJF	8	Zero of continuous function, continuation method, from a given starting value	
COSAVF	8	Binary search for interval containing zero of continuous function (reverse communication)	
COSAXF	8	Zero of continuous function by continuation method, from given starting value (reverse communication)	
CO5AZF	7	Zero in given interval of continuous function by Bus and Dekker algorithm (reverse communication)	
COSNBF	9	Solution of system of nonlinear equations using function values only (easy-to-use)	
COSNCF	9	Solution of system of nonlinear equations using function values only (comprehensive)	
CO5NDF	14	Solution of systems of nonlinear equations using function values only (reverse communication)	
C05PBF	9	Solution of system of nonlinear equations using 1st derivatives (easy-to-use)	
C05PCF	9	Solution of system of nonlinear equations using 1st derivatives (comprehensive)	
C05PDF	14	Solution of systems of nonlinear equations using 1st derivatives (reverse communication)	
CO5ZAF	9	Check user's routine for calculating 1st derivatives	

Chapter C05

Roots of One or More Transcendental Equations

Contents

1	Scope of the Chapter	2
2	Background to the Problems 2.1 A Single Equation	2 2 2
3	Recommendations on Choice and Use of Available Routines 3.1 Zeros of Functions of One Variable	2 2 3
4	Decision Trees	4
5	Index	5
6	References	5

[NP3086/18] C05.1

1 Scope of the Chapter

This chapter is concerned with the calculation of real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.)

2 Background to the Problems

The chapter divides naturally into two parts.

2.1 A Single Equation

The first deals with the real zeros of a real function of a single variable f(x).

There are three routines with simple calling sequences. The first assumes that the user can determine an initial interval [a,b] within which the desired zero lies, that is $f(a) \times f(b) < 0$, and outside which all other zeros lie. The routine then systematically subdivides the interval to produce a final interval containing the zero. This final interval has a length bounded by the user's specified error requirements; the end of the interval where the function has smallest magnitude is returned as the zero. This routine is guaranteed to converge to a **simple** zero of the function. (Here we define a simple zero as a zero corresponding to a sign-change of the function; none of the available routines are capable of making any finer distinction.) However, as with the other routines described below a non-simple zero might be determined and it is left to the user to check for this. The algorithm used is due to Bus and Dekker.

The two other routines are both designed for the case where the user is unable to specify an interval containing the simple zero. The first routine starts from an initial point and performs a search for an interval containing a simple zero. If such an interval is computed then the method described above is used next to determine the zero accurately. The second method uses a 'continuation' method based on a secant iteration. A sequence of subproblems is solved, the first of these is trivial and the last is the actual problem of finding a zero of f(x). The intermediate problems employ the solutions of earlier problems to provide initial guesses for the secant iterations used to calculate their solutions.

Three other routines are also supplied. They employ reverse communication and are called by the routines described above.

2.2 Systems of Equations

The routines in the second part of this chapter are designed to solve a set of nonlinear equations in n unknowns

$$f_i(x) = 0, \quad i = 1, 2, ..., n, \quad x = (x_1, x_2, ..., x_n)^T,$$
 (1)

where T stands for transpose.

It is assumed that the functions are continuous and differentiable so that the matrix of first partial derivatives of the functions, the **Jacobian** matrix $J_{ij}(x) = (\frac{\partial f_i}{\partial x_j})$ evaluated at the point x, exists, though it may not be possible to calculate it directly.

The functions f_i must be independent, otherwise there will be an infinity of solutions and the methods will fail. However, even when the functions are independent the solutions may not be unique. Since the methods are iterative, an initial guess at the solution has to be supplied, and the solution located will usually be the one closest to this initial guess.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users' Note for your implementation to check that a routine is available.

3.1 Zeros of Functions of One Variable

The routines can be divided into two classes. There are three routines (C05AVF, C05AXF and C05AZF) all written in reverse communication form and three (C05ADF, C05AGF and C05AJF) written in direct communication form. The direct communication routines are designed for inexperienced users and, in

C05.2 [NP3086/18]

particular, for solving problems where the function f(x) whose zero is to be calculated, can be coded as a user-supplied routine. These routines find the zero by making calls to one or more of the reverse communication routines. Experienced users are recommended to use the reverse communication routines directly as they permit the user more control of the calculation. Indeed, if the zero-finding process is embedded in a much larger program then the reverse communication routines should always be used.

The recommendation as to which routine should be used depends mainly on whether the user can supply an interval [a,b] containing the zero, that is $f(a) \times f(b) < 0$. If the interval can be supplied, then C05ADF (or, in reverse communication, C05AZF) should be used, in general. This recommendation should be qualified in the case when the only interval which can be supplied is very long relative to the user's error requirements and the user can also supply a good approximation to the zero. In this case C05AJF (or, in reverse communication, C05AXF) may prove more efficient (though these latter routines will not provide the error bound available from C05AZF).

If an interval containing the zero cannot be supplied then the user must choose between C05AGF (or, in reverse communication, C05AVF followed by C05AZF) and C05AJF (or, in reverse communication, C05AXF). C05AGF first determines an interval containing the zero, and then proceeds as in C05ADF; it is particularly recommended when the user does not have a good initial approximation to the zero. If a good initial approximation to the zero is available then C05AJF is to be preferred. Since neither of these latter routines has guaranteed convergence to the zero, the user is recommended to experiment with both in case of difficulty.

3.2 Solution of Sets of Nonlinear Equations

The solution of a set of nonlinear equations

$$f_i(x_1, x_2, \dots, x_n) = 0, \quad i = 1, 2, \dots, n$$
 (2)

can be regarded as a special case of the problem of finding a minimum of a sum of squares

$$s(x) = \sum_{i=1}^{m} [f_i(x_1, x_2, \dots, x_n)]^2, \quad (m \ge n).$$
 (3)

So the routines in Chapter E04 are relevant as well as the special nonlinear equations routines.

The routines for solving a set of nonlinear equations can also be divided into classes. There are four routines (C05NBF, C05NCF, C05PBF and C05PCF) all written in direct communication form and two (C05NDF and C05PDF) written in reverse communication form. The direct communication routines are designed for inexperienced users and, in particular, these routines require the f_i (and possibly their derivatives) to be calculated in user-supplied routines. These should be set up carefully so the Library routines can work as efficiently as possible. Experienced users are recommended to use the reverse communication routines as they permit the user more control of the calculation. Indeed, if the zero-finding process is embedded in a much larger program then the reverse communication routines should always be used.

The main decision which has to be made by the user is whether to supply the derivatives $\frac{\partial f_i}{\partial x_j}$. It is advisable to do so if possible, since the results obtained by algorithms which use derivatives are generally more reliable than those obtained by algorithms which do not use derivatives.

C05PBF and C05PCF (or, in reverse communication, C05PDF) require the user to provide the derivatives, whilst C05NBF and C05NCF (or, in reverse communication, C05NDF) do not. C05NBF and C05PBF are easy-to-use routines; greater flexibility may be obtained using C05NCF and C05PCF, (or, in reverse communication, C05NDF and C05PDF), but these have longer parameter lists. C05ZAF is provided for use in conjunction with C05PBF and C05PCF to check the user-provided derivatives for consistency with the functions themselves. The user is strongly advised to make use of this routine whenever C05PBF or C05PCF is used.

Firstly, the calculation of the functions and their derivatives should be ordered so that cancellation errors are avoided. This is particularly important in a routine that uses these quantities to build up estimates of higher derivatives.

Secondly, scaling of the variables has a considerable effect on the efficiency of a routine. The problem should be designed so that the elements of x are of similar magnitude. The same comment applies to the functions, i.e., all the f_i should be of comparable size.

[NP3086/18] C05.3

The accuracy is usually determined by the accuracy parameters of the routines, but the following points may be useful:

- (i) Greater accuracy in the solution may be requested by choosing smaller input values for the accuracy parameters. However, if unreasonable accuracy is demanded, rounding errors may become important and cause a failure.
- (ii) Some idea of the accuracies of the x_i may be obtained by monitoring the progress of the routine to see how many figures remain unchanged during the last few iterations.
- (iii) An approximation to the error in the solution x, given by e where e is the solution to the set of linear equations

$$J(x)e = -f(x)$$

where $f(x) = (f_1(x), f_2(x), \dots, f_n(x))^T$ (see Chapter F04).

Note that the QR decomposition of J is available from C05NCF and C05PCF (or, in reverse communication, C05NDF and C05PDF) so that

$$R e = -Q^T f$$

and $Q^T f$ is also provided by these routines.

(iv) If the functions $f_i(x)$ are changed by small amounts ϵ_i , for i = 1, 2, ..., n, then the corresponding change in the solution x is given approximately by σ , where σ is the solution of the set of linear equations

$$J(x)\sigma = -\epsilon$$
,

(see Chapter F04).

Thus one can estimate the sensitivity of x to any uncertainties in the specification of $f_i(x)$, for i = 1, 2, ..., n. As noted above, the sophisticated routines C05NCF and C05PCF (or, in reverse communication, C05NDF and C05PDF) provide the QR decomposition of J.

4 Decision Trees

(i) Functions of One Variable

(ii) Functions of Several Variables

5 Index

Zeros of functions of one variable:

Direct communication:	
binary search followed by Bus and Dekker algorithm	CO5AGF
Bus and Dekker algorithm	CO5ADF
continuation method	CO5AJF
Reverse communication:	
binary search	CO5AVF
Bus and Dekker algorithm	CO5AZF
continuation method	COSAXF
Zeros of functions of several variables:	
Direct communication:	
easy-to-use	CO5NBF
easy-to-use, derivatives required	CO5PBF
sophisticated	COSNCF
sophisticated, derivatives required	CO5PCF
Reverse Communication:	
sophisticated	CO5NDF
sophisticated, derivatives required	C05PDF
Checking Routine:	
Checks user-supplied Jacobian	CO5ZAF

6 References

- [1] Gill P E and Murray W (1976) Algorithms for the solution of the nonlinear least-squares problem Report NAC 71 National Physical Laboratory
- [2] Moré J J, Garbow B S, and Hillstrom K E (1974) User guide for MINPACK-1 Technical Report ANL-80-74 Argonne National Laboratory
- [3] Ortega J M and Rheinboldt W C (1970) Iterative Solution of Nonlinear Equations in Several Variables Academic Press

[4] Rabinowitz P (1970) Numerical Methods for Nonlinear Algebraic Equations Gordon and Breach

C05ADF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05ADF locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation, extrapolation and bisection.

2. Specification

3. Description

The routine attempts to obtain an approximation to a simple zero of the function f(x) given an initial interval [a,b] such that $f(a) \times f(b) \le 0$. The zero is found by calls to C05AZF whose specification should be consulted for details of the method used.

The approximation x to the zero α is determined so that one or both of the following criteria are satisfied:

- (i) $|x-\alpha| < EPS$,
- (ii) |f(x)| < ETA.

4. References

None.

5. Parameters

1: A - real. Input

On entry: the lower bound of the interval, a.

2: B - real.

On entry: the upper bound of the interval, b.

Constraint: $B \neq A$.

3: EPS – real. Input

On entry: the absolute tolerance to which the zero is required (see Section 3).

Constraint: EPS > 0.0.

4: ETA – real. Input

On entry: a value such that if |f(x)| < ETA, x is accepted as the zero. ETA may be specified as 0.0 (see Section 7).

[NP1692/14] Page I

5: F - real FUNCTION, supplied by the user.

External Procedure

F must evaluate the function f whose zero is to be determined.

Its specification is:

```
real FUNCTION F (XX)
real XX

1: XX - real.

On entry: the point at which the function must be evaluated.
```

F must be declared as EXTERNAL in the (sub)program from which C05ADF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

6: X - real.

Output

On exit: the approximation to the zero.

7: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

```
IFAIL = 1

On entry, EPS \leq 0.0,

or A = B,

or F(A)×F(B) > 0.0.
```

IFAIL = 2

Too much accuracy has been requested in the computation, that is, EPS is too small for the computer being used. The final value of X is an accurate approximation to the zero.

IFAIL = 3

A change in sign of f(x) has been determined as occurring near the point defined by the final value of X. However, there is some evidence that this sign-change corresponds to a pole of f(x).

IFAIL = 4

Indicates that a serious error has occurred in C05AZF. Check all routine calls. Seek expert help.

7. Accuracy

This depends on the value of EPS and ETA. If full machine accuracy is required, they may be set very small, resulting in an error exit with IFAIL = 2, although this may involve many more iterations than a lesser accuracy. The user is recommended to set ETA = 0.0 and to use EPS to control the accuracy, unless he has considerable knowledge of the size of f(x) for values of x near the zero.

8. Further Comments

The time taken by the routine depends primarily on the time spent evaluating F (see Section 5). If it is important to determine an interval of length less than EPS containing the zero, or if the function F is expensive to evaluate and the number of calls to F is to be restricted, then use of C05AZF is recommended. Use of C05AZF is also recommended when the structure of the problem to be solved does not permit a simple function F to be written: the reverse communication facilities of C05AZF are more flexible than the direct communication of F required by C05ADF.

9. Example

The example program below calculates the zero of $e^{-x} - x$ within the interval [0,1] to approximately 5 decimal places.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05ADF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                        NOUT
                         (NOUT=6)
      PARAMETER
      .. Local Scalars ..
      real
                        A, B, EPS, ETA, X
      INTEGER
                        IFAIL
      .. External Functions ..
      real
                        F
      EXTERNAL
      .. External Subroutines ..
                        C05ADF
      EXTERNAL
      .. Executable Statements ..
      WRITE (NOUT, *) 'C05ADF Example Program Results'
      \mathbf{A} = 0.0\mathbf{e}0
      B = 1.0e0
      EPS = 1.0e-5
      ETA = 0.0e0
      IFAIL = 1
      CALL COSADF(A, B, EPS, ETA, F, X, IFAIL)
      WRITE (NOUT, *)
      IF (IFAIL.EQ.0) THEN
         WRITE (NOUT, 99999) 'Zero =', X
         WRITE (NOUT, 99998) 'IFAIL =', IFAIL
         IF (IFAIL.EQ.2 .OR. IFAIL.EQ.3) WRITE (NOUT, 99999)
              'Final point = ', X
      END IF
      STOP
99999 FORMAT (1X,A,F12.5)
99998 FORMAT (1X,A,I3)
      END
      real FUNCTION F(X)
      .. Scalar Arguments ..
      real
                      Х
      .. Intrinsic Functions ..
      INTRINSIC
                      EXP
      .. Executable Statements ..
      F = EXP(-X) - X
      RETURN
      END
```

[NP1692/14] Page 3

9.2. Program Data

None.

9.3. Program Results

CO5ADF Example Program Results

Zero = 0.56714

C05AGF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05AGF locates a simple zero of a continuous function from a given starting value, using a binary search to locate an interval containing a zero of the function, then a combination of the methods of linear interpolation, extrapolation and bisection to locate the zero precisely.

2. Specification

3. Description

The routine attempts to locate an interval [a,b] containing a simple zero of the function f(x) by a binary search starting from the initial point x = X and using repeated calls to C05AVF. If this search succeeds, then the zero is determined to a user-specified accuracy by repeated calls to C05AZF. The specifications of routines C05AVF and C05AZF should be consulted for details of the methods used.

The approximation x to the zero α is determined so that at least one of the following criteria is satisfied:

```
(i) |x-\alpha| \le EPS \times max(1.0,|z|) where z is O(\alpha),
```

(ii) |f(x)| < ETA.

4. References

None.

5. Parameters

1: X - real. Input/Output

On entry: an initial approximation to the zero.

On exit: the final approximation to the zero, unless the routine has failed, in which case it contains no useful information.

2: H - real. Input

On entry: a step length for use in the binary search for an interval containing the zero. The maximum interval searched is $[X-256.0\times H, X+256.0\times H]$.

Constraint: H must be sufficiently large that $X + H \neq X$ on the computer.

3: EPS – real. Input

On entry: the tolerance to which the zero is required (see Section 3). Constraint: EPS > 0.0.

4: ETA – real. Input

On entry: a value such that if |f(x)| < ETA, x is accepted as the zero. ETA may be specified as 0.0 (see Section 7).

5: F - real FUNCTION, supplied by the user.

External Procedure

Input

F must evaluate the function f whose zero is to be determined.

Its specification is:

real FUNCTION F(XX) real XX

XX - real.

On entry: the point at which the function must be evaluated.

F must be declared as EXTERNAL in the (sub)program from which C05AGF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

6: A – real. 7: B – real. Output

On exit: the lower and upper bounds respectively of the interval resulting from the binary search. If the zero is determined exactly such that f(x) = 0.0 or is determined so that

8: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

|f(x)| < ETA at any stage in the calculation, then on exit A = B = x.

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, either EPS \leq 0.0, or X + H = X to machine accuracy (meaning that the search for an interval containing the zero cannot commence).

IFAIL = 2

An interval containing the zero could not be found. Increasing H and calling C05AGF again will increase the range searched for the zero. Decreasing H and calling C05AGF again will refine the mesh used in the search for the zero.

IFAIL = 3

A change of sign of f(x) has been determined as occurring near the point defined by the final value of X. However, there is some evidence that this sign-change corresponds to a pole of f(x).

IFAIL = 4

Too much accuracy has been requested in the computation, that is EPS is too small for the computer being used. The final value of X is an accurate approximation to the zero.

IFAIL = 5

IFAIL = 6

Indicate that a serious error has occurred in C05AVF or C05AZF respectively. Check all routine calls. Seek expert help.

7. Accuracy

This depends on EPS and ETA. If full machine accuracy is required, they may be set very small, resulting in an error exit with IFAIL = 4, although this may involve many more iterations than a lesser accuracy. The user is recommended to set ETA = 0.0 and to use EPS to control the accuracy, unless he has considerable knowledge of the size of f(x) for values of x near the zero.

8. Further Comments

The time taken by the routine depends primarily on the time spent evaluating F (see Section 5). The accuracy of the initial approximation X and the value of H will have a somewhat unpredictable effect on the timing.

If it is important to determine an interval of length less than EPS containing the zero, or if the function F is expensive to evaluate and the number of calls to F is to be restricted, then use of C05AVF followed by C05AZF is recommended. Use of this combination is also recommended when the structure of the problem to be solved does not permit a simple function F to be written; the reverse communication facilities of these routines are more flexible than the direct communication of F required by C05AGF.

If the iteration terminates with successful exit and A = B = X there is no guarantee that the value returned in X corresponds to a simple zero and the user should check whether it does.

One way to check this is to compute the derivative of f at the point X, preferably analytically, or, if this is not possible, numerically, perhaps by using a central difference estimate.

If f'(X) = 0.0, then X must correspond to a multiple zero of f rather than a simple zero.

9. Example

The example program below calculates the zero of $x - e^{-x}$ to approximately five decimal places starting from X = 1.0 and using an initial search step H = 0.1.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05AGF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
      INTEGER
                        NOUT
                        (NOUT=6)
      PARAMETER
      .. Local Scalars ..
      real
                        A, B, EPS, ETA, H, X
      INTEGER
                        TFATI.
      .. External Functions ..
      real
                        F
      EXTERNAL
      .. External Subroutines ..
      EXTERNAL
                       C05AGF
      .. Executable Statements ..
      WRITE (NOUT, *) 'C05AGF Example Program Results'
      X = 1.0e0
      H = 0.1e0
      EPS = 1.0e-5
      ETA = 0.0e0
      IFAIL = 1
      CALL CO5AGF(X, H, EPS, ETA, F, A, B, IFAIL)
      WRITE (NOUT, *)
      IF (IFAIL.EQ.0) THEN
         WRITE (NOUT, 99999) 'Root is ', X
         WRITE (NOUT, 99998) 'Interval searched is (', A, ',', B, ')'
      ELSE
         WRITE (NOUT, 99997) 'IFAIL =', IFAIL
         IF (IFAIL.EQ.3 .OR. IFAIL.EQ.4) WRITE (NOUT, 99999)
              'Final value = ', X
      END IF
      STOP
99999 FORMAT (1X,A,F13.5)
99998 FORMAT (1X,A,F8.5,A,F8.5,A)
99997 FORMAT (1X,A,I3)
      END
```

9.2. Program Data

None.

9.3. Program Results

```
CO5AGF Example Program Results

Root is 0.56714

Interval searched is ( 0.50000, 0.90000)
```

Page 4 (last) [NP2478/16]

C05AJF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05AJF attempts to locate a zero of a continuous function by a continuation method using a secant iteration.

2. Specification

```
SUBROUTINE C05AJF (X, EPS, ETA, F, NFMAX, IFAIL)
INTEGER NFMAX, IFAIL
real X, EPS, ETA, F
EXTERNAL F
```

3. Description

The routine attempts to obtain an approximation to a zero α of the function f(x) given an initial approximation x to α . The zero is found by a call to C05AXF whose specification should be consulted for details of the method used.

The approximation x to the root α is determined so that at least one of the following criteria is satisfied:

- (i) $|x-\alpha| \sim EPS$,
- (ii) $|f(x)| \le ETA$.

4. References

None.

5. Parameters

1: X - real. Input/Output

On entry: an initial approximation to the zero.

On exit: the final approximation to the zero, unless an error exit has occurred, in which case it contains no useful information.

2: EPS – real. Input

On entry: an absolute tolerance to control the accuracy to which the zero is determined. In general, the smaller the value of EPS the more accurate X will be as an approximation to α . Indeed, for very small positive values of EPS, it is likely that the final approximation will satisfy $|X-\alpha| < EPS$. The user is advised to call the routine with more than one value for EPS to check the accuracy obtained.

Constraint: EPS > 0.0.

3: ETA – real. Input

On entry: a value such that if |f(x)| < ETA, then x is returned as the final approximation to the zero. ETA may be specified as 0.0 (see Section 7).

4: F - real FUNCTION, supplied by the user.

External Procedure

F must evaluate the function f whose zero is to be determined.

Its specification is:

```
real FUNCTION F (XX)
real XX

1: XX - real.

On entry: the point at which the function must be evaluated.
```

F must be declared as EXTERNAL in the (sub)program from which C05AJF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

5: NFMAX – INTEGER.

Input

On entry: the maximum permitted number of calls to F from C05AJF. If F is inexpensive to evaluate, NFMAX should be given a large value (say > 1000).

Constraint: NFMAX > 0.

6: IFAIL – INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

```
IFAIL = 1
```

```
On entry, EPS \leq 0.0, or NFMAX \leq 0.
```

IFAIL = 2

An internally calculated scale factor has the wrong order of magnitude for the problem. If this error exit occurs, the user is advised to call C05AXF instead where different scale values can be tried.

IFAIL = 3

Either the function f(x) given by F has no zero near X or too much accuracy has been requested in calculating the zero. The first is a more likely cause of this error exit and the user should check the coding of F and make an independent investigation of its behaviour near X. The second can be alleviated by increasing EPS.

IFAIL = 4

More than NFMAX calls have been made to the function F. This error exit can occur because NFMAX is too small for the problem (essentially because X is too far away from the zero) or for either of the reasons given under IFAIL = 3 above. If NFMAX is increased considerably and this error exit occurs again at approximately the same final value of X, then it is likely that one of the reasons given under IFAIL = 3 is the cause.

IFAIL = 5

Indicates that a serious error has occurred in C05AXF. Check all subroutine calls. Seek expert help.

7. Accuracy

This depends on the values of EPS and ETA. If full machine accuracy is required, they may be set very small, possibly resulting in an error exit with IFAIL = 3 or 4, although this may involve many more iterations than a lesser accuracy. The user is recommended to set ETA = 0.0 and to use EPS to control the accuracy unless he has considerable knowledge of the size of f(x) for values of x near the zero.

8. Further Comments

The time taken by the routine depends primarily on the time spent evaluating the function F (see Section 5) and on how close the initial value of X is to the zero.

If a more flexible way of specifying the function F is required or if the user wishes to have closer control of the calculation, then the reverse communication routine C05AXF is recommended instead of C05AJF.

9. Example

The example program below calculates the zero of $f(x) = e^{-x} - x$ from a starting value X = 1.0. Two calculations are made with EPS = 1.0E-3 and 1.0E-4 for comparison purposes, with ETA = 0.0 in both cases.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05AJF Example Program Text
*
      Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
                         NOUT
      INTEGER
                         (NOUT=6)
      PARAMETER
      .. Local Scalars .
                         EPS, ETA, X
      real
                         IFAIL, K, NFMAX
      INTEGER
      .. External Functions ..
      real
                         F
      EXTERNAL
                         F
      .. External Subroutines ..
      EXTERNAL
                        C05AJF
      .. Executable Statements ..
      WRITE (NOUT, *) 'C05AJF Example Program Results'
      WRITE (NOUT, *)
      DO 20 K = 3, 4
         EPS = 10.0e0 * * (-K)
         X = 1.0e0
         ETA = 0.0e0
         NFMAX = 200
         IFAIL = 1
         CALL CO5AJF(X, EPS, ETA, F, NFMAX, IFAIL)
          IF (IFAIL.EQ.0) THEN
             WRITE (NOUT, 99998) 'With EPS = ', EPS, '
                                                             root = ', X
         ELSE
             WRITE (NOUT, 99999) 'IFAIL =', IFAIL IF (IFAIL.EQ.3 .OR. IFAIL.EQ.4) THEN
                WRITE (NOUT, 99998) 'With EPS = ', EPS, ' final value = ',
             END IF
         END IF
   20 CONTINUE
      STOP
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X, A, e10.2, A, F14.5)
      END
```

9.2. Program Data

None.

9.3. Program Results

C05AJF Example Program Results

```
With EPS = 0.10E-02 root = 0.56715
With EPS = 0.10E-03 root = 0.56715
```

C05AVF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05AVF attempts to locate an interval containing a simple zero of a continuous function using a binary search. It uses reverse communication for evaluating the function.

2. Specification

```
SUBROUTINE C05AVF (X, FX, H, BOUNDL, BOUNDU, Y, C, IND, IFAIL) INTEGER IND, IFAIL
```

real X, FX, H, BOUNDL, BOUNDU, Y, C(11)

3. Description

The user must supply an initial point X and a step H. The routine attempts to locate a short interval $[X,Y] \subset [BOUNDL,BOUNDU]$ containing a simple zero of f(x).

(On exit we may have X > Y; X is determined as the first point encountered in a binary search where the sign of f(x) differs from the sign of f(x) at the initial input point X.) The routine attempts to locate a zero of f(x) using H, 0.1×H, 0.01×H and 0.001×H in turn as its basic step before quitting with an error exit if unsuccessful.

C05AVF returns to the calling program for each evaluation of f(x). On each return the user should set FX = f(X) and call C05AVF again.

4. References

None.

5. Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IND. Between intermediate exits and re-entries, all parameters other than FX must remain unchanged.

1: X - real. Input/Output

On initial entry: the best available approximation to the zero.

Constraint: X must lie in the closed interval [BOUNDL,BOUNDU] (see below).

On intermediate exit: X contains the point at which f must be evaluated before re-entry to the routine.

On final exit: X contains one end of an interval containing the zero, the other end being in Y (below), unless an error has occurred. If IFAIL = 4, X and Y are the endpoints of the largest interval searched. If a zero is located exactly, its value is returned in X (and in Y).

2: FX - real. Input

On initial entry: if IND = 1, FX need not be set.

If IND = -1, FX must contain f(X) for the initial value of X.

On intermediate re-entry: FX must contain f(X) for the current value of X.

3: H - real. Input/Output

On initial entry: a basic step-size which is used in the binary search for an interval containing a zero. The basic step-sizes H, $0.1\times$ H, $0.01\times$ H and $0.001\times$ H are used in turn when searching for the zero.

Constraint: either X + H or X - H must lie inside the closed interval [BOUNDL,BOUNDU] (see below).

H must be sufficiently large that $X + H \neq X$ on the computer.

On final exit: H is undefined.

4: BOUNDL - real.

Input

5: BOUNDU - real.

Input

On initial entry: BOUNDL and BOUNDU must contain respectively lower and upper bounds for the interval of search for the zero.

Constraint: BOUNDL < BOUNDU.

6: Y - real.

Input/Output

On initial entry: Y need not be set.

On final exit: Y contains the closest point found to the final value of X, such that $f(X) \times f(Y) \le 0$. If a value X is found such that f(X) = 0, then Y = X. On final exit with IFAIL = 4, X and Y are the endpoints of the largest interval searched.

7: C(11) - real array.

Workspace

(On final exit with IFAIL = 0 or 4, C(1) contains f(Y).)

8: IND - INTEGER.

Input/Output

On initial entry: IND must be set to 1 or -1:

if IND = 1, FX need not be set;

if IND = -1, FX must contain f(X).

On intermediate exit: IND contains 2 or 3. The calling program must evaluate f at X, storing the result in FX, and re-enter C05AVF with all other parameters unchanged.

On final exit: IND contains 0.

Constraint: on entry IND = -1, 1, 2 or 3.

9: IFAIL – INTEGER.

Input/Output

On initial entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On final exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, BOUNDU ≤ BOUNDL,

or $X \notin [BOUNDL,BOUNDU],$

or both X + H and $X - H \notin [BOUNDL,BOUNDU]$.

IFAIL = 2

On initial entry, H is too small to be used to perturb the initial value of X in the search.

IFAII. = 3

The parameter IND is incorrectly set on initial or intermediate entry.

IFAIL = 4

The routine has been unable to determine an interval containing a simple zero starting from the initial value of X and using the step H. A user who has prior knowledge that a simple zero lies in the interval [BOUNDL,BOUNDU], should vary X and H in an attempt to find it. (See also Section 8.)

7. Accuracy

This routine is not intended to be used to obtain accurate approximations to the zero of f(x) but rather to locate an interval containing a zero. This interval can then be used as input to an accurate rootfinder such as C05AZF or C05ADF. The size of the interval determined depends somewhat unpredictably on the choice of X and H. The closer X is to the root and the **smaller** the initial value of H, then, in general, the smaller (more accurate) the interval determined; however, the accuracy of this statement depends to some extent on the behaviour of f(x) near x = X and on the size of H.

8. Further Comments

For most problems, the time taken on each call to C05AVF will be negligible compared with the time spent evaluating f(x) between calls to C05AVF. However, the initial choices of X and H will clearly affect the number of evaluations of f(x). In general, the closer X is to the root and the larger the initial value of H then the less the time taken. (However taking H large can affect the accuracy and reliability of the routine, see below.)

The user is expected to choose BOUNDL and BOUNDU as physically (or mathematically) realistic limits on the interval of search. For example, it may be known, from physical arguments, that no zero of f(x) of interest will lie outside [BOUNDL,BOUNDU]. Alternatively, f(x) may be more expensive to evaluate for some values of X than for others and such expensive evaluations can sometimes be avoided by careful choice of BOUNDL and BOUNDU.

The choice of BOUNDL and BOUNDU affects the search only in that these values provide physical limitations on the search values and that the search is terminated if it seems, from the available information about f(x), that the zero lies outside [BOUNDL,BOUNDU]. In this case (IFAIL = 4 on exit), only one of f(BOUNDL) and f(BOUNDU) may have been evaluated and a zero close to the other end of the interval could be missed. The actual interval searched is returned in the parameters X and Y and the user can call C05AVF again to search the remainder of the original interval.

Though C05AVF is intended primarily for determining an interval containing a zero of f(x), it may be used to shorten a known interval. This could be useful if, for example, a large interval containing the zero is known and it is also known that the root lies close to one end of the interval; by setting X to this end of the interval and H small, a short interval will usually be determined. However, it is worth noting that once any interval containing a zero has been determined, a call to C05AZF will usually be the most efficient way to calculate an interval of specified length containing the zero. To assist in this determination, the information in X, Y, FX and C(1) on successful exit from C05AVF is in the correct form for a call to routine C05AZF with IND = -1.

If the calculation terminates because f(X) = 0.0, then on return Y is set to X. (In fact, Y = X on return only in this case.) In this case, there is no guarantee that the value in X corresponds to a simple zero and the user should check whether it does.

One way to check this is to compute the derivative of f at the point X, preferably analytically, or, if this is not possible, numerically, perhaps by using a central difference estimate.

If f'(X) = 0.0, then X must correspond to a multiple zero of f rather than a simple zero.

9. Example

To find a subinterval of [0.0,4.0] containing a zero of $x^2 - 3x + 2$. The zero nearest to 3.0 is required and so we set X = 3.0 initially.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05AVF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
*
       .. Parameters ..
       INTEGER
                           NOUT
                           (NOUT=6)
      PARAMETER
       .. Local Scalars ..
                          BOUNDL, BOUNDU, FX, H, X, Y
      real
      INTEGER
                           IFAIL, IND
       .. Local Arrays ..
                           C(11)
      real
       .. External Subroutines ..
      EXTERNAL
                           C05AVF
       .. Executable Statements ..
      WRITE (NOUT, *) 'C05AVF Example Program Results'
      WRITE (NOUT, *)
      \mathbf{X} = 3.0e0
      H = 0.1e0
      BOUNDL = 0.0e0
      BOUNDU = 4.0e0
       IFAIL = 1
       TND = 1
   20 CALL CO5AVF(X, FX, H, BOUNDL, BOUNDU, Y, C, IND, IFAIL)
       IF (IND.NE.0) THEN
          FX = X*X - 3.0e0*X + 2.0e0
          GO TO 20
       ELSE
          IF (IFAIL.GT.0) THEN
              WRITE (NOUT, 99997) 'Error exit, IFAIL =', IFAIL
              WRITE (NOUT, *) 'Interval containing root is (Y, X) where'
             WRITE (NOUT, 99999) 'Y =', Y, ' X =', X WRITE (NOUT,*) 'Values of f at Y and X are'
             WRITE (NOUT, 99998) 'f(Y) = ', C(1), '
                                                           f(X) = ', FX
          END IF
       END IF
       STOP
99999 FORMAT (1X,A,F12.4,A,F12.4)
99998 FORMAT (1X,A,F12.2,A,F12.2)
99997 FORMAT (1X,A,I2)
       END
```

9.2. Program Data

None.

9.3. Program Results

Page 4 (last) [NP1692/14]

C05AXF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05AXF attempts to locate a zero of a continuous function using a continuation method based on a secant iteration. It uses reverse communication for evaluating the function.

2. Specification

```
SUBROUTINE C05AXF (X, FX, TOL, IR, SCALE, C, IND, IFAIL)
INTEGER IR, IND, IFAIL

real X, FX, TOL, SCALE, C(26)
```

3. Description

This routine uses a modified version of an algorithm given in Swift and Lindfield [1] to compute a zero α of a continuous function f(x). The algorithm used is based on a continuation method in which a sequence of problems

$$f(x) - \theta_r f(x_0), \qquad r = 0,1,...,m$$

are solved, where $1 = \theta_0 > \theta_1 > ... > \theta_m = 0$ (the value of m is determined as the algorithm proceeds) and where x_0 is the user's initial estimate for the zero of f(x). For each θ_r , the current problem is solved by a robust secant iteration using the solution from earlier problems to compute an initial estimate.

The user must supply an error tolerance TOL. TOL is used directly to control the accuracy of solution of the final problem ($\theta_m = 0$) in the continuation method, and $\sqrt{\text{TOL}}$ is used to control the accuracy in the intermediate problems ($\theta_1, \theta_2, ..., \theta_{m-1}$).

4. References

[1] SWIFT, A. and LINDFIELD, G.R.

Comparison of a Continuation Method for the Numerical Solution of a Single Nonlinear Equation.

Comput. J., 21, pp. 359-362, 1978.

5. Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IND. Between intermediate exits and re-entries, all parameters other than FX must remain unchanged.

1: X - real. Input/Output

On initial entry: an initial approximation to the zero.

On intermediate exit: the point at which f must be evaluated before re-entry to the routine. On final exit: the final approximation to the zero.

2: FX - real. Input

On initial entry: if IND = 1, FX need not be set.

If IND = -1, FX must contain f(X) for the initial value of X.

On intermediate re-entry: FX must contain f(X) for the current value of X.

3: TOL – real. Input

On initial entry: a value which controls the accuracy to which the zero is determined. This parameter is used in determining the convergence of the secant iteration used at each stage of the continuation process. It is used directly when solving the last problem ($\theta_m = 0$ in Section 3), and $\sqrt{\text{TOL}}$ is used for the problem defined by θ_r , r < m. Convergence to the accuracy specified by TOL is not guaranteed, and so the user is recommended to find the zero using at least two values for TOL to check the accuracy obtained.

Constraint: TOL > 0.0.

4: IR – INTEGER. Input

On initial entry: IR indicates the type of error test required, as follows. Solving the problem defined by θ_r , $1 \le r \le m$, involves computing a sequence of secant iterates x_r^0, x_r^1, \dots . This sequence will be considered to have converged only if:

for IR = 0,
$$|x_r^{(i+1)} - x_r^{(i)}| \le \text{EPS} \times \max(1.0, |x_r^{(i)}|)$$
,

for IR = 1,
$$|x_r^{(i+1)} - x_r^{(i)}| \le EPS$$
,

for IR = 2,
$$|x_r^{(i+1)} - x_r^{(i)}| \le EPS \times |x_r^{(i)}|$$
,

for some i > 1; here EPS is either TOL or $\sqrt{\text{TOL}}$ as discussed above. Note that there are other subsidiary conditions (not given here) which must also be satisfied before the secant iteration is considered to have converged.

Constraint: IR = 0, 1 or 2.

5: SCALE - real. Input

On initial entry: a factor for use in determining a significant approximation to the derivative of f(x) at $x = x_0$, the initial value. A number of difference approximations to $f'(x_0)$ are calculated using

$$f'(x_0) \sim (f(x_0+h)-f(x_0))/h$$

where |h| < |SCALE| and h has the same sign as SCALE. A significance (cancellation) check is made on each difference approximation and the approximation is rejected if insignificant.

Suggested value: the square root of the machine precision.

Constraint: SCALE must be sufficiently large that X + SCALE ≠ X on the computer.

6: C(26) - real array.

Workspace

(C(5) contains the current value, θ_r , and C(7) contains a value, λ_r , used in the secant iteration (see Swift and Lindfield [1]); these values may be useful in the event of an error exit.)

7: IND – INTEGER.

Input/Output

On initial entry: IND must be set to 1 or -1:

if IND = 1, FX need not be set;

if IND = -1, FX must contain f(X).

On intermediate exit: IND contains 2, 3 or 4. The calling program must evaluate f at X, storing the result in FX, and re-enter C05AXF with all other parameters unchanged.

On final exit: IND contains 0.

Constraint: on entry IND = -1, 1, 2, 3 or 4.

8: IFAIL - INTEGER.

Input/Output

On initial entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On final exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, TOL \leq 0.0, or IR \neq 0, 1 or 2.

IFAIL = 2

The parameter IND is incorrectly set on initial or intermediate entry.

IFAIL = 3

SCALE is too small, or significant derivatives of f cannot be computed (this can happen when f is almost constant and non-zero, for any value of SCALE).

IFAIL = 4

The current problem in the continuation sequence cannot be solved, see C(5) for the value of θ_r . The most likely explanation is that the current problem has no solution, either because the original problem had no solution or because the continuation path passes through a set of insoluble problems. This latter reason for failure should occur rarely, and not at all if the initial approximation to the zero is sufficiently close. Other possible explanations are that TOL is too small and hence the accuracy requirement is too stringent, or that TOL is too large and the initial approximation too poor, leading to successively worse intermediate solutions.

IFAIL = 5

Continuation away from the initial point is not possible. This error exit will usually occur if the problem has not been properly posed or the error requirement is extremely stringent.

IFAIL = 6

The final problem (with $\theta_m = 0$) cannot be solved. It is likely that too much accuracy has been requested, or that the zero is at $\alpha = 0$ and IR = 2.

7. Accuracy

The accuracy of the approximation to the zero depends on TOL and IR. In general decreasing TOL will give more accurate results. Care must be exercised when using the relative error criterion (IR = 2).

If the zero is at X = 0, or if the initial value of X and the zero bracket the point X = 0, it is likely that an error exit with IFAIL = 4, 5 or 6 will occur.

As discussed in Section 6, it is possible to request too much or too little accuracy. Since it is not possible to achieve more than machine accuracy, a value of $TOL \ll machine precision$ should not be input and may lead to an error exit with IFAIL = 4, 5 or 6. For the reasons discussed under IFAIL = 4 in Section 6, TOL should not be taken too large, say no larger than TOL = 1.0E-3.

8. Further Comments

For most problems, the time taken on each call to C05AXF will be negligible compared with the time spent evaluating f(x) between calls to C05AXF. However, the initial value of X and the choice of TOL will clearly affect the timing. The closer that X is to the root, the less evaluations of f required. The effect of the choice of TOL will not be large, in general, unless TOL is very small, in which case the timing will increase.

If the results obtained from this routine seem unreliable or inaccurate, the user should consider using C05AZF (possibly combined with C05AVF to obtain an interval containing the zero).

One way to check this is to compute the derivative of f at the point X, preferably analytically, or, if this is not possible, numerically, perhaps by using a central difference estimate.

If f'(X) = 0.0, then X must correspond to a multiple zero of f rather than a simple zero.

9. Example

To calculate a zero of $x - e^{-x}$ with initial approximation $x_0 = 1.0$, and TOL = 1.0E-3 and 1.0E-4.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05AXF Example Program Text
     Mark 14 Revised.
                        NAG Copyright 1989.
*
      .. Parameters ..
                       NOUT
      INTEGER
     PARAMETER
                       (NOUT=6)
      .. Local Scalars ..
                       F, SCALE, TOL, X
     real
                       I, IFAIL, IND, IR
      INTEGER
      .. Local Arrays ..
     real
                       C(26)
      .. External Functions ..
                       X02AJF
     EXTERNAL
                       X02AJF
      .. External Subroutines
     EXTERNAL
                       C05AXF
      .. Intrinsic Functions ..
      INTRINSIC
                   EXP, SQRT
      .. Executable Statements ..
      WRITE (NOUT, *) 'C05AXF Example Program Results'
      SCALE = SQRT(X02AJF())
      IR = 0
      DO 40 I = 3, 4
         TOL = 10.0e0 **(-I)
         WRITE (NOUT, *)
         WRITE (NOUT, 99999) 'TOL = ', TOL
         WRITE (NOUT, *)
         X = 1.0e0
         IFAIL = 1
         IND = 1
   20
         CALL CO5AXF(X,F,TOL,IR,SCALE,C,IND,IFAIL)
         IF (IND.NE.0) THEN
            F = X - EXP(-X)
            GO TO 20
         ELSE
            IF (IFAIL.GT.0) THEN
               WRITE (NOUT, 99998) 'Error exit, IFAIL =', IFAIL
               IF (IFAIL.EQ.4 .OR. IFAIL.EQ.6) THEN
                  WRITE (NOUT, 99997) 'Final value = ', X, ' THETA = ',
                    C(5), 'LAMBDA = ', C(7)
     +
               END IF
            ELSE
```

Page 4 [NP1692/14]

```
WRITE (NOUT,99997) 'Root is', X
END IF
END IF
40 CONTINUE
STOP

*
99999 FORMAT (1X,A,e10.4)
99998 FORMAT (1X,A,I2)
99997 FORMAT (1X,A,F14.5,A,F10.2,A,F10.2)
END
```

9.2. Program Data

None.

9.3. Program Results

[NP1692/14] Page 5 (last)

C05AZF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05AZF locates a simple zero of a continuous function on a given interval by a combination of the methods of linear interpolation, linear extrapolation and bisection. It uses reverse communication for evaluating the function.

2. Specification

```
SUBROUTINE C05AZF (X, Y, FX, TOLX, IR, C, IND, IFAIL)

INTEGER

IR, IND, IFAIL

real

X, Y, FX, TOLX, C(17)
```

3. Description

The user must supply an initial interval [X,Y] containing a simple zero of the function f(x) (the choice of X and Y must be such that $f(X) \times f(Y) \le 0.0$). The routine combines the methods of bisection, linear interpolation and linear extrapolation (see Dahlquist and Bjorck [1]), to find a sequence of subintervals of the initial interval such that the final interval [X,Y] contains the zero and |X-Y| is less than some tolerance specified by TOLX and IR (see Section 5). In fact, since the intervals [X,Y] are determined only so that $f(X) \times f(Y) \le 0$, it is possible that the final interval may contain a discontinuity or a pole of f (violating the requirement that f be continuous). C05AZF checks if the sign change is likely to correspond to a pole of f and gives an error return in this case.

C05AZF returns to the calling program for each evaluation of f(x). On each return the user should set FX = f(X) and call C05AZF again.

The routine is a modified version of procedure 'zeroin' given by Bus and Dekker [2].

4. References

- [1] DAHLQUIST, G. and BJORCK, A. Numerical Methods. Prentice-Hall, 1974.
- [2] BUS, J.C.P. and DEKKER, T.J.

 Two Efficient Algorithms with Guaranteed Convergence for Finding a Zero of a Function.

 ACM Trans. Math. Software, 1, pp. 330-345, 1975.

5. Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IND. Between intermediate exits and re-entries, all parameters other than FX must remain unchanged.

1: X - real.
 2: Y - real.
 Input/Output
 Input/Output

On initial entry: X and Y must define an initial interval containing the zero, such that $f(X) \times f(Y) \le 0$. It is not necessary that X < Y.

On intermediate exit: X contains the point at which f must be evaluated before re-entry to the routine.

On final exit: X and Y define a smaller interval containing the zero, such that $f(X) \times f(Y) \le 0$, and |X-Y| satisfies the accuracy specified by TOLX and IR, unless an error has occurred. If IFAIL = 4, X and Y generally contain very good approximations to a pole; if IFAIL = 5, X and Y generally contain very good approximations to the zero (see Section 6). If a point X is found such that f(Y) = 0 final exit X = Y (in this case there is no guarante

3: FX - real.

Input/Output

On initial entry: if IND = 1, FX need not be set.

If IND = -1, FX must contain f(X) for the initial value of X.

On intermediate re-entry: FX must contain f(X) for the current value of X.

On exit: FX is unchanged, except that after initial entry with IND = -1 FX contains the input value of C(1).

4: TOLX - real.

Input

On initial entry: the accuracy to which the zero is required. The type of error test is specified by IR (below).

Constraint: TOLX > 0.

5: IR - INTEGER.

Input

On initial entry: indicates the type of error test as follows:

if IR = 0, the test is: $|X-Y| \le 2.0 \times TOLX \times max(1.0, |Z|)$;

if IR = 1, the test is: $|X-Y| \le 2.0 \times TOLX$;

if IR = 2, the test is: $|X-Y| \le 2.0 \times TOLX \times |Z|$.

Here Z is the value of x for which |f(x)| is currently known to have the smallest value; Z is calculated internally to C05AZF.

Suggested value: IR = 0.

Constraint: IR = 0, 1 or 2.

6: C(17) - real array.

Input/Output

On initial entry: if IND = 1, no elements of C need be set.

If IND = -1, C(1) must contain f(Y), other elements of C need not be set.

On final exit: C is undefined.

7: IND - INTEGER.

Input/Output

On initial entry: IND must be set to 1 or -1:

if IND = 1, FX and C(1) need not be set;

if IND = -1, FX and C(1) must contain f(X) and f(Y) respectively.

On intermediate exit: IND contains 2, 3 or 4. The calling program must evaluate f at X, storing the result in FX, and re-enter C05AZF with all other parameters unchanged.

On final exit: IND contains 0.

Constraint: on entry IND = -1, 1, 2, 3 or 4.

8: IFAIL – INTEGER.

Input/Output

On initial entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On final exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, f(X) and f(Y) have the same sign, with $f(X) \neq 0.0$.

IFAIL = 2

On entry, IND $\neq -1, 1, 2, 3 \text{ or } 4.$

IFAIL = 3

```
On entry, TOLX \leq 0.0, or IR \neq 0, 1 or 2.
```

IFAIL = 4

An interval [X,Y] has been determined satisfying the error tolerance specified by TOLX and IR and such that $f(X) \times f(Y) \le 0$. However, from observation of the values of f during the calculation of [X,Y], it seems that the interval [X,Y] contains a pole rather than a zero. Note that this error exit is not completely reliable: the error exit may be taken in extreme cases when [X,Y] contains a zero, or the error exit may not be taken when [X,Y] contains a pole. Both these cases occur most frequently when TOLX is large.

IFAIL = 5

The tolerance TOLX is too small for the problem being solved. This indicator is only set when the length of the interval [X,Y] containing the zero has been reduced as much as possible without satisfying the accuracy requirement (see Section 3 and Section 5). The values X and Y returned are usually both very good approximations to the zero.

7. Accuracy

The accuracy of the final value X as an approximation of the zero is determined by TOLX and IR as described above. A relative accuracy criterion (IR = 2) should not be used when the initial values X and Y are of different orders of magnitude. In this case a change of origin of the independent variable may be appropriate. For example, if the initial interval [X,Y] is transformed linearly to the interval [1,2], then the zero can be determined to a precise number of figures using an absolute (IR = 1) or relative (IR = 2) error test and the effect of the transformation back to the original interval can also be determined. Except for the accuracy check, such a transformation has no effect on the calculation of the zero.

8. Further Comments

For most problems, the time taken on each call to C05AZF will be negligible compared with the time spent evaluating f(x) between calls to C05AZF.

If the calculation terminates because f(X) = 0.0, then on return Y is set to X. (In fact, Y = X on return only in this case and, possibly, when IFAIL = 5.) There is no guarantee that the value returned in X corresponds to a simple root and the user should check whether it does.

One way to check this is to compute the derivative of f at the point X, preferably analytically, or, if this is not possible, numerically, perhaps by using a central difference estimate.

If f'(X) = 0.0, then X must correspond to a multiple zero of f rather than a simple zero.

9. Example

To calculate a zero of $e^{-x} - x$ with an initial interval [0,1], TOLX = 1.0E-5 and a mixed error test.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
* C05AZF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Local Scalars ..
real FX, TOLX, X, Y
INTEGER IFAIL, IND, IR
```

```
.. Local Arrays ..
      real
                         C(17)
      .. External Functions ..
      real
                         F
      EXTERNAL '
                         F
       .. External Subroutines ..
      EXTERNAL
                        C05AZF
      .. Executable Statements ..
      WRITE (NOUT, *) 'C05AZF Example Program Results'
      WRITE (NOUT, *)
      WRITE (NOUT, *) ' Iterations'
      WRITE (NOUT, \star)
TOLX = 1.0e-5
      \mathbf{X} = 0.0e0
      Y = 1.0e0
      IR = 0
      IFAIL = 1
      IND = 1
   20 CALL CO5AZF(X,Y,FX,TOLX,IR,C,IND,IFAIL)
       IF (IND.NE.O) THEN
          IF (IND.LT.2 .OR. IND.GT.4) THEN
             WRITE (NOUT, 99997) 'Failure with IND=', IND, ' at X=', X
          ELSE
             FX = F(X)
             WRITE (NOUT, 99999) ' X=', X, ' FX=', FX, ' IND=', IND
             GO TO 20
          END IF
      ELSE
          IF (IFAIL.EQ.0) THEN
             WRITE (NOUT, *)
             WRITE (NOUT, *) ' Solution'
             WRITE (NOUT, *)
             WRITE (NOUT, 99998) ' X=', X, ' Y=', Y
          ELSE
             WRITE (NOUT, 99997) 'IFAIL = ', IFAIL
             IF (IFAIL.EQ.4 .OR. IFAIL.EQ.5) WRITE (NOUT, 99998) 'X =', X,
     +
                  ' Y = ', Y
          END IF
      END IF
      STOP
99999 FORMAT (1X,A,F8.5,A,e12.4,A,I2)
99998 FORMAT (1X,A,F8.5,A,F8.5)
99997 FORMAT (1X,A,I2,A,F10.4)
      END
      real FUNCTION F(X)
       .. Scalar Arguments ..
                        Х
       .. Intrinsic Functions ..
       INTRINSIC
                        EXP
       .. Executable Statements ..
       F = EXP(-X) - X
       RETURN
       END
```

9.2. Program Data

None.

Page 4 [NP1692/14]

9.3. Program Results

C05AZF Example Program Results

Iterations

```
FX= 0.1000E+01
X = 0.00000
                                         IND= 2
               FX= -0.6321E+00
FX= -0.7081E-01
FX= 0.5182E-02
X= 1.00000
X= 0.61270
                                         IND= 3
                                         IND= 4
X = 0.56384
                                         IND= 4
                FX = -0.4242E - 04
X = 0.56717
                                         IND=4
                FX= -0.2538E-07
FX= 0.7810E-05
                                         IND= 4
X = 0.56714
X = 0.56714
                                         IND= 4
```

Solution

X = 0.56714 Y = 0.56714

C05NBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05NBF is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method.

2. Specification

SUBROUTINE CO5NBF (FCN, N, X, FVEC, XTOL, WA, LWA, IFAIL)

INTEGER N, LWA, IFAIL

real X(N), FVEC(N), XTOL, WA(LWA)

EXTERNAL FCN

3. Description

The system of equations is defined as:

$$f_i(x_1,x_2,...,x_n) = 0,$$
 for $i = 1,2,...,n$.

C05NBF is based upon the MINPACK routine HYBRD1 (Moré et al. [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References

- [1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
 Argonne National Laboratory, ANL-80-74.
- [2] POWELL, M.J.D.

A Hybrid Method for Nonlinear Algebraic Equations.

In, 'Numerical Methods for Nonlinear Algebraic Equations', Rabinowitz, P. (ed). Gordon and Breach, 1970.

5. Parameters

1: FCN – SUBROUTINE, supplied by the user.

External Procedure

FCN must return the values of the functions f_i at a point x.

Its specification is:

```
SUBROUTINE FCN(N, X, FVEC, IFLAG)
INTEGER N, IFLAG

real X(N), FVEC(N)
```

1: N – INTEGER.

Input

On entry: the number of equations, n.

2: X(N) - real array.

Input

On entry: the components of the point x at which the functions must be evaluated.

3: FVEC(N) - real array.

Output

On exit: the function values $f_i(x)$ (unless IFLAG is set to a negative value by FCN).

4: IFLAG – INTEGER.

Input/Output

On entry: IFLAG > 0.

On exit: in general, IFLAG should not be reset by FCN. If, however, the user wishes to terminate execution (perhaps because some illegal point X has been reached), then IFLAG should be set to a negative integer. This value will be returned through IFAIL.

FCN must be declared as EXTERNAL in the (sub)program from which C05NBF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

2: N - INTEGER.

Input

On entry: the number of equations, n.

Constraint: N > 0.

3: X(N) - real array.

Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVEC(N) - real array.

Output

On exit: the function values at the final point, X.

5: XTOL - real.

7:

Input

On entry: the accuracy in X to which the solution is required.

Suggested value: the square root of the machine precision.

Constraint: $XTOL \ge 0.0$.

6: WA(LWA) - real array.

Workspace

Input

LWA – INTEGER.

On entry: the dimension of the array WA.

Constraint: LWA $\geq N \times (3 \times N + 13)/2$.

8: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL < 0

The user has set IFLAG negative in FCN. The value of IFAIL will be the same as the user's setting of IFLAG.

IFAIL = 1

On entry, $N \leq 0$,

or XTOL < 0.0,

or LWA $< N \times (3 \times N + 13)/2$.

IFAIL = 2

There have been at least $200 \times (N+1)$ evaluations of FCN. Consider restarting the calculation from the final point held in X.

IFAIL = 3

No further improvement in the approximate solution X is possible; XTOL is too small.

IFAIL = 4

The iteration is not making good progress. This failure exit may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05NBF from a different starting point may avoid the region of difficulty.

7. Accuracy

If \hat{x} is the true solution, C05NBF tries to ensure that

$$||x - \hat{x}|| \le XTOL \times ||\hat{x}||$$
.

If this condition is satisfied with XTOL = 10^{-k} then the larger components of x have k significant decimal digits. There is a danger that the smaller components of x may have large relative errors, but the fast rate of convergence of C05NBF usually avoids this possibility.

If XTOL is less than *machine precision*, and the above test is satisfied with the *machine precision* in place of XTOL, then the routine exits with IFAIL = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then C05NBF may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning C05NBF with a tighter tolerance.

8. Further Comments

The time required by C05NBF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05NBF to process each call of FCN is about $11.5 \times n^2$. Unless FCN can be evaluated quickly, the timing of C05NBF will be strongly influenced by the time spent in FCN.

Ideally the problem should be scaled so that at the solution the function values are of comparable magnitude.

9. Example

To determine the values $x_1,...,x_9$ which satisfy the tridiagonal equations:

$$(3-2x_1)x_1 - 2x_2 = -1$$

$$-x_{i-1} + (3-2x_i)x_i - 2x_{i+1} = -1, i = 2,3,...,8$$

$$-x_8 + (3-2x_9)x_9 = -1.$$

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
* C05NBF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..
INTEGER N, LWA
PARAMETER (N=9,LWA=(N*(3*N+13))/2)
INTEGER NOUT
PARAMETER (NOUT=6)
```

```
.. Local Scalars ..
                         FNORM, TOL
      real
      INTEGER
                         I, IFAIL, J
      .. Local Arrays ..
                         FVEC(N), WA(LWA), X(N)
      .. External Functions ..
                         F06EJF, X02AJF
      real
                        F06EJF, X02AJF
      EXTERNAL
      .. External Subroutines ..
      EXTERNAL
                        CO5NBF, FCN
      .. Intrinsic Functions ..
*
      INTRINSIC
                        SQRT
       .. Executable Statements ..
      WRITE (NOUT, *) 'C05NBF Example Program Results'
      WRITE (NOUT, *)
      The following starting values provide a rough solution.
      DO 20 J = 1, N
         X(J) = -1.0e0
   20 CONTINUE
      TOL = SQRT(X02AJF())
      IFAIL = 1
      CALL CO5NBF(FCN, N, X, FVEC, TOL, WA, LWA, IFAIL)
      IF (IFAIL.EQ.0) THEN
          FNORM = F06EJF(N, FVEC, 1)
         WRITE (NOUT, 99999) 'Final 2-norm of the residuals =', FNORM
         WRITE (NOUT, *)
         WRITE (NOUT,*) 'Final approximate solution'
         WRITE (NOUT,*)
WRITE (NOUT,99998) (X(J),J=1,N)
      ELSE
         WRITE (NOUT, 99997) 'IFAIL = ', IFAIL
          IF (IFAIL.GT.1) THEN
             WRITE (NOUT, *)
             WRITE (NOUT, *) 'Approximate solution'
             WRITE (NOUT, *)
             WRITE (NOUT, 99998) (X(I), I=1, N)
         END IF
      END IF
      STOP
99999 FORMAT (1X, A, e12.4)
99998 FORMAT (1X,3F12.4)
99997 FORMAT (1X,A,I2)
      END
      SUBROUTINE FCN(N, X, FVEC, IFLAG)
      .. Parameters ..
                       ONE, TWO, THREE
      real
                       (ONE=1.0e0, TWO=2.0e0, THREE=3.0e0)
      PARAMETER
      .. Scalar Arguments ..
                       IFLAG, N
      INTEGER
      .. Array Arguments .
                      FVEC(N), X(N)
       .. Local Scalars ..
      INTEGER
                       K
       .. Executable Statements ..
      DO 20 K = 1, N
          FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE
          IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1)
IF (K.LT.N) FVEC(K) = FVEC(K) - TWO*X(K+1)
   20 CONTINUE
      RETURN
      END
```

9.2. Program Data

None.

9.3. Program Results

```
C05NBF Example Program Results
```

Final 2-norm of the residuals = 0.1193E-07

Final approximate solution

[NP1692/14]

C05NCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05NCF is a comprehensive routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method.

2. Specification

```
SUBROUTINE C05NCF (FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN,

DIAG, MODE, FACTOR, NPRINT, NFEV, FJAC, LDFJAC,

R, LR, QTF, W, IFAIL)

INTEGER

N, MAXFEV, ML, MU, MODE, NPRINT, NFEV, LDFJAC, LR,

IFAIL

real

X(N), FVEC(N), XTOL, EPSFCN, DIAG(N), FACTOR,

FJAC(LDFJAC, N), R(LR), QTF(N), W(N, 4)

EXTERNAL

FCN
```

3. Description

The system of equations is defined as:

```
f_i(x_1, x_2, ..., x_n) = 0, for i = 1, 2, ..., n.
```

C05NCF is based upon the MINPACK routine HYBRD (Moré et al. [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References

- [1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
 Argonne National Laboratory, ANL-80-74.
- [2] POWELL, M.J.D.

A Hybrid Method for Nonlinear Algebraic Equations. In, 'Numerical Methods for Nonlinear Algebraic Equations', Rabinowitz, P. (ed). Gordon and Breach, 1970.

5. Parameters

1: FCN – SUBROUTINE, supplied by the user.

External Procedure

FCN must return the values of the functions f_i at a point x.

Its specification is:

```
SUBROUTINE FCN(N, X, FVEC, IFLAG)
INTEGER N, IFLAG
real X(N), FVEC(N)

1: N - INTEGER.

On entry: the number of equations, n

2: X(N) - real array.

Input
On entry: the components of the point x at which the functions must be evaluated.
```

3: FVEC(N) - real array.

Output

On exit: if IFLAG > 0 on entry, FVEC must contain the function values $f_i(x)$ (unless IFLAG is set to a negative value by FCN).

If IFLAG = 0 on entry, FVEC must not be changed.

4: IFLAG – INTEGER.

Input/Output

On entry: IFLAG ≥ 0 :

if IFLAG = 0, X and FVEC are available for printing (see NPRINT below);

if IFLAG > 0, FVEC must be updated

On exit: in general IFLAG should not be reset by FCN. If, however, the user wishes to terminate execution (perhaps because some illegal point X has been reached), then IFLAG should be set to a negative integer. This value will be returned through IFAIL.

FCN must be declared as EXTERNAL in the (sub)program from which C05NCF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

2: N - INTEGER.

Input

On entry: the number of equations, n.

Constraint: N > 0.

3: X(N) - real array.

Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVEC(N) - real array.

Output

On exit: the function values at the final point, X.

5: XTOL - real.

Input

On entry: the accuracy in X to which the solution is required.

Suggested value: the square root of the machine precision.

Constraint: XTOL ≥ 0.0 .

6: MAXFEV – INTEGER.

Input

On entry: the maximum number of calls to FCN with IFLAG \neq 0. C05NCF will exit with IFAIL = 2, if, at the end of an iteration, the number of calls to FCN exceeds MAXFEV.

Suggested value: MAXFEV = $200 \times (N+1)$.

Constraint: MAXFEV > 0.

7: ML - INTEGER.

Input

On entry: the number of subdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set ML = N-1.)

Constraint: $ML \ge 0$.

8: MU - INTEGER.

Input

On entry: the number of superdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set MU = N-1.)

Constraint: MU ≥ 0.

9: EPSFCN – real.

Input

On entry: a rough estimate of the largest relative error in the functions. It is used in determining a suitable step for a forward difference approximation to the Jacobian. If EPSFCN is less than *machine precision* then *machine precision* is used. Consequently a value of 0.0 will often be suitable.

Suggested value: EPSFCN = 0.0.

10: DIAG(N) - real array.

Input/Output

On entry: if MODE = 2 (see below), DIAG must contain multiplicative scale factors for the variables.

Constraint: DIAG(i) > 0.0, for i = 1,2,...,n.

On exit: the scale factors actually used (computed internally if MODE \neq 2).

11: MODE - INTEGER.

Input

On entry: indicates whether or not the user has provided scaling factors in DIAG. If MODE = 2 the scaling must have been specified in DIAG. Otherwise, the variables will be scaled internally.

12: FACTOR - real.

Input

On entry: FACTOR must specify a quantity to be used in determining the initial step bound. In most cases, FACTOR should lie between 0.1 and 100.0. (The step bound is $FACTOR \times \|DIAG \times X\|_2$ if this is non-zero; otherwise the bound is FACTOR.)

Suggested value: FACTOR = 100.0.

Constraint: FACTOR > 0.0.

13: NPRINT – INTEGER.

Input

On entry: indicates whether special calls to FCN, with IFLAG set to 0, are to be made for printing purposes. If NPRINT \leq 0, then no calls are made. If NPRINT > 0, then FCN is called at the beginning of the first iteration, every NPRINT iterations thereafter and immediately prior to the return from C05NCF.

14: NFEV - INTEGER.

Output

On exit: the number of calls made to FCN.

15: FJAC(LDFJAC,N) – real array.

Output

On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian.

16: LDFJAC - INTEGER.

Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which C05NCF is called.

Constraint: LDFJAC ≥ N.

17: R(LR) - real array.

Output

On exit: the upper triangular matrix R produced by the QR factorization of the final approximate Jacobian, stored row-wise.

18: LR - INTEGER.

Input

On entry: the dimension of the array R as declared in the (sub)program from which C05NCF is called.

Constraint: LR $\geq N \times (N+1)/2$.

19: QTF(N) - real array.

Output

On exit: the vector $Q^T f$.

20: W(N,4) - real array.

Workspace

21: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL < 0

This indicates an exit from C05NCF because the user has set IFLAG negative in FCN. The value of IFAIL will be the same as the user's setting of IFLAG.

IFAIL = 1

```
On entry, N \leq 0,
         XTOL < 0.0,
or
         MAXFEV \leq 0,
or
         ML < 0.
or
         MU < 0.
or
         FACTOR \leq 0.0,
or
         LDFJAC < N,
or
         LR < N \times (N+1)/2
or
         MODE = 2 and DIAG(i) \leq 0.0 for some i, i = 1,2,...,N.
or
```

IFAIL = 2

There have been at least MAXFEV evaluations of FCN. Consider restarting the calculation from the final point held in X.

IFAIL = 3

No further improvement in the approximate solution X is possible; XTOL is too small.

IFAIL = 4

The iteration is not making good progress, as measured by the improvement from the last 5 Jacobian evaluations.

IFAIL = 5

The iteration is not making good progress, as measured by the improvement from the last 10 iterations.

The values IFAIL = 4 and IFAIL = 5 may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05NCF from a different starting point may avoid the region of difficulty.

7. Accuracy

If \hat{x} is the true solution and D denotes the diagonal matrix whose entries are defined by the array DIAG, then C05NCF tries to ensure that

$$||D(x-\hat{x})||_2 \leq \text{XTOL} \times ||D\hat{x}||_2.$$

If this condition is satisfied with XTOL = 10^{-k} then the larger components of Dx have k significant decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but the fast rate of convergence of C05NCF usually avoids this possibility.

If XTOL is less than the *machine precision* and the above test is satisfied with the *machine precision* in place of XTOL, then the routine exits with IFAIL = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then C05NCF may incorrectly indicate convergence. The validity of the answer can be checked for example, by rerunning C05NCF with a tighter tolerance.

8. Further Comments

The time required by C05NCF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05NCF to process each call of FCN is about $11.5 \times n^2$. Unless FCN can be evaluated quickly, the timing of C05NCF will be strongly influenced by the time spent in FCN.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

The number of function evaluations required to evaluate the Jacobian may be reduced if the user can specify ML and MU.

9. Example

To determine the values $x_1,...,x_9$ which satisfy the tridiagonal equations:

$$(3-2x_1)x_1 - 2x_2 = -1.$$

 $-x_{i-1} + (3-2x_i)x_i - 2x_{i+1} = -1, i = 2,3,...,8.$
 $-x_8 + (3-2x_9)x_9 = -1.$

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05NCF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
 .. Parameters ..
 INTEGER
                  N, LDFJAC, LR
 PARAMETER
                  (N=9, LDFJAC=N, LR=(N*(N+1))/2)
 INTEGER
                  NOUT
                 (NOUT=6)
 PARAMETER
 .. Local Scalars ..
real
                  EPSFCN, FACTOR, FNORM, XTOL
 INTEGER
                  IFAIL, J, MAXFEV, ML, MODE, MU, NFEV, NPRINT
.. Local Arrays .
                  DIAG(N), FJAC(LDFJAC, N), FVEC(N), QTF(N), R(LR),
real
                  W(N,4), X(N)
+
 .. External Functions ..
                 F06EJF, X02AJF
real
EXTERNAL
                 F06EJF, X02AJF
 .. External Subroutines
EXTERNAL CO5NCF, FCN
 .. Intrinsic Functions ..
INTRINSIC
                 SORT
 .. Executable Statements ..
WRITE (NOUT, *) 'C05NCF Example Program Results'
WRITE (NOUT, *)
The following starting values provide a rough solution.
DO 20 J = 1, N
   X(J) = -1.0e0
```

```
20 CONTINUE
      XTOL = SQRT(X02AJF())
      DO 40 J = 1, N
          DIAG(J) = 1.0e0
   40 CONTINUE
      MAXFEV = 2000
      ML = 1
      MU = 1
      EPSFCN = 0.0e0
      MODE = 2
      FACTOR = 100.0e0
      NPRINT = 0
      IFAIL = 1
      CALL CO5NCF(FCN, N, X, FVEC, XTOL, MAXFEV, ML, MU, EPSFCN, DIAG, MODE,
                    FACTOR, NPRINT, NFEV, FJAC, LDFJAC, R, LR, QTF, W, IFAIL)
      IF (IFAIL.EQ.0) THEN
          FNORM = F06EJF(N, FVEC, 1)
          WRITE (NOUT, 99999) 'Final 2-norm of the residuals =', FNORM
          WRITE (NOUT, *)
          WRITE (NOUT, 99998) 'Number of function evaluations =', NFEV
          WRITE (NOUT, *)
          WRITE (NOUT, *) 'Final approximate solution'
          WRITE (NOUT, *)
          WRITE (NOUT, 99997) (X(J), J=1, N)
      ELSE
          WRITE (NOUT, 99996) 'IFAIL = ', IFAIL
          IF (IFAIL.GE.2) THEN
             WRITE (NOUT, *)
             WRITE (NOUT, *) 'Approximate solution'
             WRITE (NOUT, *)
             WRITE (NOUT, 99997) (X(J), J=1, N)
          END IF
      END IF
      STOP
99999 FORMAT (1X, A, e12.4)
99998 FORMAT (1X,A,I10)
99997 FORMAT (1X,3F12.4)
99996 FORMAT (1X,A,I2)
      END
      SUBROUTINE FCN(N, X, FVEC, IFLAG)
      .. Parameters ..
      real
                       ONE, TWO, THREE
                       (ONE=1.0e0, TWO=2.0e0, THREE=3.0e0)
       .. Scalar Arguments .
      INTEGER
                      IFLAG, N
       .. Array Arguments
      real
                      FVEC(N), X(N)
       .. Local Scalars ..
      INTEGER
                       K
      .. Executable Statements .. IF (IFLAG.EQ.0) THEN
          Insert print statements here when NPRINT is positive.
          RETURN
      ELSE
          DO 20 K = 1, N
             FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE
             IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1)
             IF (K.LT.N) FVEC(K) = FVEC(K) - TWO*X(K+1)
   20
          CONTINUE
      END IF
      RETURN
      END
```

Page 6 [NP1692/14]

9.2. Program Data

None.

9.3. Program Results

C05NCF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Number of function evaluations = 14

Final approximate solution

C05NDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05NDF is a comprehensive reverse communication routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method.

2. Specification

```
SUBROUTINE CO5NDF (IREVCM, N, X, FVEC, XTOL, ML, MU, EPSFCN,

DIAG, MODE, FACTOR, FJAC, LDFJAC, R, LR, QTF,

W, IFAIL)

INTEGER

IREVCM, N, ML, MU, MODE, LDFJAC, LR, IFAIL

real

X(N), FVEC(N), XTOL, EPSFCN, DIAG(N),

FACTOR, FJAC(LDFJAC, N), R(LR), QTF(N), W(N, 4)
```

3. Description

The system of equations is defined as:

```
f_i(x_1,x_2,...,x_n) = 0, for i = 1,2,...,n.
```

C05NDF is based upon the MINPACK routine HYBRD (Moré et al. [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is approximated by forward differences, but these are not used again until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References

- [1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
 Argonne National Laboratory, ANL-80-74.
- [2] POWELL, M.J.D.

A Hybrid Method for Nonlinear Algebraic Equations. In, 'Numerical Methods for Nonlinear Algebraic Equations', Rabinowitz, P. (Ed.). Gordon and Breach, 1970.

5. Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and re-entries, all parameters other than FVEC must remain unchanged.

1: IREVCM - INTEGER.

Input/Output

On initial entry: IREVCM must have the value 0.

On intermediate exit: IREVCM specifies what action the user must take before re-entering C05NDF with IREVCM unchanged. The value of IREVCM should be interpreted as follows:

```
IREVCM = 1
```

indicates the start of a new iteration. No action is required by the user but X and FVEC are available for printing.

[NP1692/14] Page 1

IREVCM = 2

indicates that before re-entry to C05NDF, FVEC must contain the function values $f_{i}(x)$.

On final exit: IREVCM = 0, and the algorithm has terminated.

Constraint: IREVCM = 0, 1 or 2.

2: N - INTEGER.

Input

On initial entry: the number of equations, n.

Constraint: N > 0.

3: X(N) - real array.

Input/Output

On initial entry: an initial guess at the solution vector.

On intermediate exit: X contains the current point.

On final exit: the final estimate of the solution vector.

4: FVEC(N) - real array.

Input/Output

On initial entry: FVEC must be set to the values of the functions computed at the initial point X.

On intermediate re-entry: if IREVCM = 1, FVEC must not be changed. If IREVCM = 2, FVEC must be set to the values of the functions computed at the current point X.

On final exit: the function values at the final point, X.

5: XTOL - real.

Input

On initial entry: the accuracy in X to which the solution is required.

Suggested value: the square root of the machine precision.

Constraint: XTOL ≥ 0.0 .

6: ML - INTEGER.

Input

On initial entry: the number of subdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set ML = N - 1.)

Constraint: $ML \ge 0$.

7: MU - INTEGER.

Input

On initial entry: the number of superdiagonals within the band of the Jacobian matrix. (If the Jacobian is not banded, or you are unsure, set MU = N - 1.)

Constraint: $MU \ge 0$.

8: EPSFCN – real.

Input

On initial entry: the order of the largest relative error in the functions. It is used in determining a suitable step for a forward difference approximation to the Jacobian. If EPSFCN is less than *machine precision* then *machine precision* is used. Consequently a value of 0.0 will often be suitable.

Suggested value: EPSFCN = 0.0.

9: DIAG(N) - real array.

Input/Output

On initial entry: if MODE = 2 (see below), DIAG must contain multiplicative scale factors for the variables.

Constraint: DIAG(i) > 0.0 for i = 1,2,...,n.

On intermediate exit: the scale factors actually used (computed internally if MODE $\neq 2$).

10: MODE - INTEGER.

Input

On initial entry: indicates whether or not the user has provided scaling factors in DIAG. If MODE = 2 the scaling must have been specified in DIAG. Otherwise, the variables will be scaled internally.

11: FACTOR - real.

Input

On initial entry: a quantity to be used in determining the initial step bound. In most cases, FACTOR should lie between 0.1 and 100.0. (The step bound is FACTOR× $\|DIAG\times X\|_2$ if this is non-zero; otherwise the bound is FACTOR.)

Suggested value: FACTOR = 100.0.

Constraint: FACTOR > 0.0.

12: FJAC(LDFJAC,N) - real array.

Output

On final exit: the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian.

13: LDFJAC - INTEGER.

Input

On initial entry: the first dimension of the array FJAC as declared in the (sub)program from which C05NDF is called.

Constraint: LDFJAC ≥ N.

14: R(LR) - real array.

Output

On final exit: the upper triangular matrix R produced by the QR factorization of the final approximate Jacobian, stored row-wise.

15: LR - INTEGER.

Input

On initial entry: the dimension of the array R as declared in the (sub)program from which C05NDF is called.

Constraint: LR $\geq N \times (N+1)/2$.

16: QTF(N) - real array.

Output

On final exit: the vector $Q^T f$.

17: W(N,4) - real array.

Workspace

18: IFAIL - INTEGER.

Input/Output

On initial entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On final exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, $N \leq 0$,

or XTOL < 0.0,

or ML < 0,

or MU < 0,

- or FACTOR \leq 0.0, or LDFJAC < N, or LR < N \times (N+1)/2, or MODE = 2 and DIAG(i) \leq 0.0 for some i, i = 1,2,...,N.
- IFAIL = 2

On entry, IREVCM < 0 or IREVCM > 2.

IFAIL = 3

No further improvement in the approximate solution X is possible; XTOL is too small.

IFAIL = 4

The iteration is not making good progress, as measured by the improvement from the last 5 Jacobian evaluations.

IFAIL = 5

The iteration is not making good progress, as measured by the improvement from the last 10 iterations.

The values IFAIL = 4 and IFAIL = 5 may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05NDF from a different starting point may avoid the region of difficulty.

7. Accuracy

If \hat{x} is the true solution and D denotes the diagonal matrix whose entries are defined by the array DIAG, then C05NDF tries to ensure that

$$||D(x-\hat{x})||_2 \le \text{XTOL} \times ||D\hat{x}||_2$$

If this condition is satisfied with XTOL = 10^{-k} then the larger components of Dx have k significant decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but the fast rate of convergence of C05NDF usually avoids this possibility.

If XTOL is less than *machine precision* and the above test is satisfied with the *machine precision* in place of XTOL, then the routine exits with IFAIL = 3.

Note that this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then C05NDF may incorrectly indicate convergence. The validity of the answer can be checked for example, by rerunning C05NDF with a tighter tolerance.

8. Further Comments

The time required by C05NDF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05NDF to process the evaluation of functions in the main program in each exit is about $11.5 \times n^2$. The timing of C05NDF will be strongly influenced by the time spent in the evaluation of the functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

The number of function evaluations required to evaluate the Jacobian may be reduced if the user can specify ML and MU.

9. Example

To determine the values $x_1,...,x_9$ which satisfy the tridiagonal equations:

$$(3-2x_1)x_1 - 2x_2 = -1$$

 $-x_{i-1} + (3-2x_i)x_i - 2x_{i+1} = -1,$ $i = 2,3,...,8$
 $-x_8 + (3-2x_9)x_9 = -1.$

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05NDF Example Program Text
   Mark 14 Release. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    N, LDFJAC, LR
   PARAMETER
                     (N=9, LDFJAC=N, LR=(N*(N+1))/2)
   INTEGER
                    NOUT
   PARAMETER
                    (NOUT=6)
   real
                    ONE, TWO, THREE
   PARAMETER
                    (ONE=1.0e0, TWO=2.0e0, THREE=3.0e0)
   .. Local Scalars ..
                    EPSFCN, FACTOR, FNORM, XTOL
   real
   INTEGER
                    ICOUNT, IFAIL, IREVCM, J, K, ML, MODE, MU
   .. Local Arrays .
   real
                    DIAG(N), FJAC(LDFJAC, N), FVEC(N), QTF(N), R(LR),
                    W(N,4), X(N)
   .. External Functions ..
            FOGEJF, XO2AJF
   real
   EXTERNAL
                    F06EJF, X02AJF
   .. External Subroutines
   EXTERNAL CO5NDF
   .. Intrinsic Functions ..
   INTRINSIC
              SORT
   .. Executable Statements ..
   WRITE (NOUT, *) 'C05NDF Example Program Results'
   The following starting values provide a rough solution.
   DO 20 J = 1, N
      X(J) = -1.0e0
20 CONTINUE
   XTOL = SQRT(X02AJF())
   DO 40 J = 1, N
      DIAG(J) = 1.0e0
40 CONTINUE
   ML = 1
   MU = 1
   EPSFCN = 0.0e0
   MODE = 2
   FACTOR = 100.0e0
   ICOUNT = 0
   IFAIL = 1
   IREVCM = 0
60 CALL C05NDF(IREVCM, N, X, FVEC, XTOL, ML, MU, EPSFCN, DIAG, MODE, FACTOR,
               FJAC, LDFJAC, R, LR, QTF, W, IFAIL)
   IF (IREVCM.EQ.1) THEN
      ICOUNT = ICOUNT + 1
      Insert print statements here to monitor progess if desired.
      GO TO 60
   ELSE IF (IREVCM.EQ.2) THEN
      Evaluate functions at given point
      DO 80 K = 1, N
         FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE
         IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1)
         IF (K.LT.N) FVEC(K) = FVEC(K) - TWO*X(K+1)
80
      CONTINUE
```

[NP1692/14] Page 5

```
GO TO 60
       END IF
       WRITE (NOUT, *)
       IF (IFAIL.EQ.0) THEN
          FNORM = F06EJF(N, FVEC, 1)
          WRITE (NOUT, 99999) 'Final 2-norm of the residuals after',
            ICOUNT, ' iterations is ', FNORM
          WRITE (NOUT, *)
          WRITE (NOUT,*) 'Final approximate solution' WRITE (NOUT,99998) (X(J),J=1,N)
       ELSE
          WRITE (NOUT, 99999) 'IFAIL =', IFAIL
          IF (IFAIL.GE.2) THEN
              WRITE (NOUT,*) 'Approximate solution' WRITE (NOUT,99998) (X(J),J=1,N)
          END IF
       END IF
       STOP
99999 FORMAT (1X,A,I4,A,e12.4)
99998 FORMAT (5X, 3F12.4)
       END
```

9.2. Program Data

None.

9.3. Program Results

```
CO5NDF Example Program Results
```

Final 2-norm of the residuals after 11 iterations is 0.1193E-07

```
Final approximate solution
-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
```

Page 6 (last) [NP1692/14]

C05PBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05PBF is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian.

2. Specification

3. Description

The system of equations is defined as:

```
f_i(x_1,x_2,...,x_n) = 0, for i = 1,2,...,n.
```

C05PBF is based upon the MINPACK routine HYBRJ1 (Moré et al. [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is calculated, but it is not recalculated until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References

- [1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
 Argonne National Laboratory, ANL-80-74.
- [2] POWELL, M.J.D.

A Hybrid Method for Nonlinear Algebraic Equations. In, 'Numerical Methods for Nonlinear Algebraic Equations', Rabinowitz, P. (Ed). Gordon and Breach, 1970.

5. Parameters

1: FCN – SUBROUTINE, supplied by the user.

External Procedure

Depending upon the value of IFLAG, FCN must either return the values of the functions f_i at a point x or return the Jacobian at x.

Its specification is:

```
SUBROUTINE FCN(N, X, FVEC, FJAC, LDFJAC, IFLAG)
INTEGER N, LDFJAC, IFLAG

real X(N), FVEC(N), FJAC(LDFJAC, N)

1: N - INTEGER.

On entry: the number of equations, n.

2: X(N) - real array.

Input

On entry: the components of the point x at which the functions or the Jacobian must be evaluated.
```

3: FVEC(N) - real array.

Output

On exit: if IFLAG = 1 on entry, FVEC must contain the function values $f_i(x)$ (unless IFLAG is set to a negative value by FCN).

If IFLAG = 2 on entry, FVEC must not be changed.

4: FJAC(LDFJAC,N) - real array.

Output

On exit: if IFLAG = 2 on entry, FJAC(i,j) must contain the value of $\frac{\partial f_i}{\partial x_j}$ at the point x, for i,j = 1,2,...,n (unless IFLAG is set to a negative value by FCN). If IFLAG = 1 on entry, FJAC must not be changed.

5: LDFJAC - INTEGER.

Input

On entry: the first dimension of FJAC.

6: IFLAG - INTEGER.

Input/Output

On entry: IFLAG = 1 or 2:

if IFLAG = 1, FVEC is to be updated;

if IFLAG = 2, FJAC is to be updated.

On exit: in general, IFLAG should not be reset by FCN. If, however, the user wishes to terminate execution (perhaps because some illegal point x has been reached) then IFLAG should be set to a negative integer. This value will be returned through IFAIL.

FCN must be declared as EXTERNAL in the (sub)program from which C05PBF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

2: N – INTEGER.

Input

On entry: the number of equations, n.

Constraint: N > 0.

3: X(N) - real array.

Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVEC(N) - real array.

Output

On exit: the function values at the final point, X.

5: FJAC(LDFJAC,N) - real array.

Output

On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian.

6: LDFJAC - INTEGER.

Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which C05PBF is called.

Constraint: LDFJAC ≥ N.

7: XTOL - real.

Input

On entry: the accuracy in X to which the solution is required.

Suggested value: the square root of the machine precision.

Constraint: $XTOL \ge 0.0$.

8: WA(LWA) - real array.

Workspace Input

9: LWA - INTEGER.

On entry: the dimension of the array WA.

Constraint: LWA $\geq N \times (N+13)/2$.

10: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL < 0

A negative value of IFAIL indicates an exit from C05PBF because the user has set IFLAG negative in FCN. The value of IFAIL will be the same as the user's setting of IFLAG.

IFAIL = 1

On entry, $N \le 0$, or LDFJAC < N, or XTOL < 0.0, or LWA < $N \times (N+13)/2$.

IFAIL = 2

There have been $100 \times (N+1)$ evaluations of the functions. Consider restarting the calculation from the final point held in X.

IFAIL = 3

No further improvement in the approximate solution X is possible; XTOL is too small.

IFAIL = 4

The iteration is not making good progress. This failure exit may indicate that the system does not have a zero or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05PBF from a different starting point may avoid the region of difficulty.

7. Accuracy

If \hat{x} is the true solution, C05PBF tries to ensure that

$$||x - \hat{x}||_2 \le \text{XTOL} \times ||\hat{x}||_2.$$

If this condition is satisfied with XTOL = 10^{-k} then the larger components of x have k significant decimal digits. There is a danger that the smaller components of x may have large relative errors, but the fast rate of convergence of C05PBF usually avoids the possibility.

If XTOL is less than *machine precision* and the above test is satisfied with the *machine precision* in place of XTOL, then the routine exits with IFAIL = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions and Jacobian are coded consistently and that the functions are reasonably well behaved. If these conditions are not satisfied then C05PBF may incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZAF. If the Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05PBF with a tighter tolerance.

8. Further Comments

The time required by C05PBF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05PBF is about $11.5 \times n^2$ to process each evaluation of the functions and about $1.3 \times n^3$ to process each evaluation of the Jacobian. Unless FCN can be evaluated quickly, the timing of C05PBF will be strongly influenced by the time spent in FCN.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable magnitude.

9. Example

To determine the values $x_1,...,x_9$ which satisfy the tridiagonal equations:

$$(3-2x_1)x_1 - 2x_2 = -1$$

$$-x_{i-1} + (3-2x_i)x_i - 2x_{i+1} = -1, i = 2,3,...,8.$$

$$-x_8 + (3-2x_9)x_9 = -1.$$

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05PBF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    N, LDFJAC, LWA
                    (N=9, LDFJAC=N, LWA=(N*(N+13))/2)
   PARAMETER
                    NOUT
   INTEGER
   PARAMETER
                    (NOUT=6)
   .. Local Scalars ..
                    FNORM, TOL
   real
   INTEGER
                    IFAIL, J
   .. Local Arrays ..
   real
                    FJAC(LDFJAC, N), FVEC(N), WA(LWA), X(N)
   .. External Functions ..
   .. External Subroutines .
   EXTERNAL
                   CO5PBF, FCN
   .. Intrinsic Functions ..
                   SQRT
   INTRINSIC
   .. Executable Statements ..
   WRITE (NOUT, *) 'C05PBF Example Program Results'
   WRITE (NOUT, *)
   The following starting values provide a rough solution.
   DO 20 J = 1, N
      X(J) = -1.0e0
20 CONTINUE
   TOL = SQRT(X02AJF())
   IFAIL = 1
   CALL CO5PBF(FCN, N, X, FVEC, FJAC, LDFJAC, TOL, WA, LWA, IFAIL)
     (IFAIL.EQ.0) THEN
      FNORM = F06EJF(N, FVEC, 1)
      WRITE (NOUT, 99999) 'Final 2-norm of the residuals =', FNORM
      WRITE (NOUT, *)
      WRITE (NOUT, *)
                    'Final approximate solution'
      WRITE (NOUT, *)
      WRITE (NOUT, 99998) (X(J), J=1, N)
   ELSE
      WRITE (NOUT, 99997) 'IFAIL = ', IFAIL
      IF (IFAIL.GE.2) THEN
         WRITE (NOUT, *)
         WRITE (NOUT, *) 'Approximate solution'
```

Page 4 [NP1692/14]

```
WRITE (NOUT, *)
             WRITE (NOUT, 99998) (X(J), J=1, N)
          END IF
      END IF
      STOP
99999 FORMAT (1X, A, e12.4)
99998 FORMAT (1X,3F12.4)
99997 FORMAT (1X,A,I2)
      END
      SUBROUTINE FCN(N, X, FVEC, FJAC, LDFJAC, IFLAG)
      .. Parameters .
      real
                        ZERO, ONE, TWO, THREE, FOUR
      PARAMETER
                        (ZERO=0.0e0, ONE=1.0e0, TWO=2.0e0, THREE=3.0e0,
                        FOUR=4.0e0)
       .. Scalar Arguments
      INTEGER
                        IFLAG, LDFJAC, N
      .. Array Arguments ..
      real
                        FJAC(LDFJAC, N), FVEC(N), X(N)
       .. Local Scalars ..
      INTEGER
                        J, K
       .. Executable Statements ..
      IF (IFLAG.NE.2) THEN
DO 20 K = 1, N

FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE
             IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1)
IF (K.LT.N) FVEC(K) = FVEC(K) - TWO*X(K+1)
   20
          CONTINUE
      ELSE
          DO 60 K = 1, N
             DO 40 J = 1, N
                 FJAC(K, J) = ZERO
   40
             CONTINUE
             FJAC(K, K) = THREE - FOUR*X(K)
             IF (K.GT.1) FJAC(K,K-1) = -ONE
             IF (K.LT.N) FJAC(K,K+1) = -TWO
   60
          CONTINUE
      END IF
      RETURN
      END
```

9.2. Program Data

None.

9.3. Program Results

```
C05PBF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Final approximate solution

-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
```

C05PCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05PCF is a comprehensive routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian.

2. Specification

```
SUBROUTINE CO5PCF (FCN, N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV,

DIAG, MODE, FACTOR, NPRINT, NFEV, NJEV, R, LR,

QTF, W, IFAIL)

INTEGER

N, LDFJAC, MAXFEV, MODE, NPRINT, NFEV, NJEV, LR,

IFAIL

real

X(N), FVEC(N), FJAC(LDFJAC,N), XTOL, DIAG(N),

FACTOR, R(LR), QTF(N), W(N, 4)

EXTERNAL

FCN
```

3. Description

The system of equations is defined as:

```
f_i(x_1,x_2,...,x_n) = 0, for i = 1,2,...,n.
```

CO5PCF is based upon the MINPACK routine HYBRJ (Moré et al. [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence from starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. At the starting point the Jacobian is calculated, but it is not recalculated until the rank-1 method fails to produce satisfactory progress. For more details see Powell [2].

4. References

- [1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
 Argonne National Laboratory, ANL-80-74.
- [2] POWELL, M.J.D.

A Hybrid Method for Nonlinear Algebraic Equations.

In: 'Numerical Methods for Nonlinear Algebraic Equations', Rabinowitz, P. (ed.).

Gordon and Breach, 1970.

5. Parameters

1: FCN – SUBROUTINE, supplied by the user.

External Procedure

Depending upon the value of IFLAG, FCN must either return the values of the functions f_i at a point x or return the Jacobian at x.

Its specification is:

```
SUBROUTINE FCN(N, X, FVEC, FJAC, LDFJAC, IFLAG)
INTEGER N, LDFJAC, IFLAG

real X(N), FVEC(N), FJAC(LDFJAC, N)

1: N - INTEGER.

On entry: the number of equations, n.

2: X(N) - real array.

Input

On entry: the components of the point at which the functions or the Jacobian must be evaluated.
```

3: FVEC(N) - real array.

Output

On exit: if IFLAG = 1 on entry, FVEC must contain the function values $f_i(x)$ (unless IFLAG is set to a negative value by FCN).

If IFLAG = 0 or 2 on entry, FVEC must not be changed.

4: FJAC(LDFJAC,N) – *real* array.

Output

On exit: if IFLAG = 2 on entry, FJAC(i,j) must contain the value of $\frac{\partial f_i}{\partial x_j}$ at the point x, for i,j = 1,2,...,n (unless IFLAG is set to a negative value by FCN). If IFLAG = 0 or 1 on entry, FJAC must not be changed.

5: LDFJAC – INTEGER.

Input

On entry: the first dimension of FJAC.

6: IFLAG - INTEGER.

Input/Output

On entry: IFLAG = 0, 1 or 2:

if IFLAG = 0, X and FVEC are available for printing (see NPRINT below);

if IFLAG = 1, FVEC is to be updated;

if IFLAG = 2, FJAC is to be updated.

On exit: in general, IFLAG should not be reset by FCN. If, however, the user wishes to terminate execution (perhaps because some illegal point X has been reached), then IFLAG should be set to a negative integer. This value will be returned through IFAIL.

FCN must be declared as EXTERNAL in the (sub)program from which C05PCF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

2: N - INTEGER.

Input

On entry: the number of equations, n.

Constraint: N > 0.

3: X(N) - real array.

Input/Output

On entry: an initial guess at the solution vector.

On exit: the final estimate of the solution vector.

4: FVEC(N) - real array.

Output

On exit: the function values at the final point, X.

5: FJAC(LDFJAC,N) – *real* array.

Output

On exit: the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian.

6: LDFJAC - INTEGER.

Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which C05PCF is called.

Constraint: LDFJAC ≥ N.

7: XTOL - real.

Input

On entry: the accuracy in X to which the solution is required.

Suggested value: the square root of the machine precision.

Constraint: $XTOL \ge 0.0$.

8: MAXFEV - INTEGER.

Input

On entry: the maximum number of calls to FCN with IFLAG \neq 0. C05PCF will exit with IFAIL = 2, if, at the end of an iteration, the number of calls to FCN exceeds MAXFEV.

Suggested value: $MAXFEV = 100 \times (N+1)$.

Constraint: MAXFEV > 0.

9: DIAG(N) - real array.

Input/Output

On entry: if MODE = 2 (see below), DIAG must contain multiplicative scale factors for the variables.

Constraint: DIAG(i) > 0.0 for i = 1,2,...,n.

On exit: the scale factors actually used (computed internally if MODE \neq 2).

10: MODE - INTEGER.

Input

On entry: indicates whether or not the user has provided scaling factors in DIAG. If MODE = 2, the scaling must have been specified in DIAG. Otherwise, the variables will be scaled internally.

11: FACTOR - real.

Input

On entry: a quantity to be used in determining the initial step bound. In most cases, FACTOR should lie between 0.1 and 100.0. (The step bound is FACTOR× $\|DIAG\times X\|_2$ if this is non-zero; otherwise the bound is FACTOR.)

Suggested value: FACTOR = 100.0.

Constraint: FACTOR > 0.0.

12: NPRINT - INTEGER.

Input

On entry: indicates whether or not special calls to FCN with IFLAG = 0 are to be made for printing purposes. If NPRINT \leq 0, then no calls are made. If NPRINT > 0, then FCN is called at the beginning of the first iteration, every NPRINT iterations thereafter and immediately prior to the return from C05PCF.

13: NFEV - INTEGER.

Output

On exit: the number of calls made to FCN to evaluate the functions.

14: NJEV - INTEGER.

Output

On exit: the number of calls made to FCN to evaluate the Jacobian.

15: R(LR) - real array.

Output

On exit: the upper triangular matrix R produced by the QR factorization of the final approximate Jacobian, stored row-wise.

16: LR - INTEGER.

Input

On entry: the dimension of the array R.

Constraint: LR $\geq N \times (N+1)/2$.

17: QTF(N) - real array.

Output

On exit: the vector $Q^T f$.

18: W(N,4) - real array.

Workspace

19: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

```
IFAIL < 0
```

This indicates an exit from C05PCF because the user has set IFLAG negative in FCN. The value of IFAIL will be the same as the user's setting of IFLAG.

IFAIL = 1

```
On entry, N \le 0,

or XTOL < 0.0,

or MAXFEV \le 0,

or FACTOR \le 0.0,

or LDFJAC < N,

or LR < N \times (N+1)/2,

or MODE = 2 and DIAG(i) \le 0.0 for some i, i = 1,2,...,N.
```

IFAIL = 2

There have been MAXFEV evaluations of FCN to evaluate the functions. Consider restarting the calculation from the final point held in X.

IFAIL = 3

No further improvement in the approximate solution X is possible; XTOL is too small.

IFAII. = 4

The iteration is not making good progress, as measured by the improvement from the last 5 Jacobian evaluations.

IFAIL = 5

The iteration is not making good progress, as measured by the improvement from the last 10 iterations.

The values IFAIL = 4 and IFAIL = 5 may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05PCF from a different starting point may avoid the region of difficulty.

7. Accuracy

If \hat{x} is the true solution and D denotes the diagonal matrix whose entries are defined by the array DIAG then C05PCF tries to ensure that

```
||D \times (x - \hat{x})||_2 \le XTOL \times ||D\hat{x}||_2
```

If this condition is satisfied with XTOL = 10^{-k} then the larger components of Dx have k significant decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but the fast rate of convergence of C05PCF usually avoids this possibility.

If XTOL is less than the *machine precision* and the above test is satisfied with the *machine precision* in place of XTOL, then the routine exits with IFAIL = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

Page 4 [NP1692/14]

The test assumes that the functions and the Jacobian are coded consistently and that the functions are reasonably well behaved. If these conditions are not satisfied then C05PCF may incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZAF. If the Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05PCF with a tighter tolerance.

8. Further Comments

The time required by C05PCF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05PCF is about $11.5 \times n^2$ to process each evaluation of the functions and about $1.3 \times n^3$ to process each evaluation of the Jacobian. Unless FCN can be evaluated quickly, the timing of C05PCF will be strongly influenced by the time spent in FCN.

Ideally the problem should be scaled so that at the solution the function values are of comparable magnitude.

9. Example

To determine the values $x_1,...,x_9$ which satisfy the tridiagonal equations:

$$(3-2x_1)x_1 - 2x_2 = -1.$$

 $-x_{i-1} + (3-2x_i)x_i - 2x_{i+1} = -1, i = 2,3,...,8.$
 $-x_8 + (3-2x_9)x_9 = -1.$

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05PCF Example Program Text
*
      Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                       N, LDFJAC, LR
      PARAMETER
                       (N=9, LDFJAC=N, LR=(N*(N+1))/2)
      INTEGER
                       NOUT
      PARAMETER
                       (NOUT=6)
      .. Local Scalars .
      real
                       FACTOR, FNORM, XTOL
                       IFAIL, J, MAXFEV, MODE, NFEV, NJEV, NPRINT
      INTEGER
      .. Local Arrays .
                       DIAG(N), FJAC(LDFJAC,N), FVEC(N), QTF(N), R(LR),
      real
                       W(N,4), X(N)
      .. External Functions ..
                       F06EJF, X02AJF
      real
                       F06EJF, X02AJF
      EXTERNAL
      .. External Subroutines
      EXTERNAL
                      COSPCF, FCN
      .. Intrinsic Functions ..
      INTRINSIC
                       SQRT
      .. Executable Statements ..
      WRITE (NOUT, *) 'CO5PCF Example Program Results'
      WRITE (NOUT, *)
      The following starting values provide a rough solution.
      DO 20 J = 1, N
         X(J) = -1.0e0
   20 CONTINUE
      XTOL = SQRT(X02AJF())
      DO 40 J = 1, N
         DIAG(J) = 1.0e0
   40 CONTINUE
      MAXFEV = 1000
      MODE = 2
      FACTOR = 100.0e0
      NPRINT = 0
      IFAIL = 1
```

[NP1692/14] Page 5

```
CALL COSPCF (FCN, N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV, DIAG, MODE, FACTOR,
                   NPRINT, NFEV, NJEV, R, LR, QTF, W, IFAIL)
      IF (IFAIL.EQ.0) THEN
          FNORM = F06EJF(N, FVEC, 1)
          WRITE (NOUT, 99999) 'Final 2-norm of the residuals =', FNORM
         WRITE (NOUT, *)
         WRITE (NOUT, 99998) 'Number of function evaluations ='. NFEV
         WRITE (NOUT, *)
         WRITE (NOUT, 99998) 'Number of Jacobian evaluations =', NJEV
         WRITE (NOUT, *)
         WRITE (NOUT, *) 'Final approximate solution'
         WRITE (NOUT, *)
         WRITE (NOUT, 99997) (X(J), J=1, N)
      ELSE
         WRITE (NOUT, 99996) 'IFAIL = ', IFAIL
          IF (IFAIL.GT.2) THEN
             WRITE (NOUT, *)
             WRITE (NOUT, *) 'Approximate solution:'
             WRITE (NOUT, *)
             WRITE (NOUT, 99997) (X(J), J=1, N)
         END IF
      END IF
      STOP
99999 FORMAT (1X, A, e12.4)
99998 FORMAT (1X,A,I10)
99997 FORMAT (1X,3F12.4)
99996 FORMAT (1X,A,I2)
      END
      SUBROUTINE FCN(N, X, FVEC, FJAC, LDFJAC, IFLAG)
      .. Parameters .
      real
                      ZERO, ONE, TWO, THREE, FOUR
                      (ZERO=0.0e0, ONE=1.0e0, TWO=2.0e0, THREE=3.0e0,
      PARAMETER
                      FOUR=4.0e0)
      .. Scalar Arguments ..
      INTEGER
                      IFLAG, LDFJAC, N
      .. Array Arguments
                      FJAC(LDFJAC, N), FVEC(N), X(N)
      .. Local Scalars .
      INTEGER
                      J, K
      .. Executable Statements ..
      IF (IFLAG.EQ.0) THEN
*
         Insert print statements here when NPRINT is positive.
         RETURN
      ELSE
         IF (IFLAG.NE.2) THEN
            DO 20 K = 1, N
                FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE
                IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1)
                IF (K.LT.N) FVEC(K) = FVEC(K) - TWO\starX(K+1)
            CONTINUE
   20
         ELSE
            DO 60 K = 1, N
               DO 40 J = 1, N
                   FJAC(K,J) = ZERO
   40
               CONTINUE
                FJAC(K,K) = THREE - FOUR*X(K)
               IF (K.GT.1) FJAC(K,K-1) = -ONE
                IF (K.LT.N) FJAC(K,K+1) = -TWO
   60
            CONTINUE
         END IF
      END IF
      RETURN
      END
```

Page 6

9.2. Program Data

None.

9.3. Program Results

C05PCF Example Program Results

Final 2-norm of the residuals = 0.1193E-07

Number of function evaluations = 11

Number of Jacobian evaluations = 1

Final approximate solution

C05PDF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05PDF is a comprehensive reverse communication routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian.

2. Specification

```
SUBROUTINE C05PDF (IREVCM, N, X, FVEC, FJAC, LDFJAC, XTOL, DIAG,

MODE, FACTOR, R, LR, QTF, W, IFAIL)

INTEGER IREVCM, N, LDFJAC, MODE, LR, IFAIL

real X(N), FVEC(N), FJAC(LDFJAC, N), XTOL, DIAG(N),

FACTOR, R(LR), QTF(N), W(N, 4)
```

3. Description

The system of equations is defined as:

```
f_i(x_1,x_2,...,x_n) = 0, for i = 1,2,...,n.
```

CO5PDF is based upon the MINPACK routine HYBRJ (Moré et al. [1]). It chooses the correction at each step as a convex combination of the Newton and scaled gradient directions. Under reasonable conditions this guarantees global convergence from starting points far from the solution and a fast rate of convergence. The Jacobian is updated by the rank-1 method of Broyden. The Jacobian is requested to be supplied at the start of the computations, but it is not requested again. For more details see Powell [2].

4. References

[1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
Argonne National Laboratory, ANL-80-74.

[2] POWELL, M.J.D.

A Hybrid Method for Nonlinear Algebraic Equations. In: 'Numerical Methods for Nonlinear Algebraic Equations', Rabinowitz, P. (ed.). Gordon and Breach, 1970.

5. Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the parameter IREVCM. Between intermediate exits and re-entries, all parameters other than FVEC and FJAC must remain unchanged.

1: IREVCM - INTEGER.

Input/Output

On initial entry: IREVCM must have the value 0.

On intermediate exit: IREVCM specifies what action the user must take before re-entering C05PDF with IREVCM unchanged. The value of IREVCM should be interpreted as follows:

IREVCM = 1

indicates the start of a new iteration. No action is required by the user but X and FVEC are available for printing.

IREVCM = 2

indicates that before re-entry to C05PDF, FVEC must contain the function value $f_i(x)$.

IREVCM = 3

indicates that before re-entry to C05PDF, FJAC(i,j) must contain the value of $\frac{\partial f_i}{\partial x_j}$ at the point x, for i,j = 1,2,...,n.

On final exit: IREVCM = 0, and the algorithm has terminated.

Constraint: IREVCM = 0, 1, 2 or 3.

2: N - INTEGER.

Input

On initial entry: the number of equations, n.

Constraint: N > 0.

3: X(N) - real array.

Input/Output

On initial entry: X(j) must be set to a guess at the jth component of the solution, for j = 1, 2, ..., n.

On intermediate exit. X contains the current point.

On final exit: the final estimate of the solution vector.

4: FVEC(N) - real array.

Input/Output

On initial entry: FVEC must be set to the values of the functions evaluated at the initial point X.

On intermediate re-entry: if IREVCM \neq 2, FVEC must not be changed. If IREVCM = 2, FVEC must be set to the values of the functions computed at the current point X.

On final exit: the function values at the final point, X.

5: FJAC(LDFJAC,N) - real array.

Input/Output

On initial entry: FJAC must be set to the values of the Jacobian evaluated at the initial point

On intermediate re-entry: if IREVCM \neq 3, FJAC must not be changed. If IREVCM = 3, FJAC must be set to the value of the Jacobian computed at the current point X.

On final exit: the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian.

6: LDFJAC - INTEGER.

Input

On initial entry: the first dimension of the array FJAC as declared in the (sub)program from which C05PDF is called.

Constraint: LDFJAC ≥ N.

7: XTOL - real.

Input

On initial entry: the accuracy in X to which the solution is required.

Suggested value: the square root of the machine precision.

Constraint: XTOL ≥ 0.0.

8: DIAG(N) - real array.

Input/Output

On initial entry: if MODE = 2 (see below), DIAG must contain multiplicative scale factors for the variables.

Constraint: DIAG(i) > 0.0 for i = 1,2,...,n.

On intermediate exit: the scale factors actually used (computed internally if MODE \neq 2).

9: MODE - INTEGER.

Input

On initial entry: indicates whether or not the user has provided scaling factors in DIAG. If MODE = 2 the scale factors must be supplied in DIAG. Otherwise, the variables will be scaled internally.

10: FACTOR - real.

Input

On initial entry: a quantity to be used in determining the initial step bound. In most cases, FACTOR should lie between 0.1 and 100.0. (The step bound is FACTOR× $\|$ DIAG×X $\|$ ₂ if this is non-zero; otherwise the bound is FACTOR.)

Suggested value: FACTOR = 100.0.

Constraint: FACTOR > 0.0.

11: R(LR) - real array.

Output

On final exit: the upper triangular matrix R produced by the QR factorization of the final approximate Jacobian, stored row-wise.

12: LR - INTEGER.

Input

On initial entry: the dimension of the array R as declared in the (sub)program from which CO5PDF is called.

Constraint: LR $\geq N \times (N+1)/2$.

13: QTF(N) - real array.

Output

On final exit: the vector $Q^T f$.

14: W(N,4) - real array.

Workspace

15: IFAIL - INTEGER.

Input/Output

On initial entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On final exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, $N \leq 0$,

or XTOL < 0.0,

or $FACTOR \leq 0.0$,

or LDFJAC < N,

or LR $< N \times (N+1)/2$,

or MODE = 2 and DIAG(i) \leq 0.0 for some i, i = 1,2,...,N.

IFAIL = 2

On entry, IREVCM < 0 or IREVCM > 3.

IFAIL = 3

No further improvement in the approximate solution X is possible; XTOL is too small.

IFAIL = 4

The iteration is not making good progress, as measured by the improvement from the last 5 Jacobian evaluations.

IFAIL = 5

The iteration is not making good progress, as measured by the improvement from the last 10 iterations.

The values IFAIL = 4 and IFAIL = 5 may indicate that the system does not have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning C05PDF from a different starting point may avoid the region of difficulty.

7. Accuracy

If \hat{x} is the true solution and D denotes the diagonal matrix whose entries are defined by the array DIAG then C05PDF tries to ensure that

$$||D(x-\hat{x})||_2 \leq \text{XTOL} \times ||D\hat{x}||_2.$$

If this condition is satisfied with XTOL = 10^{-k} then the larger components of Dx have k significant decimal digits. There is a danger that the smaller components of Dx may have large relative errors, but the fast rate of convergence of C05PDF usually avoids this possibility.

If XTOL is less than *machine precision* and the above test is satisfied with the *machine precision* in place of XTOL, then the routine exits with IFAIL = 3.

Note that this convergence test is based purely on relative error, and may not indicate convergence if the solution is very close to the origin.

The test assumes that the functions and the Jacobian are coded consistently and that the functions are reasonably well behaved. If these conditions are not satisfied then C05PDF may incorrectly indicate convergence. The coding of the Jacobian can be checked using C05ZAF. If the Jacobian is coded correctly, then the validity of the answer can be checked by rerunning C05PDF with a tighter tolerance.

8. Further Comments

The time required by C05PDF to solve a given problem depends on n, the behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic operations executed by C05PDF is about $11.5 \times n^2$ to process each evaluation of the functions and about $1.3 \times n^3$ to process each evaluation of the Jacobian. The timing of C05PDF is strongly influenced by the time spent in the evaluation of the functions and the Jacobian.

Ideally the problem should be scaled so that at the solution the function values are of comparable magnitude.

9. Example

To determine the values $x_1,...,x_9$ which satisfy the tridiagonal equations:

$$(3-2x_1)x_1 - 2x_2 = -1$$

 $-x_{i-1} + (3-2x_i)x_i - 2x_{i+1} = -1,$ $i = 2,3,...,8$
 $-x_8 + (3-2x_9)x_9 = -1.$

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO5PDF Example Program Text
Mark 14 Release. NAG Copyright 1989.
.. Parameters ..
                 N, LDFJAC, LR
INTEGER
                  (N=9, LDFJAC=N, LR=(N*(N+1))/2)
PARAMETER
                 NOUT
INTEGER
PARAMETER
                 (NOUT=6)
                 ZERO, ONE, TWO, THREE, FOUR
real
                 (ZERO=0.0e0, ONE=1.0e0, TWO=2.0e0, THREE=3.0e0,
PARAMETER
                  FOUR=4.0e0)
```

```
.. Local Scalars ..
                      FACTOR, FNORM, XTOL
    real
    INTEGER
                      ICOUNT, IFAIL, IREVCM, J, K, MODE
    .. Local Arrays ..
    real
                      DIAG(N), FJAC(LDFJAC,N), FVEC(N), QTF(N), R(LR),
                      W(N,4), X(N)
    .. External Functions ..
    real
                      F06EJF, X02AJF
    EXTERNAL
                      F06EJF, X02AJF
    .. External Subroutines ..
    EXTERNAL
                      C05PDF
    .. Intrinsic Functions ..
    INTRINSIC
                      SQRT
    .. Executable Statements ..
    WRITE (NOUT, *) 'C05PDF Example Program Results'
    The following starting values provide a rough solution.
    DO 20 J = 1, N
       X(J) = -1.0e0
 20 CONTINUE
    XTOL = SQRT(X02AJF())
    DO 40 J = 1, N
       DIAG(J) = 1.0e0
 40 CONTINUE
    MODE = 2
    FACTOR = 100.0e0
    ICOUNT = 0
    IFAIL = 1
    IREVCM = 0
 60 CALL C05PDF(IREVCM, N, X, FVEC, FJAC, LDFJAC, XTOL, DIAG, MODE, FACTOR, R,
                LR, QTF, W, IFAIL)
    IF (IREVCM.EQ.1) THEN
       ICOUNT = ICOUNT + 1
       Insert print statements here to monitor progess if desired
       GO TO 60
    ELSE IF (IREVCM.EQ.2) THEN
       Evaluate functions at current point
       DO 80 K = 1, N
          FVEC(K) = (THREE-TWO*X(K))*X(K) + ONE
          IF (K.GT.1) FVEC(K) = FVEC(K) - X(K-1)
          IF (K.LT.N) FVEC(K) = FVEC(K) - TWO\times X(K+1)
 80
       CONTINUE
       GO TO 60
    ELSE IF (IREVCM.EQ.3) THEN
       Evaluate Jacobian at current point
       DO 120 K = 1, N
          DO 100 J = 1, N
             FJAC(K,J) = ZERO
100
          CONTINUE
          FJAC(K,K) = THREE - FOUR*X(K)
          IF (K.NE.1) FJAC(K,K-1) = -ONE
          IF (K.NE.N) FJAC(K,K+1) = -TWO
120
       CONTINUE
       GO TO 60
    END IF
    WRITE (NOUT, *)
    IF (IFAIL.EQ.0) THEN
       FNORM = F06EJF(N, FVEC, 1)
       WRITE (NOUT, 99999) 'Final 2 norm of the residuals after',
         ICOUNT, ' iterations is ', FNORM
       WRITE (NOUT, *)
       WRITE (NOUT, *) 'Final approximate solution'
       WRITE (NOUT, 99998) (X(J), J=1, N)
```

[NP1692/14]

```
ELSE

WRITE (NOUT, 99999) 'IFAIL =', IFAIL

IF (IFAIL.GT.2) THEN

WRITE (NOUT,*) 'Approximate solution'

WRITE (NOUT, 99998) (X(J), J=1, N)

END IF

END IF

STOP

*

99999 FORMAT (1X, A, 14, A, e12.4)

99998 FORMAT (5X, 3F12.4)

END
```

9.2. Program Data

None.

9.3. Program Results

```
C05PDF Example Program Results

Final 2 norm of the residuals after 11 iterations is 0.1193E-07

Final approximate solution
-0.5707 -0.6816 -0.7017
-0.7042 -0.7014 -0.6919
-0.6658 -0.5960 -0.4164
```

C05ZAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C05ZAF checks the user-provided gradients of a set of non-linear functions in several variables, for consistency with the functions themselves. The routine must be called twice.

2. Specification

```
SUBROUTINE C05ZAF (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE,

ERR)

INTEGER

M, N, LDFJAC, MODE

real

X(N), FVEC(M), FJAC(LDFJAC,N), XP(N), FVECP(M),

ERR(M)
```

3. Description

C05ZAF is based upon the MINPACK routine CHKDER (Moré et al. [1]). It checks the *i*th gradient for consistency with the *i*th function by computing a forward-difference approximation along a suitably chosen direction and comparing this approximation with the user-supplied gradient along the same direction. The principal characteristic of C05ZAF is its invariance under changes in scale of the variables or functions.

4. References

[1] MORÉ, J.J., GARBOW, B.S. and HILLSTROM, K.E. User Guide for MINPACK-1.
Argonne National Laboratory, ANL-80-74.

5. Parameters

1: M - INTEGER.

Input

On entry: the number of functions.

2: N – INTEGER.

Input

On entry: the number of variables. For use with C05PBF and C05PCF, M = N.

3: X(N) - real array.

Input

On entry: the components of a point x, at which the consistency check is to be made. (See Section 8.)

4: FVEC(M) - real array.

Input

On entry: when MODE = 2, FVEC must contain the functions evaluated at x.

5: FJAC(LDFJAC,N) – real array.

Input

On entry: when MODE = 2, FJAC must contain the user-supplied gradients. (The *i*th row of FJAC must contain the gradient of the *i*th function evaluated at the point x.)

6: LDFJAC - INTEGER.

Input

On entry: the first dimension of the array FJAC as declared in the (sub)program from which C05ZAF is called.

Constraint: LDFJAC ≥ M.

7: XP(N) - real array.

Output

On exit: when MODE = 1, XP is set to a neighbouring point to X.

8: FVECP(M) - real array.

Input

On entry: when MODE = 2, FVECP must contain the functions evaluated at XP.

9: MODE - INTEGER.

Input

On entry: the value 1 on the first call and the value 2 on the second call of C05ZAF.

10: ERR(M) - real array.

Output

On exit: when MODE = 2, ERR contains measures of correctness of the respective gradients. If there is no loss of significance (see Section 8), then if ERR(i) is 1.0 the ith user-supplied gradient is correct, whilst if ERR(i) is 0.0 the ith gradient is incorrect. For values of ERR(i) between 0.0 and 1.0 the categorisation is less certain. In general, a value of ERR(i) > 0.5 indicates that the ith gradient is probably correct.

6. Error Indicators and Warnings

None.

7. Accuracy

See below.

8. Further Comments

The time required by C05ZAF increases with M and N.

C05ZAF does not perform reliably if cancellation or rounding errors cause a severe loss of significance in the evaluation of a function. Therefore, none of the components of x should be unusually small (in particular, zero) or any other value which may cause loss of significance. The relative differences between corresponding elements of FVECP and FVEC should be at least two orders of magnitude greater than the *machine precision*.

9. Example

This example checks the Jacobian matrix for a problem with 15 functions of 3 variables. The results indicate that the first 7 gradients are probably incorrect (this is caused by a deliberate error in the code to calculate the Jacobian).

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C05ZAF Example Program Text
Mark 14 Revised.
                  NAG Copyright 1989.
.. Parameters ..
                  M, N, LDFJAC
INTEGER
PARAMETER
                  (M=15, N=3, LDFJAC=M)
                  NOUT
INTEGER
PARAMETER
                  (NOUT=6)
.. Local Scalars ..
                  I, MODE
INTEGER
.. Local Arrays .
real
                  ERR(M), FJAC(LDFJAC,N), FVEC(M), FVECP(M), X(N),
                  XP(N)
  External Subroutines
                  C05ZAF, FCN
EXTERNAL
```

```
. Executable Statements ..
      WRITE (NOUT, *) 'C05ZAF Example Program Results'
      X(1) = 9.2e-1
      X(2) = 1.3e-1
      X(3) = 5.4e-1
      MODE = 1
      CALL CO5ZAF (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE, ERR)
      CALL FCN(M, N, X, FVEC, FJAC, LDFJAC, 1)
      CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,2)
      CALL FCN(M, N, XP, FVECP, FJAC, LDFJAC, 1)
      CALL C05ZAF(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) '
                                  FVEC at X = ', (X(I), I=1, N)
      WRITE (NOUT, *)
      WRITE (NOUT, 99998) (FVEC(I), I=1, M)
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) '
                                  FVECP at XP = ', (XP(I), I=1, N)
      WRITE (NOUT, *)
      WRITE (NOUT, 99998) (FVECP(I), I=1, M)
      WRITE (NOUT, *)
      WRITE (NOUT, *)
                              ERR'
      WRITE (NOUT, *)
      WRITE (NOUT, 99998) (ERR(I), I=1, M)
      STOP
99999 FORMAT (1X,A,3F12.7)
99998 FORMAT (5X, 3F12.4)
      SUBROUTINE FCN(M, N, X, FVEC, FJAC, LDFJAC, IFLAG)
      .. Parameters ..
      INTEGER
      PARAMETER
                       (M1=15)
      .. Scalar Arguments ..
      INTEGER
                       IFLAG, LDFJAC, M, N
      .. Array Arguments
      real
                      FJAC(LDFJAC, N), FVEC(M), X(N)
      .. Local Scalars ..
                       TMP1, TMP2, TMP3, TMP4
      real
      INTEGER
                       Ι
      .. Local Arrays ..
      real
                       Y(M1)
      .. Data statements ..
                       Y/1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1,
      DATA
                       1.34e0, 2.1e0, 4.39e0/
      .. Executable Statements .
      IF (IFLAG.NE.2) THEN
         DO 20 I = 1, M
            TMP1 = I
            TMP2 = M + 1 - I
            TMP3 = TMP1
            IF (I.GT.(M+1)/2) TMP3 = TMP2
            FVEC(I) = Y(I) - (X(1)+TMP1/(X(2)*TMP2+X(3)*TMP3))
  20
         CONTINUE
      ELSE
         DO 40 I = 1, M
            TMP1 = I
            TMP2 = M + 1 - I
```

[NP1692/14] Page 3

9.2. Program Data

None.

9.3. Program Results

C05ZAF Example Program Results

FVEC at X =	0.9200000	0.1300000	0.5400000
-2.8276	-1.4297 -1.8407 -2.0225 -3.4736 -9.2678	-1.9216 -2.4690	
FVECP at XP =	0.9200000	0.1300000	0.5400000
-2.8276	-1.4297 -1.8407 -2.0225 -3.4736 -9.2678	-2.4690	
ERR			
0.1120 0.0979 0.1498 1.0000 0.9917	0.0976 0.1053 1.0000 1.0000	0.0949 0.1197 0.9950 1.0000 0.9710	

Chapter C06 – Summation of Series

Note. Please refer to the Users' Note for your implementation to check that a routine is available.

Routine Name	Mark of Introduction	Purpose
CQ6BAF	10	Acceleration of convergence of sequence, Shanks' transformation and epsilon algorithm
CO6DBF	6	Sum of a Chebyshey series
CO6EAF	8	Single one-dimensional real discrete Fourier transform, no extra
CO6EBF	8	Single one-dimensional Hermitian discrete Fourier transform, no extra workspace
C06ECF	8	Single one-dimensional complex discrete Fourier transform, no extra workspace
C06EKF	11	Circular convolution or correlation of two real vectors, no extra workspace
CO6FAF	8	Single one-dimensional real discrete Fourier transform, extra workspace for greater speed
CO6FBF	8	Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
CO6FCF	8	Single one-dimensional complex discrete Fourier transform, extra
CO6FFF	11	One-dimensional complex discrete Fourier transform of multi-
CO6FJF	11	Multi-dimensional complex discrete Fourier transform of multi- dimensional data
CO6FKF	11	Circular convolution or correlation of two real vectors, extra workspace for greater speed
CO6FPF	12	Multiple one-dimensional real discrete Fourier transforms
CO6FQF	12	Multiple one-dimensional Hermitian discrete Fourier transforms
CO6FRF	12	Multiple one-dimensional complex discrete Fourier transforms
CO6FUF	13	Two-dimensional complex discrete Fourier transform
CO6FXF	17	Three-dimensional complex discrete Fourier transform
C06GBF	8	Complex conjugate of Hermitian sequence
COGGCF	8	Complex conjugate of complex sequence
C06GQF	12	Complex conjugate of multiple Hermitian sequences
C06GSF	12	Convert Hermitian sequences to general complex sequences
CO6HAF	13	Discrete sine transform
CO6HBF	13	Discrete cosine transform
COGHCF	13	Discrete quarter-wave sine transform
C06HDF	13	Discrete quarter-wave cosine transform
CO6LAF	12	Inverse Laplace transform, Crump's method
CO6LBF	14	Inverse Laplace transform, modified Weeks' method
CO6LCF	14	Evaluate inverse Laplace transform as computed by C06LBF
CO6PAF	19	Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex data format for Hermitian sequences
C06PCF	19	Single one-dimensional complex discrete Fourier transform, complex data format
CO6PFF	19	One-dimensional complex discrete Fourier transform of multi- dimensional data (using complex data type)
CO6PJF	19	Multi-dimensional complex discrete Fourier transform of multi-dimensional data (using complex data type)
CO6PKF	19	Circular convolution or correlation of two complex vectors
COGPPF	19	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences

CO6PQF	19	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using complex data format for Hermitian sequences and sequences stored as columns
CO6PRF	19	Multiple one-dimensional complex discrete Fourier transforms using complex data format
C06PSF	19	Multiple one-dimensional complex discrete Fourier transforms using complex data format and sequences stored as columns
C06PUF	19	Two-dimensional complex discrete Fourier transform, complex data format
C06PXF	19	Three-dimensional complex discrete Fourier transform, complex data format
CO6RAF	19	Discrete sine transform (easy-to-use)
CO6RBF	19	Discrete cosine transform (easy-to-use)
CO6RCF	19	Discrete quarter-wave sine transform (easy-to-use)
CO6RDF	19	Discrete quarter-wave cosine transform (easy-to-use)

.

Chapter C06

Summation of Series

Contents

1	Scope of the Chapter	2				
, 2	Background to the Problems	2 2				
_	1 Discrete Fourier Transforms					
	2.1.1 Complex transforms	2				
	2.1.2 Real transforms	2				
	2.1.3 Real symmetric transforms	4				
	2.1.4 Fourier integral transforms	5				
	2.1.5 Convolutions and correlations	5				
	2.1.6 Applications to solving partial differential equations (PDEs)	5				
		6				
		6				
		6				
	2.4 Acceleration of Convergence					
3	Recommendations on Choice and Use of Available Routines	7				
J	3.1 One-dimensional Fourier Transforms	7				
	3.2 Half- and Quarter-wave Transforms	8				
	3.3 Application to Elliptic Partial Differential Equations	8				
	3.4 Multi-dimensional Fourier Transforms	8				
	3.5 Convolution and Correlation	9				
	3.6 Inverse Laplace Transforms	9				
	3.7 Direct Summation of Orthogonal Series	9				
		9				
	3.8 Acceleration of Convergence					
4	Index	9				
5	Routines Withdrawn or Scheduled for Withdrawal					
6	References	10				

[NP3390/19] C06.1

1 Scope of the Chapter

This chapter is concerned with the following tasks.

- (a) Calculating the discrete Fourier transform of a sequence of real or complex data values.
- (b) Calculating the discrete convolution or the discrete correlation of two sequences of real or complex data values using discrete Fourier transforms.
- (c) Calculating the inverse Laplace transform of a user-supplied function.
- (d) Direct summation of orthogonal series.
- (e) Acceleration of convergence of a sequence of real values.

2 Background to the Problems

2.1 Discrete Fourier Transforms

2.1.1 Complex transforms

Most of the routines in this chapter calculate the finite discrete Fourier transform (DFT) of a sequence of n complex numbers z_i , for i = 0, 1, ..., n - 1. The transform is defined by

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \exp\left(-i\frac{2\pi jk}{n}\right) \tag{1}$$

for $k=0,1,\ldots,n-1$. Note that equation (1) makes sense for all integral k and with this extension \hat{z}_k is periodic with period n, i.e., $\hat{z}_k = \hat{z}_{k\pm n}$, and in particular $\hat{z}_{-k} = \hat{z}_{n-k}$. Note also that the scale-factor of $\frac{1}{\sqrt{n}}$ may be omitted in the definition of the DFT, and replaced by $\frac{1}{n}$ in the definition of the inverse.

If we write $z_j = x_j + iy_j$ and $\hat{z}_k = a_k + ib_k$, then the definition of \hat{z}_k may be written in terms of sines and cosines as

$$a_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \left(x_j \cos \left(\frac{2\pi jk}{n} \right) + y_j \sin \left(\frac{2\pi jk}{n} \right) \right)$$

$$b_k = rac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \left(y_j \cos\left(rac{2\pi j k}{n}
ight) - x_j \sin\left(rac{2\pi j k}{n}
ight)
ight).$$

The original data values z_j may conversely be recovered from the transform \hat{z}_k by an inverse discrete Fourier transform:

$$z_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \hat{z}_k \exp\left(+i\frac{2\pi jk}{n}\right) \tag{2}$$

for $j=0,1,\ldots,n-1$. If we take the complex conjugate of (2), we find that the sequence \bar{z}_j is the DFT of the sequence \bar{z}_k . Hence the inverse DFT of the sequence \hat{z}_k may be obtained by taking the complex conjugates of the \hat{z}_k ; performing a DFT; and taking the complex conjugates of the result. (Note that the terms forward transform and backward transform are also used to mean the direct and inverse transforms respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multi-dimensional transforms. For example, in two dimensions we have

$$\hat{z}_{k_1k_2} = \frac{1}{\sqrt{n_1n_2}} \sum_{i_1=0}^{n_1-1} \sum_{i_2=0}^{n_2-1} z_{j_1j_2} \exp\left(-i\frac{2\pi j_1k_1}{n_1}\right) \exp\left(-i\frac{2\pi j_2k_2}{n_2}\right).$$

Note. Definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the DFT, and (1) as the definition of the inverse.

2.1.2 Real transforms

If the original sequence is purely real valued, i.e., $z_j = x_j$, then

$$\hat{z}_k = a_k + ib_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \exp\left(-i\frac{2\pi jk}{n}\right)$$

and \hat{z}_{n-k} is the complex conjugate of \hat{z}_k . Thus the DFT of a real sequence is a particular type of complex sequence, called a **Hermitian** sequence, or **half-complex** or **conjugate symmetric**, with the properties

$$a_{n-k} = a_k \qquad b_{n-k} = -b_k \qquad b_0 = 0$$

and, if n is even, $b_{n/2} = 0$.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n, independent real values. This can obviously lead to economies in storage, with two schemes being used in this chapter. In the first scheme, which will be referred to as the **real storage format** for Hermitian sequences, the real parts a_k for $0 \le k \le n/2$ are stored in normal order in the first n/2 + 1 locations of an array X of length n; the corresponding non-zero imaginary parts are stored in reverse order in the remaining locations of X. To clarify, if X is declared with bounds (0:n-1) in your calling (sub)program, the following two tables illustrate the storage of the real and imaginary parts of \hat{z}_k for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of X	0	1	2	 n/2	 n-2	n-1
Sequence	a_0	$a_1 + \imath b_1$	$a_2 + \imath b_2$	 $a_{n/2}$	 $a_2 - \imath b_2$	$a_1 - \imath b_1$
Stored values	a_0	a_1	a_2	 $a_{n/2}$	 b_2	b_1

$$\mathbf{X}(k) = a_k,$$
 for $k = 0, 1, ..., n/2$, and $\mathbf{X}(n-k) = b_k,$ for $k = 1, 2, ..., n/2 - 1$.

If n is odd then the sequence has one purely real element and, letting n = 2s + 1, is stored as follows:

Index of X	0	1	2	 s	s+1	 n-2	n-1
Sequence	a_0	$a_1 + \imath b_1$	$a_2 + \imath b_2$	 $a_s + \imath b_s$	$a_s - \imath b_s$	 $a_2 - \imath b_2$	$a_1 - \imath b_1$
Stored values	a_0	a_1	a ₂	 a_s	b_s	 b_2	b_1

$$\begin{array}{ll} \mathbf{X}(k) = a_k, & \text{for } k = 0, 1, \ldots, s, \text{ and} \\ \mathbf{X}(n-k) = b_k, & \text{for } k = 1, 2, \ldots, s. \end{array}$$

The second storage scheme, referred to in this chapter as the complex storage format for Hermitian sequences, stores the real and imaginary parts a_k , b_k , for $0 \le k \le n/2$, in consecutive locations of an array X of length n+2. If X is declared with bounds (0:n+1) in your calling (sub)program, the following two tables illustrate the storage of the real and imaginary parts of \hat{z}_k for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of X	0	1	2	3	 n-2	n-1	n	n+1
Stored values	a_0	$b_0 = 0$	a_1	b_1	 $a_{n/2-1}$	$b_{n/2-1}$	$a_{n/2}$	$b_{n/2} = 0$

$$X(2 * k) = a_k,$$
 for $k = 0, 1, ..., n/2$, and $X(2 * k + 1) = b_k,$ for $k = 0, 1, ..., n/2$.

If n is odd then the sequence has one purely real element and, letting n = 2s + 1, is stored as follows:

Index of X	0	1	2	3	 n-2	n-1	n	n+1
Stored values	a_0	$b_0 = 0$	a_1	b_1	 b_{s-1}	a_s	b_s	0

$$X(2 * k) = a_k,$$

 $X(2 * k + 1) = b_k,$

for
$$k = 0, 1, \ldots, s$$
, and for $k = 0, 1, \ldots, s$.

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real sequence. That is,

$$x_j = \frac{1}{\sqrt{n}} \left(a_0 + 2 \sum_{k=1}^{n/2-1} \left(a_k \cos\left(\frac{2\pi jk}{n}\right) - b_k \sin\left(\frac{2\pi jk}{n}\right) \right) + a_{n/2} \right)$$

where $a_{n/2} = 0$ if n is odd.

2.1.3 Real symmetric transforms

In many applications the sequence x_j will not only be real, but may also possess additional symmetries which we may exploit to reduce further the computing time and storage requirements. For example, if the sequence x_j is odd, $(x_j = -x_{n-j})$, then the discrete Fourier transform of x_j contains only sine terms. Rather than compute the transform of an odd sequence, we define the sine transform of a real sequence by

$$\hat{x}_k = \sqrt{\frac{2}{n}} \sum_{j=1}^{n-1} x_j \sin\left(\frac{\pi j k}{n}\right),\,$$

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In this case the x_j are arbitrary, and the symmetry only becomes apparent when the sequence is extended. Similarly we define the **cosine transform** of a real sequence by

$$\hat{x}_k = \sqrt{\frac{2}{n}} \left(\frac{1}{2} x_0 + \sum_{j=1}^{n-1} x_j \cos \left(\frac{\pi j k}{n} \right) + \frac{1}{2} (-1)^k x_n \right)$$

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these 'half-wave' symmetries described above, sequences arise in practice with 'quarter-wave' symmetries. We define the quarter-wave sine transform by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n-1} x_j \sin \left(\frac{\pi j (2k-1)}{2n} \right) + \frac{1}{2} (-1)^{k-1} x_n \right)$$

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

$$(0, x_1, \ldots, x_n, x_{n-1}, \ldots, x_1, 0, -x_1, \ldots, -x_n, -x_{n-1}, \ldots, -x_1).$$

Similarly we may define the quarter-wave cosine transform by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \left(\frac{1}{2} x_0 + \sum_{j=1}^{n-1} x_j \cos \left(\frac{\pi j (2k-1)}{2n} \right) \right)$$

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

$$(x_0, x_1, \ldots, x_{n-1}, 0, -x_{n-1}, \ldots, -x_0, -x_1, \ldots, -x_{n-1}, 0, x_{n-1}, \ldots, x_1).$$

2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the Fourier integral transform

 $F(s) = \int_{-\infty}^{\infty} f(t) \exp(-i2\pi st) dt$

when f(t) is negligible outside some region (0,c). Dividing the region into n equal intervals we have

$$F(s) \cong \frac{c}{n} \sum_{j=0}^{n-1} f_j \exp(-i2\pi s j c/n)$$

and so

$$F_k \cong \frac{c}{n} \sum_{i=0}^{n-1} f_j \exp(-i2\pi j k/n)$$

for k = 0, 1, ..., n - 1, where $f_j = f(jc/n)$ and $F_k = F(k/c)$.

Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the region s = 0 to s = n/c.

If the function f(t) is defined over some more general interval (a, b), then the integral transform can still be approximated by the discrete transform provided a shift is applied to move the point a to the origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the discrete convolution or correlation of two vectors x and y defined (as in Brigham [1]) by

convolution:
$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j}$$

correlation:
$$w_k = \sum_{j=0}^{n-1} \bar{x}_j y_{k+j}$$

(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham [1]) these can be used as approximations to the convolution or correlation integrals defined by

 $z(s) = \int_{-\infty}^{\infty} x(t)y(s-t) dt$

and

$$w(s) = \int_{-\infty}^{\infty} \bar{x}(t)y(s+t) dt, \quad -\infty < s < \infty.$$

For more general advice on the use of Fourier transforms, see Hamming [5]; more detailed information on the fast Fourier transform algorithm can be found in Gentleman and Sande [4] and Brigham [1].

2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of symmetric sequences, is in the solution of elliptic PDEs. If an equation is discretised using finite differences, then it is possible to reduce the problem of solving the resulting large system of linear equations to that of solving a number of tridiagonal systems of linear equations. This is accomplished by uncoupling the equations using Fourier transforms, where the nature of the boundary conditions determines the choice of transforms — see Section 3.3. Full details of the Fourier method for the solution of PDEs may be found in Swarztrauber [7], [8].

2.2 Inverse Laplace Transforms

Let f(t) be a real function of t, with f(t) = 0 for t < 0, and be piecewise continuous and of exponential order α , i.e.,

$$|f(t)| \leq Me^{\alpha t}$$

for large t, where α is the minimal such exponent.

The Laplace transform of f(t) is given by

$$F(s) = \int_0^\infty e^{-st} f(t) \ dt, \quad t > 0$$

where F(s) is defined for $Re(s) > \alpha$.

The inverse transform is defined by the Bromwich integral

$$f(t) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} e^{st} F(s) \ ds, \quad t > 0.$$

The integration is performed along the line s=a in the complex plane, where $a>\alpha$. This is equivalent to saying that the line s=a lies to the right of all singularities of F(s). For this reason, the value of α is crucial to the correct evaluation of the inverse. It is not essential to know α exactly, but an upper bound must be known.

The problem of determining an inverse Laplace transform may be classified according to whether (a) F(s) is known for real values only, or (b) F(s) is known in functional form and can therefore be calculated for complex values of s. Problem (a) is very ill-defined and no routines are provided. Two methods are provided for problem (b).

2.3 Direct Summation of Orthogonal Series

For any series of functions ϕ_i which satisfy a recurrence

$$\phi_{r+1}(x) + \alpha_r(x)\phi_r(x) + \beta_r(x)\phi_{r-1}(x) = 0$$

the sum

$$\sum_{r=0}^{n} a_r \phi_r(x)$$

is given by

$$\sum_{r=0}^n a_r \phi_r(x) = b_0(x) \phi_0(x) + b_1(x) (\phi_1(x) + \alpha_0(x) \phi_0(x))$$

where

$$b_r(x) + \alpha_r(x)b_{r+1}(x) + \beta_{r+1}(x)b_{r+2}(x) = a_rb_{n+1}(x) = b_{n+2}(x) = 0.$$

This may be used to compute the sum of the series. For further reading, see Hamming [5].

2.4 Acceleration of Convergence

This device has applications in a large number of fields, such as summation of series, calculation of integrals with oscillatory integrands (including, for example, Hankel transforms), and root-finding. The mathematical description is as follows. Given a sequence of values $\{s_n\}$, $n=m, m+1, m+2, \ldots, m+2l$ then, except in certain singular cases, parameters, a, b_i, c_i may be determined such that

$$s_n = a + \sum_{i=1}^l b_i c_i^n.$$

If the sequence $\{s_n\}$ converges, then a may be taken as an estimate of the limit. The method will also find a pseudo-limit of certain divergent sequences — see Shanks [6] for details.

To use the method to sum a series, the terms s_n of the sequence should be the partial sums of the series, e.g., $s_n = \sum_{k=1}^n t_k$, where t_k is the kth term of the series. The algorithm can also be used to some

advantage to evaluate integrals with oscillatory integrands; one approach is to write the integral (in this case over a semi-infinite interval) as

$$\int_0^\infty f(x) \ dx = \int_0^{a_1} f(x) \ dx + \int_{a_1}^{a_2} f(x) \ dx + \int_{a_2}^{a_3} f(x) \ dx + \dots$$

and to consider the sequence of values

$$s_1 = \int_0^{a_1} f(x) \ dx; \ s_2 = \int_0^{a_2} f(x) \ dx = s_1 + \int_{a_1}^{a_2} f(x) \ dx, \text{etc},$$

where the integrals are evaluated using standard quadrature methods. In choosing the values of the a_k , it is worth bearing in mind that C06BAF converges much more rapidly for sequences whose values oscillate about a limit. The a_k should thus be chosen to be (close to) the zeros of f(x), so that successive contributions to the integral are of opposite sign. As an example, consider the case where $f(x) = M(x) \sin x$ and M(x) > 0: convergence will be much improved if $a_k = k\pi$ rather than $a_k = 2k\pi$.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users' Note for your implementation to check that a routine is available.

3.1 One-dimensional Fourier Transforms

The choice of routine is determined first of all by whether the data values constitute a real, Hermitian or general complex sequence. It is wasteful of time and storage to use an inappropriate routine. The choice is next determined by the users preferred storage format; where it is preferred for complex sequences to be stored in two separate real arrays or for Hermitian sequences to be stored in real storage format (see Section 2.1.2) then a real storage format routine should be used; where it is preferred for complex data to be stored in complex arrays or for Hermitian sequences to be stored in complex storage format then a complex storage format routine should be used.

Note also that the complex storage format routines have a reduced parameter list: there are no INIT or TRIG parameters.

Three groups, each of three routines, are provided in real storage format and three groups of two routines are provided in complex storage format.

	Group 1	Group 2	Group 3	Group 4
Real storage format Real sequences Hermitian sequences General complex sequences	C06EAF C06EBF C06ECF	C06FAF C06FBF C06FCF	C06FPF C06FQF C06FRF	
Complex storage format Real/Hermitian sequences General complex sequences		C06PAF C06PCF	C06PPF C06PRF	C06PQF C06PSF

Group 1 routines each compute a single transform of length n, without requiring any extra working storage. Group 2 routines also compute a single transform of length n, but require one additional real (complex for C06PCF) work-array. For some values of n— when n has unpaired prime factors—Group 1 routines are particularly slow and the Group 2 routines are much more efficient. The Group 1 and some Group 2 routines (C06FAF, C06FBF and C06FCF) impose some restrictions on the value of n, namely that no prime factor of n may exceed 19 and the total number of prime factors (including repetitions) may not exceed 20 (though the latter restriction only becomes relevant when $n > 10^6$).

Group 3 and Group 4 routines are all designed to perform several transforms in a single call, all with the same value of n. They are designed to be much faster than the Group 1 and Group 2 routines on vector-processing machines. They do however require more working storage. Even on scalar processors, they may be somewhat faster than repeated calls to Group 1 or Group 2 routines because of reduced overheads and because they pre-compute and store the required values of trigonometric functions. Group 3 and Group 4 routines differ in the way sequences are stored: Group 3 routines store sequences as rows of a two-dimensional array while Group 4 routines store sequences as columns of a two-dimensional array.

[NP3390/19] C06.7

Group 3 and Group 4 routines impose no practical restrictions on the value of n; however, the fast Fourier transform algorithm ceases to be 'fast' if applied to values of n which cannot be expressed as a product of small prime factors. All the above routines are particularly efficient if the only prime factors of n are 2, 3 or 5.

If extensive use is to be made of these routines, users who are concerned about efficiency are advised to conduct their own timing tests.

To compute inverse (backward) discrete Fourier transforms the real storage format routines should be used in conjunction with the utility routines C06GBF, C06GCF and C06GQF which form the complex conjugate of a Hermitian or general sequence of complex data values. In the case of complex storage format routines, there is a direction parameter which determines the direction of the transform; a call to such a routine in the forward direction followed by a call in the backward direction reproduces the original data.

3.2 Half- and Quarter-wave Transforms

Eight routines are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences. C06HAF and C06RAF compute multiple Fourier sine transforms, C06HBF and C06RBF compute multiple Fourier cosine transforms, C06HCF and C06RCF compute multiple quarter-wave Fourier sine transforms, and C06HDF and C06RDF compute multiple quarter-wave Fourier cosine transforms. There are two routines for each type of transform; the routines C06RAF, C06RBF, C06RCF and C06RDF have shorter parameter lists than their counterparts and are therefore simpler to use.

3.3 Application to Elliptic Partial Differential Equations

As described in Section 2.1, Fourier transforms may be used in the solution of elliptic PDEs.

C06HAF and C06RAF may be used to solve equations where the solution is specified along the boundary.

C06HBF and C06RBF may be used to solve equations where the derivative of the solution is specified along the boundary.

C06HCF and C06RCF may be used to solve equations where the solution is specified on the lower boundary, and the derivative of the solution is specified on the upper boundary.

C06HDF and C06RDF may be used to solve equations where the derivative of the solution is specified on the lower boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by C06FPF and C06FQF are appropriate.

3.4 Multi-dimensional Fourier Transforms

The following routines compute multi-dimensional discrete Fourier transforms of complex data:

	Real storage	Complex storage
2 dimensions	C06FUF	C06PUF
3 dimensions	C06FXF	C06PXF
any number of dimensions	C06FJF	C06PJF

The real storage format routines store sequences of complex data in two **real** arrays containing the real and imaginary parts of the sequence respectively. The complex storage format routines store the sequences in **complex** arrays.

Note that complex storage format routines have a reduced parameter list, having no INIT or TRIG parameters.

C06FUF (C06PUF) and C06FXF (C06PXF) should be used in preference to C06FJF (C06PJF) for twoand three-dimensional transforms, as they are easier to use and are likely to be more efficient, especially on vector processors.

C06.8

3.5 Convolution and Correlation

C06EKF and C06FKF each compute either the discrete convolution or the discrete correlation of two real vectors. The distinction between these two routines is the same as that between the C06E- and C06F-routines described in Section 3.1. C06PKF computes either the discrete convolution or the discrete correlation of two complex vectors.

3.6 Inverse Laplace Transforms

Two methods are provided: Weeks' method and Crump's method. Both require the function F(s) to be evaluated for complex values of s. If in doubt which method to use, try Weeks' method first; when it is suitable, it is usually much faster.

Typically the inversion of a Laplace transform becomes harder as t increases so that all numerical methods tend to have a limit on the range of t for which the inverse f(t) can be computed. C06LAF is useful for small and moderate values of t.

It is often convenient or necessary to scale a problem so that α is close to 0. For this purpose it is useful to remember that the inverse of F(s+k) is $\exp(-kt)f(t)$. The method used by C06LAF is not so satisfactory when f(t) is close to zero, in which case a term may be added to F(s), e.g., k/s + F(s) has the inverse k + f(t).

Singularities in the inverse function f(t) generally cause numerical methods to perform less well. The positions of singularities can often be identified by examination of F(s). If F(s) contains a term of the form $\exp(-ks)/s$ then a finite discontinuity may be expected in the inverse at t=k. C06LAF, for example, is capable of estimating a discontinuous inverse but, as the approximation used is continuous, Gibbs' phenomena (overshoots around the discontinuity) result. If possible, such singularities of F(s) should be removed before computing the inverse.

3.7 Direct Summation of Orthogonal Series

The only routine available is, C06DBF, which sums a finite Chebyshev series

$$\sum_{j=0}^{n} c_{j} T_{j}(x), \sum_{j=0}^{n} c_{j} T_{2j}(x) \text{ or } \sum_{j=0}^{n} c_{j} T_{2j+1}(x)$$

depending on the choice of a parameter.

3.8 Acceleration of Convergence

The only routine available is, C06BAF.

4 Index

Acceleration of convergence	CO6BAF
Complex conjugate,	
complex sequence	CO6GCF
Hermitian sequence	CO6GBF
multiple Hermitian sequences	CO6GQF
Complex sequence from Hermitian sequences	C06GSF
Convolution or Correlation	
real vectors, space-saving	C06EKF
real vectors, time-saving	CO6FKF
complex vectors, time-saving	CO6PKF
Discrete Fourier Transform	
multi-dimensional	
complex sequence, real storage	CO6FJF
complex sequence, complex storage	CO6PJF
two-dimensional	
complex sequence, real storage	CO6FUF

complex sequence, complex storage	C06PUF
three-dimensional	
complex sequence, real storage	CO6FXF
complex sequence, complex storage	CO6PXF
one-dimensional, multi-variable	
complex sequence, real storage	. CO6FFF
complex sequence, complex storage	CO6PFF
one-dimensional, multiple transforms	
complex sequence, real storage by rows	CO6FRF
complex sequence, complex storage by rows	CO6PRF
complex sequence, complex storage by columns	C06PSF
Hermitian sequence, real storage by rows	CO6FQF
real sequence, real storage by rows	CO6FPF
Hermitian/real sequence, complex storage by rows	CO6PPF
Hermitian/real sequence, complex storage by columns	C06PQF
one-dimensional, single transforms	
complex sequence, space saving, real storage	C06ECF
complex sequence, time-saving, real storage	C06FCF
complex sequence, time-saving, complex storage	C06PCF
Hermitian sequence, space-saving, real storage	C06EBF
Hermitian sequence, time-saving, real storage	CO6FBF
real sequence, space-saving, real storage	CO6EAF
real sequence, time-saving, real storage	CO6FAF
Hermitian/real sequence, time-saving, complex storage	CO6PAF
half- and quarter-wave transforms	
multiple Fourier sine transforms	CO6HAF
multiple Fourier sine transforms, simple use	CO6RAF
multiple Fourier cosine transforms	CO6HBF
multiple Fourier cosine transforms, simple use	CO6RBF
multiple quarter-wave sine transforms	CO6HCF
multiple quarter-wave sine transforms, simple use	C06RCF
multiple quarter-wave cosine transforms	CO6HDF
multiple quarter-wave cosine transforms, simple use	C06RDF
Inverse Laplace Transform	
Crump's method	CO6LAF
Weeks' method	
compute coefficients of solution	CO6LBF
evaluate solution	C06LCF
Summation of Chebyshev series	CO6DBF

5 Routines Withdrawn or Scheduled for Withdrawal

None since Mark 13.

6 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Davies S B and Martin B (1979) Numerical inversion of the Laplace transform: A survey and comparison of methods J. Comput. Phys. 33 1-32
- [3] Fox L and Parker I B (1968) Chebyshev Polynomials in Numerical Analysis Oxford University Press
- [4] Gentleman W S and Sande G (1966) Fast Fourier transforms for fun and profit Proc. Joint Computer Conference, AFIPS 29 563-578
- [5] Hamming R W (1962) Numerical Methods for Scientists and Engineers McGraw-Hill

- [6] Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences J. Math. Phys. 34 1-42
- [7] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [8] Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub) Mathematical Association of America
- [9] Swarztrauber P N (1986) Symmetric FFT's Math. Comput. 47 (175) 323-346
- [10] Wynn P (1956) On a device for computing the $e_m(S_n)$ transformation Math. Tables Aids Comput. 10 91-96

[NP3390/19] C06.11 (last)

C06BAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06BAF accelerates the convergence of a given convergent sequence to its limit.

2. Specification

SUBROUTINE CO6BAF (SEQN, NCALL, RESULT, ABSERR, WORK, IWORK, IFAIL)

INTEGER NCALL, IWORK, IFAIL

real SEQN, RESULT, ABSERR, WORK(IWORK)

3. Description

The routine performs Shanks' transformation on a given sequence of real values by means of the Epsilon algorithm of Wynn [2]. A (possibly unreliable) estimate of the absolute error is also given.

The routine must be called repetitively, once for each new term in the sequence.

4. References

[1] SHANKS, D.

Nonlinear Transformations of Divergent and Slowly Convergent Sequences. J. Math. Phys., 34, pp. 1-42, 1955.

[2] WYNN, P.

On a Device for Computing the $e_m(S_n)$ Transformation. Math. Tables Aids Comp. 10, pp. 91-96, 1956.

5. Parameters

1: SEQN - real. Input

On entry: the next term of the sequence to be considered.

2: NCALL - INTEGER.

Input/Output

On entry: on the first call NCALL must be set to 0. Thereafter NCALL must not be changed between calls.

On exit: the number of terms in the sequence that have been considered.

3: RESULT – real. Output

On exit: the estimate of the limit of the sequence. For the first two calls, RESULT = SEQN.

4: ABSERR – real. Output

On exit: an estimate of the absolute error in RESULT. For the first three calls, ABSERR is set to a large machine-dependent constant.

5: WORK(IWORK) - real array.

Workspace

Used as workspace, but must not be changed between calls.

6: IWORK – INTEGER.

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06BAF is called.

Suggested value: (maximum number of terms in the sequence) + 6. See Section 8.2.

Constraint: IWORK ≥ 7.

[NP1692/14] Page 1

7: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

$$IFAIL = 1$$

On entry, NCALL < 0.

IFAIL = 2

On entry, IWORK < 7.

7. Accuracy

The accuracy of the absolute error estimate ABSERR varies considerably with the type of sequence to which the routine is applied. In general it is better when applied to oscillating sequences than to monotonic sequences where it may be a severe underestimate.

8. Further Comments

8.1. Timing

The time taken by the routine is approximately proportional to the final value of NCALL.

8.2. Choice of IWORK

For long sequences, a 'window' of the last n values can be used instead of all the terms of the sequence. Tests on a variety of problems indicate that a suitable value is n = 50; this implies a value for IWORK of 56. Users are advised to experiment with other values for their own specific problems.

8.3. Convergence

The routine will induce convergence in some divergent sequences. See Shanks [1] for more details.

9. Example

The example program attempts to sum the infinite series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$

by considering the sequence of partial sums

$$\sum_{n=1}^{1}, \sum_{n=1}^{2}, \sum_{n=1}^{3}, \dots, \sum_{n=1}^{10}$$

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- * C06BAF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters ..

INTEGER IWORK

PARAMETER (IWORK=16)
INTEGER NOUT

PARAMETER (NOUT=6)

.. Local Scalars ..

real ABSERR, ANS, ERROR, PI, R, RESULT, SEQN, SIG

INTEGER I, IFAIL, NCALL

```
.. Local Arrays ..
     real
                        WORK(IWORK)
      .. External Functions ..
      real
                        X01AAF
      EXTERNAL
                        X01AAF
      .. External Subroutines ..
      EXTERNAL
                        C06BAF
      .. Intrinsic Functions ..
      INTRINSIC
                        real
      .. Executable Statements ..
      WRITE (NOUT, *) 'C06BAF Example Program Results'
      WRITE (NOUT, *)
      PI = X01AAF(0.0e0)

ANS = PI**2/12.0e0
      NCALL = 0
      SIG = 1.0e0
      SEQN = 0.0e0
      WRITE (NOUT, *)
                                                                  Actual'
                                                Estimated
      WRITE (NOUT, *)
                                                                   error'
                                 RESULT
                                                abs error
           I
                     SEQN
      WRITE (NOUT, *)
      DO 20 I = 1, 10
         R = real(I)
         SEQN = SEQN + SIG/(R**2)
         IFAIL = 1
         CALL C06BAF(SEQN, NCALL, RESULT, ABSERR, WORK, IWORK, IFAIL)
         IF (IFAIL.NE.0) THEN
            WRITE (NOUT, *)
            WRITE (NOUT, 99999) 'CO6BAF fails. IFAIL=', IFAIL
            STOP
         END IF
         ERROR = RESULT - ANS
         SIG = -SIG
         WRITE (NOUT, 99998) I, SEQN, RESULT, ABSERR, ERROR
   20 CONTINUE
      STOP
99999 FORMAT (1X,A,I2)
99998 FORMAT (1X, 14, 2F12.4, 3X, 2e14.2)
      END
```

9.2. Program Data

None.

9.3. Program Results

C06BAF Example Program Results

I	SEQN	RESULT	Estimated abs error	Actual error
1 2 3 4 5 6 7 8	1.0000 0.7500 0.8611 0.7986 0.8386 0.8108 0.8312 0.8156	1.0000 0.7500 0.8269 0.8211 0.8226 0.8224 0.8225	0.13+155 0.13+155 0.13+155 0.26E+00 0.78E-01 0.60E-02 0.15E-02 0.16E-03	0.18E+00 -0.72E-01 0.45E-02 -0.14E-02 0.12E-03 -0.33E-04 0.35E-05 -0.85E-06
9 10	0.8280 0.8180	0.8225 0.8225	0.37E-04 0.45E-05	0.10E-06 -0.23E-07

[NP1692/14] Page 3 (last)

C06DBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06DBF returns the value of the sum of a Chebyshev series through the routine name.

2. Specification

real Function CO6DBF (X, C, N, S)

INTEGER

N, S

real

X, C(N)

3. Description

This routine evaluates the sum of a Chebyshev series of one of three forms according to the value of the parameter S:

$$S = 1 : 0.5c_1 + \sum_{j=2}^{n} c_j T_{j-1}(x),$$

$$S = 2 : 0.5c_1 + \sum_{j=2}^{n} c_j T_{2j-2}(x),$$

$$S = 3 : \sum_{j=1}^{n} c_{j} T_{2j-1}(x)$$

where x lies in the range $-1.0 \le x \le 1.0$. Here $T_r(x)$ is the Chebyshev polynomial of order r in x, defined by $\cos(ry)$ where $\cos y = x$.

The method used is based upon a three-term recurrence relation; for details see Clenshaw [1].

4. References

[1] CLENSHAW, C.W.

Chebyshev Series for Mathematical Functions.

NPL Mathematical Tables, Vol. 5, HMSO, London, 1962.

5. Parameters

1: X - real.

Input

On entry: the argument x of the series.

Constraint: $-1.0 \le X \le 1.0$.

2: C(N) - real array.

Input

On entry: C(j) must contain the coefficient c_j of the Chebyshev series, for j = 1, 2, ..., n.

3: N – INTEGER.

Input

On entry: the number of terms, n, in the series.

4: S – INTEGER.

Input

On entry: S must have the value 1, 2 or 3 according to whether the series is general, even or odd respectively (see Section 3). For all other values of S, the routine behaves as though S = 2.

6. Error Indicators and Warnings

None.

7. Accuracy

There may be a loss of significant figures due to cancellation between terms. However, provided that n is not too large, the routine yields results which differ little from the best attainable for a given word length.

8. Further Comments

The time taken by the routine increases with n.

This routine has been prepared in the present form to complement a number of integral equation solving routines which use Chebyshev series methods, e.g. D05AAF and D05ABF.

9. Example

This program evaluates

$$0.5 + T_1(x) + 0.5T_2(x) + 0.25T_3(x)$$

at the point x = 0.5.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06DBF Example Program Text
*
      Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
                        NOUT
      INTEGER
      PARAMETER
                        (NOUT=6)
      .. Local Scalars .
      real
                        CALC, X
      .. Local Arrays .
      real
                        C(4)
      .. External Functions
      real
                        C06DBF
      EXTERNAL
                        C06DBF
      .. Data statements
                        cs ..
C/1.0e0, 1.0e0, 0.5e0, 0.25e0/
      DATA
      .. Executable Statements ..
      WRITE (NOUT,*) 'C06DBF Example Program Results'
      X = 0.5e0
      CALC = C06DBF(X,C,4,1)
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) 'Sum =', CALC
      STOP
99999 FORMAT (1X,A,F8.4)
```

9.2. Program Data

None.

9.3. Program Results

```
C06DBF Example Program Results
Sum = 0.5000
```

C06EAF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06EAF calculates the discrete Fourier transform of a sequence of n real data values. (No extra workspace required.)

2 Specification

SUBROUTINE CO6EAF(X, N, IFAIL)
INTEGER N, IFAIL
real X(N)

3 Description

Given a sequence of n real data values x_j , for $j=0,1,\ldots,n-1$, this routine calculates their discrete Fourier transform defined by:

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{z}_k are complex, but they form a Hermitian sequence (i.e., \hat{z}_{n-k} is the complex conjugate of \hat{z}_k), so they are completely determined by n real numbers (see also the Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this routine should be followed by a call of C06GBF to form the complex conjugates of the \hat{z}_k .

The routine uses the fast Fourier transform (FFT) algorithm (Brigham [1]). There are some restrictions on the value of n (see Section 5).

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: X(N) - real array

Input/Output

On entry: if X is declared with bounds (0:N-1) in the (sub)program from which C06EAF is called, then X(j) must contain x_j , for $j=0,1,\ldots,n-1$.

On exit: the discrete Fourier transform stored in Hermitian form. If the components of the transform \hat{z}_k are written as $a_k + ib_k$, and if X is declared with bounds (0:N-1) in the (sub)program from which C06EAF is called, then for $0 \le k \le n/2$, a_k is contained in X(k), and for $1 \le k \le (n-1)/2$, b_k is contained in X(n-k). (See also Section 2.1.2 of the Chapter Introduction and the Example Program.)

2:N - INTEGER

Input

On entry: the number of data values, n. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

[NP3086/18]

IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings 6

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

N < 1.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 **Further Comments**

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, the routine is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, routine C06FAF (which requires an additional n elements of workspace) is considerably faster.

9 Example

This program reads in a sequence of real data values, and prints their discrete Fourier transform (as computed by C06EAF), after expanding it from Hermitian form into a full complex sequence.

It then performs an inverse transform using C06GBF and C06EBF, and prints the sequence so obtained alongside the original data values.

Program Text 9.1

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- CO6EAF Example Program Text
- Mark 14 Revised. NAG Copyright 1989.
- .. Parameters ..

INTEGER

NMAX

PARAMETER (NMAX=20) INTEGER NIN, NOUT

```
(NIN=5, NOUT=6)
  PARAMETER
   .. Local Scalars ..
                   IFAIL, J, N, N2, NJ
  INTEGER
   .. Local Arrays ..
                    A(0:NMAX-1), B(0:NMAX-1), X(0:NMAX-1),
  real
                    XX(0:NMAX-1)
  .. External Subroutines ...
                   COGEAF, COGEBF, COGGBF
  EXTERNAL
  .. Intrinsic Functions ..
  INTRINSIC
                    MOD
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6EAF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=120) N
   IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 0, N - 1
         READ (NIN,*) X(J)
         XX(J) = X(J)
40
      CONTINUE
      IFAIL = 0
      CALL COSEAF(X,N,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Components of discrete Fourier transform'
      WRITE (NOUT,*)
                                           Imag'
      WRITE (NOUT,*) '
                                Real
      WRITE (NOUT,*)
      A(0) = X(0)
      B(0) = 0.0e0
      N2 = (N-1)/2
      DO 60 J = 1, N2
         NJ = N - J
         A(J) = X(J)
         A(NJ) = X(J)
         B(J) = X(NJ)
         B(NJ) = -X(NJ)
      CONTINUE
60
      IF (MOD(N,2).EQ.0) THEN
         A(N2+1) = X(N2+1)
         B(N2+1) = 0.0e0
      END IF
      DO 80 J = 0, N - 1
         WRITE (NOUT, 99999) J, A(J), B(J)
80
      CONTINUE
      CALL COGGBF(X,N,IFAIL)
      CALL COSEBF(X,N,IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*)
        'Original sequence as restored by inverse transform'
      WRITE (NOUT,*)
      WRITE (NOUT,*) '
                             Original Restored'
      WRITE (NOUT,*)
      DO 100 J = 0, N - 1
         WRITE (NOUT, 99999) J, XX(J), X(J)
```

[NP3086/18] C06EAF.3

```
100 CONTINUE
GO TO 20
ELSE
WRITE (NOUT,*) 'Invalid value of N'
END IF
120 STOP
*
99999 FORMAT'(1X,15,2F10.5)
END
```

9.2 Program Data

```
CO6EAF Example Program Data
7
0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370
```

9.3 Program Results

CO6EAF Example Program Results

Components of discrete Fourier transform

	Real	Imag
0	2.48361	0.00000
1	-0.26599	0.53090
2	-0.25768	0.20298
3	-0.25636	0.05806
4	-0.25636	-0.05806
5	-0.25768	-0.20298
6	-0.26599	-0.53090

Original sequence as restored by inverse transform

```
Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370
```

C06EBF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06EBF calculates the discrete Fourier transform of a Hermitian sequence of n complex data values. (No extra workspace required.)

2 Specification

SUBROUTINE CO6EBF(X, N, IFAIL)
INTEGER N, IFAIL
real X(N)

3 Description

Given a Hermitian sequence of n complex data values z_j (i.e., a sequence such that z_0 is real and z_{n-j} is the complex conjugate of z_j , for $j=1,2,\ldots,n-1$) this routine calculates their discrete Fourier transform defined by:

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{x}_k are purely real (see also the Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

$$\hat{y}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this routine should be preceded by a call of C06GBF to form the complex conjugates of the z_i .

The routine uses the fast Fourier transform (FFT) algorithm (Brigham [1]). There are some restrictions on the value of n (see Section 5).

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: X(N) — real array Input/Output

On entry: the sequence to be transformed stored in Hermitian form. If the data values z_j are written as $x_j + iy_j$, and if X is declared with bounds (0:N-1) in the subroutine from which C06EBF is called, then for $0 \le j \le n/2$, x_j is contained in X(j), and for $1 \le j \le (n-1)/2$, y_j is contained in X(n-j). (See also Section 2.1.2 of the Chapter Introduction and the Example Program.)

On exit: the components of the discrete Fourier transform \hat{x}_k . If X is declared with bounds (0:N-1) in the (sub)program from which C06EBF is called, then \hat{x}_k is stored in X(k), for $k=0,1,\ldots,n-1$.

2: N — INTEGER Input

On entry: the number of data values, n. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

[NP3086/18] C06EBF.1

3: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

N < 1.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, the routine is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, routine C06FBF (which requires an additional n elements of workspace) is considerably faster.

9 Example

This program reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by C06EBF) is printed out.

The program then performs an inverse transform using C06EAF and C06GBF, and prints the sequence so obtained alongside the original data values.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- * CO6EBF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters ..

INTEGER

NMAX

```
(NMAX=20)
   PARAMETER
                   NIN, NOUT
   INTEGER
   PARAMETER
                   (NIN=5,NOUT=6)
    .. Local Scalars ..
                    IFAIL, J, N, N2, NJ
   INTEGER
    .. Local Arrays ..
                    U(0:NMAX-1), V(0:NMAX-1), X(0:NMAX-1),
   real
                    XX(0:NMAX-1)
    .. External Subroutines ..
   EXTERNAL
                    CO6EAF, CO6EBF, CO6GBF
    .. Intrinsic Functions ..
                    MOD
   INTRINSIC
    .. Executable Statements ..
   WRITE (NOUT,*) 'CO6EBF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=140) N
    IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 0, N - 1
          READ (NIN,*) X(J)
         XX(J) = X(J)
      CONTINUE
40
      U(0) = X(0)
      V(0) = 0.0e0
      N2 = (N-1)/2
      DO 60 J = 1, N2
         NJ = N - J
         U(J) = X(J)
         U(NJ) = X(J)
         V(J) = X(NJ)
         V(NJ) = -X(NJ)
60
      CONTINUE
       IF (MOD(N,2).EQ.0) THEN
          U(N2+1) = X(N2+1)
          V(N2+1) = 0.0e0
      END IF
      WRITE (NOUT,*)
       WRITE (NOUT, *)
         'Original sequence and corresponding complex sequence'
       WRITE (NOUT,*)
                                                          Imag'
       WRITE (NOUT,*) '
                                Data
                                               Real
      WRITE (NOUT,*)
      DO 80 J = 0, N - 1
          WRITE (NOUT,99999) J, X(J), ' ', U(J), V(J)
80
      CONTINUE
      IFAIL = 0
       CALL COSEBF(X,N,IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Components of discrete Fourier transform'
       WRITE (NOUT,*)
       DO 100 J = 0, N - 1
          WRITE (NOUT, 99999) J, X(J)
100
       CONTINUE
       CALL COSEAF(X,N,IFAIL)
       CALL COGGBF(X,N,IFAIL)
```

[NP3086/18] C06EBF.3

```
WRITE (NOUT,*)
         WRITE (NOUT,*)
           'Original sequence as restored by inverse transform'
         WRITE (NOUT,*)
         WRITE (NOUT,*) '
                                  Original Restored'
         WRITE (NOUT,*)
         DO 120 J = 0, N - 1
            WRITE (NOUT, 99998) J, XX(J), X(J)
  120
         CONTINUE
         GO TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of N'
      END IF
  140 STOP
99999 FORMAT (1X, 15, F10.5, A, 2F10.5)
99998 FORMAT (1X, 15, 2F10.5)
      END
```

9.2 Program Data

CO6EBF Example Program Data
7
0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370

9.3 Program Results

CO6EBF Example Program Results

Original sequence and corresponding complex sequence

	Data	Real	Imag
0	0.34907	0.34907	0.00000
1	0.54890	0.54890	1.51370
2	0.74776	0.74776	1.32850
3	0.94459	0.94459	1.13850
4	1.13850	0.94459	-1.13850
5	1.32850	0.74776	-1.32850
6	1.51370	0.54890	-1.51370

Components of discrete Fourier transform

```
0 1.82616
1 1.86862
2 -0.01750
3 0.50200
4 -0.59873
5 -0.03144
6 -2.62557
```

Original sequence as restored by inverse transform

	Original	Restored	
0	0.34907	0.34907	
1	0.54890	0.54890	
2	0.74776	0.74776	
3	0.94459	0.94459	
4	1.13850	1.13850	
5	1.32850	1.32850	
6	1.51370	1.51370	

[NP3086/18] C06EBF.5 (last)

C06ECF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06ECF calculates the discrete Fourier transform of a sequence of n complex data values. (No extra workspace required.)

2 Specification

SUBROUTINE CO6ECF(X, Y, N, IFAIL)
INTEGER N, IFAIL

real X(N), Y(N)

3 Description

Given a sequence of n complex data values z_j , for $j=0,1,\ldots,n-1$, this routine calculates their discrete Fourier transform defined by:

$$\hat{z}_k = a_k + ib_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.)

To compute the inverse discrete Fourier transform defined by:

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the z_i and the \hat{z}_k .

The routine uses the fast Fourier transform (FFT) algorithm (Brigham [1]). There are some restrictions on the value of n (see Section 5).

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: X(N) — real array

Input/Output

On entry: if X is declared with bounds (0:N-1) in the (sub)program from which C06ECF is called, then X(j) must contain x_j , the real part of z_j , for j = 0, 1, ..., n-1.

On exit: the real parts a_k of the components of the discrete Fourier transform. If X is declared with bounds (0:N-1) in the (sub)program from which C06ECF is called, then a_k is contained in X(k), for k = 0, 1, ..., n-1.

2: Y(N) - real array

Input/Output

C06ECF.1

On entry: if Y is declared with bounds (0:N-1) in the (sub)program from which C06ECF is called, then Y(j) must contain y_i , the imaginary part of z_i , for $i=0,1,\ldots,n-1$.

On exit: the imaginary parts b_k of the components of the discrete Fourier transform. If Y is declared with bounds (0:N-1) in the (sub)program from which C06ECF is called, then b_k is contained in Y(k), for k = 0, 1, ..., n-1.

[NP3086/18]

3: N — INTEGER

On entry: the number of data values, n. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

4: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

N < 1.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

On the other hand, the routine is particularly slow if n has several unpaired prime factors, i.e., if the 'square-free' part of n has several factors. For such values of n, routine C06FCF (which requires an additional n real elements of workspace) is considerably faster.

9 Example

This program reads in a sequence of complex data values and prints their discrete Fourier transform.

It then performs an inverse transform using C06GCF and C06ECF, and prints the sequence so obtained alongside the original data values.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6ECF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    NMAX
   PARAMETER
                     (NMAX=20)
   INTEGER
                    NIN, NOUT
   PARAMETER
                     (NIN=5, NOUT=6)
   .. Local Scalars ..
   INTEGER
                    IFAIL, J, N
   .. Local Arrays ..
                    X(0:NMAX-1), XX(0:NMAX-1), Y(0:NMAX-1),
   real
                    YY(0:NMAX-1)
   .. External Subroutines .
   EXTERNAL
                    CO6ECF, CO6GCF
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6ECF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=100) N
   IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 0, N - 1
         READ (NIN, *) X(J), Y(J)
         XX(J) = X(J)
         YY(J) = Y(J)
40
      CONTINUE
      IFAIL = 0
      CALL COSECF(X,Y,N,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Components of discrete Fourier transform'
      WRITE (NOUT,*)
      WRITE (NOUT,*) '
                                 Real
                                            Imag'
      WRITE (NOUT,*)
      DO 60 J = 0, N - 1
         WRITE (NOUT, 99999) J, X(J), Y(J)
      CONTINUE
60
      CALL COGGCF(Y,N,IFAIL)
      CALL COSECF(X,Y,N,IFAIL)
      CALL COGGCF(Y,N,IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*)
        'Original sequence as restored by inverse transform'
      WRITE (NOUT,*)
                                                              Restored'
      WRITE (NOUT,*) '
                                    Original
      WRITE (NOUT, *)
                              Imag
                                              Real
                                                        Imag'
                    Real
      WRITE (NOUT,*)
      DO 80 J = 0, N - 1
         WRITE (NOUT, 99999) J, XX(J), YY(J), X(J), Y(J)
      CONTINUE
80
      GO TO 20
```

[NP3086/18] C06ECF.3

```
ELSE
WRITE (NOUT,*) 'Invalid value of N'
END IF
100 STOP

*
99999 FORMAT (1X,I5,2F10.5,5X,2F10.5)
```

9.2 Program Data

```
CO6ECF Example Program Data
7
0.34907 -0.37168
0.54890 -0.35669
0.74776 -0.31175
0.94459 -0.23702
1.13850 -0.13274
1.32850 0.00074
1.51370 0.16298
```

9.3 Program Results

CO6ECF Example Program Results

Components of discrete Fourier transform

	Real	Imag
0	2.48361	-0.47100
1	-0.55180	0.49684
2	-0.36711	0.09756
3	-0.28767	-0.05865
4	-0.22506	-0.17477
5	-0.14825	-0.30840
6	0.01983	-0.56496

Original sequence as restored by inverse transform

	Original		Restored		
	Real	Imag	Real	Imag	
0	0.34907	-0.37168	0.34907	-0.37168	
1	0.54890	-0.35669	0.54890	-0.35669	
2	0.74776	-0.31175	0.74776	-0.31175	
3	0.94459	-0.23702	0.94459	-0.23702	
4	1.13850	-0.13274	1.13850	-0.13274	
5	1.32850	0.00074	1.32850	0.00074	
6	1.51370	0.16298	1.51370	0.16298	

C06ECF.4 (last) [NP3086/18]

C06EKF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06EKF calculates the circular convolution or correlation of two real vectors of period n. No extra workspace is required.

2. Specification

SUBROUTINE CO6EKF (JOB, X, Y, N, IFAIL)

INTEGER JOB, N, IFAIL X(N), Y(N)

3. Description

This routine computes:

if JOB = 1, the discrete convolution of x and y, defined by:

$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} = \sum_{j=0}^{n-1} x_{k-j} y_j;$$

if JOB = 2, the discrete correlation of x and y defined by:

$$w_{k} = \sum_{j=0}^{n-1} x_{j} y_{k+j}.$$

Here x and y are real vectors, assumed to be periodic, with period n, i.e. $x_j = x_{j\pm n} = x_{j\pm 2n} = \dots$; z and w are then also periodic with period n.

Note: this usage of the terms 'convolution' and 'correlation' is taken from Brigham [1]. The term 'convolution' is sometimes used to denote both these computations.

If \hat{x} , \hat{y} , \hat{z} and \hat{w} are the discrete Fourier transforms of these sequences,

i.e.
$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right)$$
, etc.,

then $\hat{z}_k = \sqrt{n}.\hat{x}_k \hat{y}_k$

and
$$\hat{w}_k = \sqrt{n} \cdot \bar{\hat{x}}_k \hat{y}_k$$

(the bar denoting complex conjugate).

This routine calls the same auxiliary routines as C06EAF and C06EBF to compute discrete Fourier transforms, and there are some restrictions on the value of n.

4. References

[1] BRIGHAM, E.O.

The Fast Fourier Transform. Prentice-Hall, 1973.

5. Parameters

JOB – INTEGER.

Input

On entry: the computation to be performed:

if JOB = 1,
$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j}$$
 (convolution);

if JOB = 2,
$$w_k = \sum_{j=0}^{n-1} x_j y_{k+j}$$
 (correlation).

Constraint: JOB = 1 or 2.

2: X(N) - real array.

Input/Output

On entry: the elements of one period of the vector x. If X is declared with bounds (0:N-1) in the (sub)program from which C06EKF is called, then X(j) must contain x_j , for j = 0,1,...,n-1.

On exit: the corresponding elements of the discrete convolution or correlation.

3: Y(N) - real array.

Input/Output

On entry: the elements of one period of the vector y. If Y is declared with bounds (0:N-1) in the (sub)program from which C06EKF is called, then Y(j) must contain y_j , for j = 0,1,...,n-1.

On exit: the discrete Fourier transform of the convolution or correlation returned in the array X; the transform is stored in Hermitian form, exactly as described in the document C06EAF.

4: N – INTEGER.

Input

On entry: the number of values, n, in one period of the vectors X and Y. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

5: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

 $N \leq 1$.

IFAIL = 4

JOB \neq 1 or 2.

7. Accuracy

The results should be accurate to within a small multiple of the machine precision.

8. Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is faster than average if the only prime factors are 2, 3 or 5; and fastest of all if n is a power of 2.

The routine is particularly slow if n has several unpaired prime factors, i.e. if the 'square free' part of n has several factors. For such values of n, routine C06FKF is considerably faster (but requires an additional workspace of n elements).

Page 2

9. Example

This program reads in the elements of one period of two real vectors x and y and prints their discrete convolution and correlation (as computed by C06EKF). In realistic computations the number of data values would be much larger.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06EKF Example Program Text
      Mark 14 Revised.
                         NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                        XAMN
      PARAMETER
                        (NMAX=64)
      INTEGER
                        NIN, NOUT
      PARAMETER
                        (NIN=5, NOUT=6)
      .. Local Scalars ..
      INTEGER
                        IFAIL, J, N
      .. Local Arrays .
                        XA(0:NMAX-1), XB(0:NMAX-1), YA(0:NMAX-1),
      real
                        YB(0:NMAX-1)
       . External Subroutines
                        C06EKF
      EXTERNAL
      .. Executable Statements ..
      WRITE (NOUT, *) 'C06EKF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
   20 READ (NIN, \star, END=80) N
      IF (N.GT.1 .AND. N.LE.NMAX) THEN
         DO 40 J = 0, N - 1
            READ (NIN, \star) XA(J), YA(J)
            XB(J) = XA(J)
            YB(J) = YA(J)
   40
         CONTINUE
         IFAIL = 0
         CALL CO6EKF(1, XA, YA, N, IFAIL)
         CALL CO6EKF(2, XB, YB, N, IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT, *)
                                   Convolution Correlation'
         WRITE (NOUT, *)
         DO 60 J = 0, N - 1
            WRITE (NOUT, 99999) J, XA(J), XB(J)
   60
         CONTINUE
         GO TO 20
      ELSE
         WRITE (NOUT, *) 'Invalid value of N'
      END IF
   80 STOP
99999 FORMAT (1X, I5, 2F13.5)
      END
```

9.2. Program Data

```
C06EKF Example Program Data
    9
      1.00
                 0.50
      1.00
                 0.50
      1.00
                 0.50
      1.00
                 0.50
                 0.00
      1.00
      0.00
                 0.00
      0.00
                 0.00
      0.00
                 0.00
      0.00
                 0.00
```

[NP2136/15] Page 3

9.3. Program Results

C06EKF Example Program Results

000 000 000 000 000
000

C06FAF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FAF calculates the discrete Fourier transform of a sequence of n real data values (using a work array for extra speed).

2 Specification

SUBROUTINE CO6FAF(X, N, WORK, IFAIL)

INTEGER N, IFAIL real X(N), WORK(N)

3 Description

Given a sequence of n real data values x_j , for $j=0,1,\ldots,n-1$, this routine calculates their discrete Fourier transform defined by:

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{z}_k are complex, but they form a Hermitian sequence (i.e., \hat{z}_{n-k} is the complex conjugate of \hat{z}_k), so they are completely determined by n real numbers (see also the Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this routine should be followed by a call of C06GBF to form the complex conjugates of the \hat{z}_k .

The routine uses the fast Fourier transform (FFT) algorithm in Brigham [1]. There are some restrictions on the value of n (see Section 5).

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: X(N) - real array

Input/Output

On entry: if X is declared with bounds (0:N-1) in the (sub)program from which C06FAF is called, then X(j) must contain x_j , for $j=0,1,\ldots,n-1$.

On exit: the discrete Fourier transform stored in Hermitian form. If the components of the transform \hat{z}_k are written as $a_k + ib_k$, and if X is declared with bounds (0:N-1) in the (sub)program from which C06FAF is called, then for $0 \le k \le n/2$, a_k is contained in X(k), and for $1 \le k \le (n-1)/2$, b_k is contained in X(n-k). (See also Section 2.1.2 of the Chapter Introduction and the Example Program.)

2: N — INTEGER

Input

On entry: the number of data values, n. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

[NP3086/18] C06FAF.1

3: WORK(N) - real array

Workspace

4: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

 $N \leq 1$.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This program reads in a sequence of real data values and prints their discrete Fourier transform (as computed by C06FAF), after expanding it from Hermitian form into a full complex sequence.

It then performs an inverse transform, using C06GBF and C06FBF, and prints the sequence so obtained alongside the original data values.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

* CO6FAF Example Program Text

* Mark 14 Revised. NAG Copyright 1989.

* .. Parameters ..

INTEGER NMAX
PARAMETER (NMAX=20)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..

C06FAF.2 [NP3086/18]

```
INTEGER
                     IFAIL, J, N, N2, NJ
    .. Local Arrays ..
                     A(0:NMAX-1), B(0:NMAX-1), WORK(NMAX),
   real
                     X(0:NMAX-1), XX(0:NMAX-1)
    .. External Subroutines ..
                     CO6FAF, CO6FBF, CO6GBF
    EXTERNAL
    .. Intrinsic Functions ..
    INTRINSIC
    .. Executable Statements ..
    WRITE (NOUT,*) 'CO6FAF Example Program Results'
    Skip heading in data file
    READ (NIN,*)
 20 READ (NIN,*,END=120) N
    IF (N.GT.1 .AND. N.LE.NMAX) THEN
       DO 40 J = 0, N - 1
          READ (NIN,*) X(J)
          XX(J) = X(J)
 40
       CONTINUE
       IFAIL = 0
       CALL CO6FAF(X,N,WORK,IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Components of discrete Fourier transform'
       WRITE (NOUT,*)
       WRITE (NOUT,*) '
                                 Real
                                            Imag'
       WRITE (NOUT,*)
       A(0) = X(0)
       B(0) = 0.0e0
       N2 = (N-1)/2
      DO 60 J = 1, N2
          NJ = N - J
          A(J) = X(J)
          A(NJ) = X(J)
          B(J) = X(NJ)
          B(NJ) = -X(NJ)
60
       CONTINUE
       IF (MOD(N,2).EQ.0) THEN
          A(N2+1) = X(N2+1)
          B(N2+1) = 0.0e0
       END IF
       DO 80 J = 0, N - 1
          WRITE (NOUT, 99999) J, A(J), B(J)
80
       CONTINUE
       CALL COGGBF(X,N,IFAIL)
       CALL CO6FBF(X,N,WORK,IFAIL)
       WRITE (NOUT,*)
      WRITE (NOUT, *)
         'Original sequence as restored by inverse transform'
       WRITE (NOUT,*)
       WRITE (NOUT,*) '
                             Original Restored'
       WRITE (NOUT,*)
       DO 100 J = 0, N - 1
          WRITE (NOUT, 99999) J, XX(J), X(J)
100
       CONTINUE
       GO TO 20
```

[NP3086/18] C06FAF.3

```
ELSE
WRITE (NOUT,*) 'Invalid value of N'
END IF
120 STOP
*
99999 FORMAT (1X,I5,2F10.5)
END
```

9.2 Program Data

```
CO6FAF Example Program Data
7
0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370
```

9.3 Program Results

CO6FAF Example Program Results

Components of discrete Fourier transform

	Real	Imag
0	2.48361	0.00000
1	-0.26599	0.53090
2	-0.25768	0.20298
3	-0.25636	0.05806
4	-0.25636	-0.05806
5	-0.25768	-0.20298
6	-0.26599	-0.53090

Original sequence as restored by inverse transform

```
Original Restored

0 0.34907 0.34907
1 0.54890 0.54890
2 0.74776 0.74776
3 0.94459 0.94459
4 1.13850 1.13850
5 1.32850 1.32850
6 1.51370 1.51370
```

C06FBF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FBF calculates the discrete Fourier transform of a Hermitian sequence of n complex data values (using a work array for extra speed).

2 Specification

SUBROUTINE CO6FBF(X, N, WORK, IFAIL)
INTEGER N, IFAIL
real X(N), WORK(N)

3 Description

Given a Hermitian sequence of n complex data values z_j (i.e., a sequence such that z_0 is real and z_{n-j} is the complex conjugate of z_j , for $j=1,2,\ldots,n-1$), this routine calculates their discrete Fourier transform defined by:

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The transformed values \hat{x}_k are purely real (see also the Chapter Introduction).

To compute the inverse discrete Fourier transform defined by:

$$\hat{y}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this routine should be preceded by a call of C06GBF to form the complex conjugates of the z_i .

The routine uses the fast Fourier transform (FFT) algorithm in Brigham [1]. There are some restrictions on the value of n (see Section 5).

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: X(N) - real array Input/Output

On entry: the sequence to be transformed stored in Hermitian form. If the data values z_j are written as $x_j + iy_j$, and if X is declared with bounds (0:N-1)in the (sub)program from which C06FBF is called, then for $0 \le j \le n/2$, x_j is contained in X(j), and for $1 \le j \le (n-1)/2$, y_j is contained in X(n-j). (See also Section 2.1.2 of the Chapter Introduction and the Example Program.)

On exit: the components of the discrete Fourier transform \hat{x}_k . If X is declared with bounds (0:N-1) in the (sub)program from which C06FBF is called, then \hat{x}_k is stored in X(k) for $k=0,1,\ldots,n-1$.

2: N — INTEGER Input

On entry: the number of data values, n. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

[NP3086/18] C06FBF.1

3: WORK(N) - real array

Workspace

4: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

 $N \leq 1$.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This program reads in a sequence of real data values which is assumed to be a Hermitian sequence of complex data values stored in Hermitian form. The input sequence is expanded into a full complex sequence and printed alongside the original sequence. The discrete Fourier transform (as computed by C06FBF) is printed out.

The program then performs an inverse transform using C06FAF and C06GBF, and prints the sequence so obtained alongside the original data values.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- * CO6FBF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters ..

INTEGER

NMAX

PARAMETER INTEGER

(NMAX=20)

C06FBF.2

NIN, NOUT

```
PARAMETER
                     (NIN=5, NOUT=6)
    .. Local Scalars ..
    INTEGER
                     IFAIL, J, N, N2, NJ
    .. Local Arrays ..
    real
                     U(0:NMAX-1), V(0:NMAX-1), WORK(NMAX),
                     X(0:NMAX-1), XX(0:NMAX-1)
    .. External Subroutines ..
                     CO6FAF, CO6FBF, CO6GBF
    EXTERNAL
    .. Intrinsic Functions ..
    INTRINSIC
                     MOD
    .. Executable Statements ..
    WRITE (NOUT,*) 'CO6FBF Example Program Results'
    Skip heading in data file
    READ (NIN,*)
 20 READ (NIN, *, END=140) N
    IF (N.GT.1 .AND. N.LE.NMAX) THEN
       DO 40 J = 0, N - 1
          READ (NIN,*) X(J)
          XX(J) = X(J)
 40
       CONTINUE
       U(0) = X(0)
       V(0) = 0.0e0
       N2 = (N-1)/2
       DO 60 J = 1, N2
          NJ = N - J
          U(J) = X(J)
          U(NJ) = X(J)
          V(J) = X(NJ)
          V(NJ) = -X(NJ)
 60
       CONTINUE
       IF (MOD(N,2).EQ.0) THEN
          U(N2+1) = X(N2+1)
          V(N2+1) = 0.0e0
       END IF
       WRITE (NOUT,*)
       WRITE (NOUT, *)
         'Original sequence and corresponding complex sequence'
       WRITE (NOUT, *)
       WRITE (NOUT.*) '
                                Data
                                               Real
                                                          Imag'
       WRITE (NOUT,*)
       DO 80 J = 0, N - 1
          WRITE (NOUT,99999) J, X(J), '
                                          ', U(J), V(J)
 80
       CONTINUE
       IFAIL = 0
       CALL CO6FBF(X,N,WORK,IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Components of discrete Fourier transform'
       WRITE (NOUT,*)
       DO 100 J = 0, N - 1
          WRITE (NOUT, 99999) J, X(J)
100
       CONTINUE
       CALL CO6FAF(X,N,WORK,IFAIL)
       CALL COGGBF(X,N,IFAIL)
       WRITE (NOUT, *)
```

[NP3086/18] C06FBF.3

```
WRITE (NOUT,*)
           'Original sequence as restored by inverse transform'
         WRITE (NOUT,*)
                                Original Restored'
         WRITE (NOUT,*) '
         WRITE (NOUT,*)
         DO 120 J = 0, N - 1
            WRITE (NOUT, 99998) J, XX(J), X(J)
 120
         CONTINUE
         GO TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of N'
      END IF
 140 STOP
99999 FORMAT (1X, I5, F10.5, A, 2F10.5)
99998 FORMAT (1X, I5, 2F10.5)
      END
```

9.2 Program Data

CO6FBF Example Program Data
7
0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370

9.3 Program Results

CO6FBF Example Program Results

Original sequence and corresponding complex sequence

	Data	Real	Imag
0	0.34907	0.34907	0.00000
1	0.54890	0.54890	1.51370
2	0.74776	0.74776	1.32850
3	0.94459	0.94459	1.13850
4	1.13850	0.94459	-1.13850
5	1.32850	0.74776	-1.32850
6	1.51370	0.54890	-1.51370

Components of discrete Fourier transform

```
0 1.82616
1 1.86862
2 -0.01750
3 0.50200
4 -0.59873
5 -0.03144
6 -2.62557
```

Original sequence as restored by inverse transform

	Original	Restored
0	0.34907	0.34907
1	0.54890	0.54890
2	0.74776	0.74776
3	0.94459	0.94459
4	1.13850	1.13850
5	1.32850	1.32850
6	1.51370	1.51370

[NP3086/18] C06FBF.5 (last)

C06FCF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FCF calculates the discrete Fourier transform of a sequence of n complex data values (using a work array for extra speed).

2 Specification

SUBROUTINE CO6FCF(X, Y, N, WORK, IFAIL)

INTEGER N, IFAIL

real X(N), Y(N), WORK(N)

3 Description

Given a sequence of n complex data values z_j , for $j=0,1,\ldots,n-1$, this routine calculates their discrete Fourier transform defined by:

$$\hat{z}_k = a_k + ib_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.)

To compute the inverse discrete Fourier transform defined by:

$$\hat{w}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_i \times \exp\left(+i\frac{2\pi jk}{n}\right),$$

this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the z_i and the \hat{z}_k .

The routine uses the fast Fourier transform (FFT) algorithm in Brigham [1]. There are some restrictions on the value of n (see Section 5).

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: X(N) — real array Input/Output

On entry: if X is declared with bounds (0:N-1) in the (sub)program from which C06FCF is called, then X(j) must contain x_j , the real part of z_j , for j = 0, 1, ..., n-1.

On exit: the real parts a_k of the components of the discrete Fourier transform. If X is declared with bounds (0:N-1) in the (sub)program from which C06FCF is called, then for $0 \le k \le n-1$, a_k is contained in X(k).

2: Y(N) - real array Input/Output

On entry: if Y is declared with bounds (0:N-1) in the (sub)program from which C06FCF is called, then Y(j) must contain y_j , the imaginary part of z_j , for $j=0,1,\ldots,n-1$.

On exit: the imaginary parts b_k of the components of the discrete Fourier transform. If Y is declared with bounds (0:N-1) in the (sub)program from which C06FCF is called, then for $0 \le k \le n-1$, b_k is contained in Y(k).

[NP3086/18] C06FCF.1

3: N — INTEGER

On entry: the number of data values, n. The largest prime factor of N must not exceed 19, and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

4: WORK(N) - real array

Workspace

5: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

N < 1.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This program reads in a sequence of complex data values and prints their discrete Fourier transform (as computed by C06FCF).

It then performs an inverse transform, using C06GCF and C06FCF, and prints the sequence so obtained alongside the original data values.

C06FCF.2 [NP3086/18]

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6FCF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
    .. Parameters ..
   INTEGER
                     NMAX
   PARAMETER
                     (NMAX=20)
   INTEGER
                     NIN, NOUT
   PARAMETER
                     (NIN=5, NOUT=6)
   .. Local Scalars ..
   INTEGER
                     IFAIL, J, N
   .. Local Arrays ..
   real
                     WORK(NMAX), X(0:NMAX-1), XX(0:NMAX-1),
                     Y(0:NMAX-1), YY(0:NMAX-1)
    .. External Subroutines .
                     CO6FCF, CO6GCF
   EXTERNAL.
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6FCF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN,*,END=100) N
   IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 0, N - 1
         READ (NIN, *) X(J), Y(J)
         XX(J) = X(J)
         YY(J) = Y(J)
40
      CONTINUE
      IFAIL = 0
      CALL CO6FCF(X,Y,N,WORK,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Components of discrete Fourier transform'
      WRITE (NOUT,*)
      WRITE (NOUT, *) '
                                 Real
                                            Imag'
      WRITE (NOUT, *)
      DO 60 J = 0, N - 1
         WRITE (NOUT,99999) J, X(J), Y(J)
60
      CONTINUE
      CALL COGGCF(Y,N,IFAIL)
      CALL CO6FCF(X,Y,N,WORK,IFAIL)
      CALL COGGCF(Y,N,IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*)
        'Original sequence as restored by inverse transform'
      WRITE (NOUT, *)
      WRITE (NOUT,*) '
                                                              Restored'
                                    Original
      WRITE (NOUT,*)
                   Real
                              Imag
                                             Real
                                                        Imag'
      WRITE (NOUT,*)
      DO 80 J = 0, N - 1
         WRITE (NOUT, 99999) J, XX(J), YY(J), X(J), Y(J)
80
      CONTINUE
      GO TO 20
```

[NP3086/18] C06FCF.3

```
ELSE
WRITE (NOUT,*) 'Invalid value of N'
END IF
100 STOP

*
99999 FORMAT (1X,I5,2F10.5,5X,2F10.5)
END
```

9.2 Program Data

```
CO6FCF Example Program Data
7
0.34907 -0.37168
0.54890 -0.35669
0.74776 -0.31175
0.94459 -0.23702
1.13850 -0.13274
1.32850 0.00074
1.51370 0.16298
```

9.3 Program Results

CO6FCF Example Program Results

Components of discrete Fourier transform

	Real	Imag
0	2.48361	-0.47100
1	-0.55180	0.49684
2	-0.36711	0.09756
3	-0.28767	-0.05865
4	-0.22506	-0.17477
5	-0.14825	-0.30840
6	0.01983	-0.56496

Original sequence as restored by inverse transform

	Original		Res	tored
	Real	Imag	Real	Imag
0	0.34907	-0.37168	0.34907	-0.37168
1	0.54890	-0.35669	0.54890	-0.35669
2	0.74776	-0.31175	0.74776	-0.31175
3	0.94459	-0.23702	0.94459	-0.23702
4	1.13850	-0.13274	1.13850	-0.13274
5	1.32850	0.00074	1.32850	0.00074
6	1.51370	0.16298	1.51370	0.16298

C06FCF.4 (last) [NP3086/18]

C06FFF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details. The routine name may be precision-dependent.

1. **Purpose**

C06FFF computes the discrete Fourier transform of one variable in a multivariate sequence of complex data values.

2. **Specification**

SUBROUTINE CO6FFF (NDIM, L, ND, N, X, Y, WORK, LWORK, IFAIL)

INTEGER

NDIM, L, ND(NDIM), N, LWORK, IFAIL

real

X(N), Y(N), WORK(LWORK)

3. Description

This routine computes the discrete Fourier transform of one variable (the Ith say) in a multivariate sequence of complex data values $z_{j_1,j_2...j_m}$, where $j_1 = 0,1,...,n_1-1$, $j_2 = 0,1,...,n_2-1$, and so on. Thus the individual dimensions are $n_1,n_2,...,n_m$, and the total number of data values is $n = n_1 \times n_2 \times ... \times n_m$.

The routine computes n/n_1 one-dimensional transforms defined by:

$$\hat{z}_{j_1...k_l...j_m} = \frac{1}{\sqrt{n_l}} \sum_{j_l=0}^{n_l-1} z_{j_1...j_l...j_m} \times \exp\left(-\frac{2\pi i j_l k_l}{n_l}\right)$$

where $k_i = 0,1,...,n_i-1$.

(Note the scale factor of $\frac{1}{\sqrt{n_i}}$ in this definition.)

To compute the inverse discrete Fourier transforms, defined with $\exp\left(+\frac{2\pi i j_i k_i}{n_i}\right)$ in the above

formula instead of $\exp\left(-\frac{2\pi i j_i k_i}{n_i}\right)$, this routine should be preceded and followed by calls of

C06GCF to form the complex conjugates of the data values and the transform.

The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts separately), in accordance with the Fortran convention for storing multi-dimensional data (i.e. with the first subscript j_1 varying most rapidly).

This routine calls C06FCF to perform one-dimensional discrete Fourier transforms by the Fast Fourier Transform algorithm in Brigham [1], and hence there are some restrictions on the values of n_i (See Section 5).

4. References

[1] BRIGHAM, E.O.

The Fast Fourier Transform.

Prentice-Hall, 1973.

5. **Parameters**

NDIM - INTEGER. 1:

Input

On entry: the number of dimensions (or variables) in the multivariate data, m.

Constraint: NDIM ≥ 1 .

2: L – INTEGER.

Input

On entry: the index of the variable (or dimension) on which the discrete Fourier transform is to be performed, l.

Constraint: $1 \le L \le NDIM$.

3: ND(NDIM) - INTEGER array.

Input

On entry: ND(i) must contain n_i (the dimension of the *i*th variable), for i = 1,2,...,m. The largest prime factor of ND(l) must not exceed 19, and the total number of prime factors of ND(l), counting repetitions, must not exceed 20.

Constraint: $ND(i) \ge 1$ for all i.

4: N – INTEGER.

Input

On entry: the total number of data values, n.

Constraint: $N = ND(1) \times ND(2) \times ... \times ND(NDIM)$.

5: X(N) - real array.

Input/Output

On entry: $X(1+j_1+n_1j_2+n_1n_2j_3+...)$ must contain the real part of the complex data value $z_{j_1j_2...j_m}$, for $0 \le j_1 < n_1, 0 \le j_2 < n_2,...$; i.e. the values are stored in consecutive elements of the array according to the Fortran convention for storing multi-dimensional arrays.

On exit: the real parts of the corresponding elements of the computed transform.

6: Y(N) - real array.

Input/Output

On entry: the imaginary parts of the complex data values, stored in the same way as the real parts in the array X.

On exit: the imaginary parts of the corresponding elements of the computed transform.

7: WORK(LWORK) - real array.

Workspace

8: LWORK - INTEGER.

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06FFF is called.

Constraint: LWORK $\geq 3 \times ND(L)$.

9: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

NDIM < 1.

IFAIL = 2

 $N \neq ND(1) \times ND(2) \times ... \times ND(NDIM).$

IFAIL = 3

L < 1 or L > NDIM.

IFAIL = $10 \times L + 1$

At least one of the prime factors of ND(L) is greater than 19.

```
IFAIL = 10×L + 2
    ND(L) has more than 20 prime factors.

IFAIL = 10×L + 3
    ND(L) < 1.

IFAIL = 10×L + 4
    LWORK < 3×ND(L).</pre>
```

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to $n \times \log n_l$, but also depends on the factorization of n_l . The routine is somewhat faster than average if the only prime factors of n_l are 2, 3 or 5; and fastest of all if n_l is a power of 2.

9. Example

This program reads in a bivariate sequence of complex data values and prints the discrete Fourier transform of the second variable. It then performs an inverse transform and prints the sequence so obtained, which may be compared with the original data values.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06FFF Example Program Text
  Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
                     NDIM, NMAX, LWORK
   INTEGER
                     (NDIM=2,NMAX=96,LWORK=96)
  PARAMETER
   INTEGER
                     NIN, NOUT
                     (NIN=5, NOUT=6)
   PARAMETER
   .. Local Scalars
   INTEGER
                     IFAIL, L, N
   .. Local Arrays .
   real
                     WORK(LWORK), X(NMAX), Y(NMAX)
   INTEGER
                     ND(NDIM)
   .. External Subroutines ..

EXTERNAL CO6FFF, CO6GCF, READXY, WRITXY
   EXTERNAL
   .. Executable Statements .
   WRITE (NOUT, *) 'CO6FFF Example Program Results'
   Skip heading in data file
   READ (NIN, *)
20 READ (NIN, *, END=40) ND(1), ND(2), L
   N = ND(1)*ND(2)
   IF (N.GE.1 .AND. N.LE.NMAX) THEN
      CALL READXY(NIN, X, Y, ND(1), ND(2))
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data'
      CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
      IFAIL = 0
      Compute transform
      CALL CO6FFF(NDIM, L, ND, N, X, Y, WORK, LWORK, IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) 'Discrete Fourier transform of variable ', L
      CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
```

[NP1692/14] Page 3

0.903

-0.430

0.885

-0.466

0.823

-0.568

```
Compute inverse transform
              CALL CO6GCF(Y,N,IFAIL)
              CALL CO6FFF(NDIM, L, ND, N, X, Y, WORK, LWORK, IFAIL)
              CALL CO6GCF(Y,N,IFAIL)
              WRITE (NOUT, *)
WRITE (NOUT, *)
                'Original sequence as restored by inverse transform'
              CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
              GO TO 20
           ELSE
              WRITE (NOUT, *) 'Invalid value of N'
           END IF
       40 STOP
    99999 FORMAT (1X,A,I1)
           END
           SUBROUTINE READXY(NIN, X, Y, N1, N2)
           Read 2-dimensional complex data
    *
           .. Scalar Arguments .
                               N1, N2, NIN
           INTEGER
           .. Array Arguments ..
          real
                              X(N1,N2), Y(N1,N2)
           .. Local Scalars ..
           INTEGER
                               I, J
           .. Executable Statements ..
           DO 20 I = 1, N1
              READ (NIN, \star) (X(I,J),J=1,N2)
              READ (NIN, \star) (Y(I, J), J=1, N2)
       20 CONTINUE
           RETURN
           END
           SUBROUTINE WRITXY (NOUT, X, Y, N1, N2)
           Print 2-dimensional complex data
           .. Scalar Arguments ..
           INTEGER
                               N1, N2, NOUT
           .. Array Arguments ..
           real
                              X(N1,N2), Y(N1,N2)
           .. Local Scalars ..
           INTEGER
                               I, J
           .. Executable Statements ..
           DO 20 I = 1, N1
              WRITE (NOUT, *)
              WRITE (NOUT, 99999) 'Real', (X(I,J),J=1,N2) WRITE (NOUT, 99999) 'Imag', (Y(I,J),J=1,N2)
       20 CONTINUE
           RETURN
    99999 FORMAT (1X,A,7F10.3,/(6X,7F10.3))
9.2. Program Data
    C06FFF Example Program Data
        3
             5
                  2
         1.000
                    0.999
                                0.987
                                          0.936
                                                      0.802
         0.000
                    -0.040
                              -0.159
                                          -0.352
                                                     -0.597
         0.994
                    0.989
                               0.963
                                          0.891
                                                     0.731
                              -0.268
        -0.111
                   -0.151
                                          -0.454
                                                     -0.682
```

Page 4 [NP1692/14]

0.694

-0.720

0.467

-0.884

9.3. Program Results

CO6FFF Example Program Results

Original	data				
Real	1.000	0.999	0.987	0.936	0.802
Imag		-0.040	-0.159	-0.352	-0.597
Real	0.994	0.989	0.963	0.891	0.731
Imag	-0.111	-0.151	-0.268	-0.454	-0.682
Real	0.903	0.885	0.823	0.694	0.467
Imag	-0.430	-0.466	-0.568	-0.720	-0.884
Discrete	Fourier	transform	of variabl	e 2	
Real	2.113	0.288	0.126	-0.003	-0.287 0.194
Imag	-0.513	0.000	0.130	0.190	
Real	2.043	0.286	0.139	0.018	-0.263
Imag	-0.745	-0.032	0.115	0.189	0.225
Real	1.687	0.260	0.170	0.079	-0.176
Imag	-1.372	-0.125	0.063	0.173	0.299
Original	sequence	e as restor	red by inve	rse transf	orm
Real	1.000	0.999	0.987	0.936	0.802
Imag	0.000	-0.040	-0.159	-0.352	-0.597
Real	0.994	0.989	0.963	0.891	0.731
Imag	-0.111	-0.151	-0.268	-0.454	-0.682
Real	0.903	0.885	0.823	0.694	0.467
Imag	-0.430	-0.466	-0.568	-0.720	-0.884

[NP1692/14] Page 5 (last)

C06F.JF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06FJF computes the multi-dimensional discrete Fourier transform of a multivariate sequence of complex data values.

2. Specification

SUBROUTINE CO6FJF (NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)

INTEGER NDIM, ND(NDIM), N, LWORK, IFAIL

real X(N), Y(N), WORK(LWORK)

3. Description

This routine computes the multi-dimensional discrete Fourier transform of a multi-dimensional sequence of complex data values $z_{j_1j_2...j_m}$, where $j_1 = 0,1,...,n_1-1$, $j_2 = 0,1,...,n_2-1$, and so on. Thus the individual dimensions are $n_1,n_2,...,n_m$, and the total number of data values $n = n_1 \times n_2 \times \cdots \times n_m$.

The discrete Fourier transform is here defined (e.g. for m = 2) by:

$$\hat{z}_{k_1,k_2} = \frac{1}{\sqrt{n}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} z_{j_1,j_2} \times \exp\left(-2\pi i \left(\frac{j_1 k_1}{n_1} + \frac{j_2 k_2}{n_2}\right)\right),$$

where $k_1 = 0,1,...,n_1-1$, $k_2 = 0,1,...,n_2-1$.

The extension to higher dimensions is obvious. (Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.)

To compute the inverse discrete Fourier transform, defined with $\exp(+2\pi i(...))$ in the above formula instead of $\exp(-2\pi i(...))$, this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the data values and the transform.

The data values must be supplied in a pair of one-dimensional arrays (real and imaginary parts separately), in accordance with the Fortran convention for storing multi-dimensional data (i.e. with the first subscript j_1 varying most rapidly).

This routine calls C06FCF to perform one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham [1], and hence there are some restrictions on the values of the n_i (see Section 5).

4. References

[1] BRIGHAM, E.O.

The Fast Fourier Transform.

Prentice-Hall, 1973.

5. Parameters

1: NDIM - INTEGER.

Input

On entry: the number of dimensions (or variables), m, in the multivariate data.

Constraint: NDIM ≥ 1.

2: ND(NDIM) – INTEGER array.

Input

On entry: ND(i) must contain n_i (the dimension of the *i*th variable), for i = 1,2,...,m. The largest prime factor of each ND(i) must not exceed 19, and the total number of prime factors of ND(i), counting repetitions, must not exceed 20.

Constraint: $ND(i) \ge 1$.

[NP2136/15] Page 1

3: N - INTEGER. Input

On entry: the total number of data values, n.

Constraint: $N = ND(1) \times ND(2) \times \cdots \times ND(NDIM)$.

4: X(N) - real array.

Input/Output

On entry: $X(1+j_1+n_1j_2+n_1n_2j_3+...)$ must contain the real part of the complex data value $z_{j_1j_2...j_m}$, for $0 \le j_1 \le n_1-1$, $0 \le j_2 \le n_2-1$,...; i.e. the values are stored in consecutive elements of the array according to the Fortran convention for storing multi-dimensional arrays.

On exit: the real parts of the corresponding elements of the computed transform.

5: Y(N) - real array.

Input/Output

On entry: the imaginary parts of the complex data values, stored in the same way as the real parts in the array X.

On exit: the imaginary parts of the corresponding elements of the computed transform.

6: WORK(LWORK) - real array.

Workspace

7: LWORK - INTEGER.

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06FJF is called.

Constraint: LWORK $\geq 3 \times \max\{ND(i)\}$.

8: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

NDIM < 1.

IFAIL = 2

 $N \neq ND(1) \times ND(2) \times \cdots \times ND(NDIM)$.

IFAIL = $10 \times L + 1$

At least one of the prime factors of ND(L) is greater than 19.

IFAIL = $10 \times L + 2$

ND(L) has more than 20 prime factors.

IFAIL = $10 \times L + 3$

ND(L) < 1.

IFAIL = $10 \times L + 4$

LWORK $< 3 \times ND(L)$.

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

Page 2 [NP2136/15]

8. Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of the individual dimensions ND(i). The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9. Example

This program reads in a bivariate sequence of complex data values and prints the twodimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06FJF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                     NDIM, NMAX, LWORK
                     (NDIM=2, NMAX=96, LWORK=96)
   PARAMETER
   INTEGER
                     NIN, NOUT
   PARAMETER
                     (NIN=5, NOUT=6)
    . Local Scalars .
                     IFAIL, N
   INTEGER
   .. Local Arrays ..
   real
                     WORK(LWORK), X(NMAX), Y(NMAX)
   INTEGER
                    ND(NDIM)
   .. External Subroutines .
                   CO6FJF, CO6GCF, READXY, WRITXY
   EXTERNAL
   .. Executable Statements ..
   WRITE (NOUT,*) 'C06FJF Example Program Results'
   Skip heading in data file
   READ (NIN, *)
20 READ (NIN, *, END=40) ND(1), ND(2)
   N = ND(1) * ND(2)
   IF (N.GE.1 .AND. N.LE.NMAX) THEN
      CALL READXY(NIN, X, Y, ND(1), ND(2))
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data values'
      CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
      IFAIL = 0
      Compute transform
      CALL CO6FJF(NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Components of discrete Fourier transform'
      CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
      Compute inverse transform
      CALL CO6GCF(Y,N,IFAIL)
      CALL CO6FJF(NDIM, ND, N, X, Y, WORK, LWORK, IFAIL)
      CALL CO6GCF(Y,N,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, *)
        'Original sequence as restored by inverse transform'
      CALL WRITXY(NOUT, X, Y, ND(1), ND(2))
      GO TO 20
   ELSE
      WRITE (NOUT, *) 'Invalid value of N'
   END IF
40 STOP
   END
```

[NP2136/15] Page 3

C06FKF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06FKF calculates the circular convolution or correlation of two real vectors of period n (using a work array for extra speed).

2. Specification

SUBROUTINE C06FKF (JOB, X, Y, N, WORK, IFAIL)
INTEGER
JOB, N, IFAIL
real
X(N), Y(N), WORK(N)

3. Description

This routine computes:

if JOB = 1, the discrete convolution of x and y, defined by:

$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} = \sum_{j=0}^{n-1} x_{k-j} y_j;$$

if JOB = 2, the discrete correlation of x and y defined by:

$$w_{k} = \sum_{j=0}^{n-1} x_{j} y_{k+j}.$$

Here x and y are real vectors, assumed to be periodic, with period n, i.e. $x_j = x_{j\pm n} = x_{j\pm 2n} = \cdots$; z and w are then also periodic with period n.

Note: this usage of the terms 'convolution' and 'correlation' is taken from Brigham [1]. The term 'convolution' is sometimes used to denote both these computations.

If \hat{x} , \hat{y} , \hat{z} and \hat{w} are the discrete Fourier transforms of these sequences,

i.e.
$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right)$$
, etc.,

then $\hat{z}_k = \sqrt{n} \cdot \hat{x}_k \hat{y}_k$

and
$$\hat{w}_k = \sqrt{n}. \bar{\hat{x}}_k \hat{y}_k$$

(the bar denoting complex conjugate).

This routine calls the same auxiliary routines as C06FAF and C06FBF to compute discrete Fourier transforms, and there are some restrictions on the value of n.

4. References

[1] BRIGHAM, E.O.

The Fast Fourier Transform. Prentice-Hall, 1973.

5. Parameters

1: JOB – INTEGER.

Input

On entry: the computation to be performed:

if JOB = 1,
$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j}$$
 (convolution);

if JOB = 2,
$$w_k = \sum_{j=0}^{n-1} x_j y_{k+j}$$
 (correlation).

Constraint: JOB = 1 or 2.

2: X(N) - real array.

Input/Output

On entry: the elements of one period of the vector x. If X is declared with bounds (0:N-1) in the (sub)program from which C06FKF is called, then X(j) must contains x_j , for j = 0,1,...,n-1.

On exit: the corresponding elements of the discrete convolution or correlation.

3: Y(N) - real array.

Input/Output

On entry: the elements of one period of the vector y. If Y is declared with bounds (0:N-1) in the (sub)program from which C06FKF is called, then Y(j) must contain y_j , for j = 0,1,...,n-1.

On exit: the discrete Fourier transform of the convolution or correlation returned in the array X; the transform is stored in Hermitian form, exactly as described in the document for C06FAF.

4: N - INTEGER.

Input

On entry: the number of values, n, in one period of the vectors X and Y. The largest prime factor of N must not exceed 19 and the total number of prime factors of N, counting repetitions, must not exceed 20.

Constraint: N > 1.

5: WORK(N) - real array.

Workspace

6: IFAIL – INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

At least one of the prime factors of N is greater than 19.

IFAIL = 2

N has more than 20 prime factors.

IFAIL = 3

 $N \leq 1$.

IFAIL = 4

JOB \neq 1 or 2.

7. Accuracy

The results should be accurate to within a small multiple of the machine precision.

8. Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9. Example

This program reads in the elements of one period of two real vectors x and y, and prints their discrete convolution and correlation (as computed by C06FKF). In realistic computations the number of data values would be much larger.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06FKF Example Program Text
      Mark 14 Revised. NAG Copyright 1989.
*
      .. Parameters ..
      INTEGER
                        NMAX
      PARAMETER
                        (NMAX=64)
                        NIN, NOUT
      INTEGER
      PARAMETER
                        (NIN=5, NOUT=6)
      .. Local Scalars ..
      INTEGER
                        IFAIL, J, N
      .. Local Arrays .
      real
                        WORK(NMAX), XA(NMAX), XB(NMAX), YA(NMAX),
                        YB (NMAX)
      .. External Subroutines ..
      EXTERNAL
                        C06FKF
      .. Executable Statements ..
      WRITE (NOUT, *) 'CO6FKF Example Program Results'
      Skip heading in data file
      READ (NIN, *)
   20 READ (NIN, *, END=80) N
      WRITE (NOUT, *)
      IF (N.GT.1 .AND. N.LE.NMAX) THEN
         DO 40 J = 1, N
            READ (NIN, \star) XA(J), YA(J)
            XB(J) = XA(J)
            YB(J) = YA(J)
   40
         CONTINUE
         IFAIL = 0
         CALL CO6FKF(1, XA, YA, N, WORK, IFAIL)
         CALL CO6FKF(2, XB, YB, N, WORK, IFAIL)
         WRITE (NOUT, *) '
                                   Convolution Correlation'
         WRITE (NOUT, *)
         DO 60 J = 1, N
            WRITE (NOUT, 99999) J - 1, XA(J), XB(J)
   60
         CONTINUE
         GO TO 20
      ELSE
         WRITE (NOUT, *) 'Invalid value of N'
      END IF
   80 STOP
99999 FORMAT (1X, 15, 2F13.5)
      END
```

9.2. Program Data

```
C06FKF Example Program Data
      1.00
                 0.50
      1.00
                 0.50
      1.00
                 0.50
      1.00
                 0.50
      1.00
                 0.00
      0.00
                 0.00
      0.00
                 0.00
      0.00
                 0.00
      0.00
                 0.00
```

[NP2136/15] Page 3

9.3. Program Results

CO6FKF Example Program Results

	Convolution	Correlation
0 1 2	0.50000 1.00000 1.50000	2.00000 1.50000 1.00000
3	2.00000	0.50000
4	2.00000	0.00000
5	1.50000	0.50000
6	1.00000	1.00000
7	0.50000	1.50000
8	0.00000	2.00000

C06FPF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FPF computes the discrete Fourier transforms of m sequences, each containing n real data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6FPF(M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

real X(M*N), TRIG(2*N), WORK(M*N)

CHARACTER*1 INIT

3 Description

Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$; $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier transforms of all the sequences defined by:

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

The transformed values \hat{z}_k^p are complex, but for each value of p the \hat{z}_k^p form a Hermitian sequence (i.e., \hat{z}_{n-k}^p is the complex conjugate of \hat{z}_k^p), so they are completely determined by mn real numbers (see also the Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term:

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j^p \times \exp\left(+i\frac{2\pi jk}{n}\right).$$

To compute this form, this routine should be followed by a call to C06GQF to form the complex conjugates of the \hat{z}_k^p .

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special coding is provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as M, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

[NP3086/18] C06FPF.1

2: N — INTEGER

On entry: the number of real values in each sequence, n.

Constraint: $N \geq 1$.

3: X(M*N) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$, then the mn elements of the array X must contain the values

$$x_0^1, x_0^2, \ldots, x_0^m, x_1^1, x_1^2, \ldots, x_1^m, \ldots, x_{n-1}^1, x_{n-1}^2, \ldots, x_{n-1}^m.$$

On exit: the m discrete Fourier transforms stored as if in a two-dimensional array of dimension (1:M,0:N-1). Each of the m transforms is stored in a row of the array in Hermitian form, overwriting the corresponding original sequence. If the n components of the discrete Fourier transform \hat{z}_k^p are written as $a_k^p + ib_k^p$, then for $0 \le k \le n/2$, a_k^p is contained in X(p,k), and for $1 \le k \le (n-1)/2$, b_k^p is contained in X(p,n-k). (See also Section 2.1.2 of the Chapter Introduction.)

4: INIT — CHARACTER*1

Inpu

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06FPF, C06FQF or C06FRF.

If INIT contains 'R' (Restart) then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06FPF, C06FQF or C06FRF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is consistent with the array TRIG.

Constraint: INIT = 'I', 'S' or 'R'.

5: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

6: WORK(M*N) - real array

Workspace

7: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

```
IFAIL = 2
     N < 1.

IFAIL = 3
     INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4
     INIT = 'S', but none of C06FPF, C06FQF or C06FRF have previously been called.

IFAIL = 5
     INIT = 'S' or 'R', but the array TRIG and the current value of N are inconsistent.</pre>
```

IFAIL = 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their discrete Fourier transforms (as computed by C06FPF). The Fourier transforms are expanded into full complex form using C06GSF and printed. Inverse transforms are then calculated by calling C06GQF followed by C06FQF showing that the original sequences are restored.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6FPF Example Program Text
Mark 14 Revised. NAG Copyright 1989.
.. Parameters ..
                 MMAX, NMAX
INTEGER
PARAMETER
                 (MMAX=5,NMAX=20)
INTEGER
                 NIN, NOUT
PARAMETER
                 (NIN=5, NOUT=6)
.. Local Scalars ..
INTEGER
                 I, IFAIL, J, M, N
.. Local Arrays ..
                 TRIG(2*NMAX), U(NMAX*MMAX), V(NMAX*MMAX),
real
                 WORK(2*MMAX*NMAX), X(NMAX*MMAX)
.. External Subroutines ..
EXTERNAL
                 CO6FPF, CO6FQF, CO6GQF, CO6GSF
.. Executable Statements ..
WRITE (NOUT,*) 'CO6FPF Example Program Results'
Skip heading in data file
```

[NP3086/18] C06FPF.3

```
READ (NIN,*)
  20 READ (NIN, *, END=140) M, N
     IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
        DO 40 J = 1, M
           READ (NIN,*) (X(I*M+J), I=0, N-1)
        CONTINUE
  40
        WRITE (NOUT.*)
        WRITE (NOUT,*) 'Original data values'
        WRITE (NOUT,*)
        DO 60 J = 1, M
           WRITE (NOUT, 99999) ', (X(I*M+J), I=0, N-1)
  60
        CONTINUE
        IFAIL = 0
        CALL CO6FPF(M,N,X,'Initial',TRIG,WORK,IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT,*)
          'Discrete Fourier transforms in Hermitian format'
        WRITE (NOUT,*)
        DO 80 J = 1, M
           WRITE (NOUT,99999) ' ', (X(I*M+J),I=0,N-1)
         CONTINUE
  80
         WRITE (NOUT,*)
        WRITE (NOUT,*) 'Fourier transforms in full complex form'
         CALL COGGSF(M,N,X,U,V,IFAIL)
        DO 100 J = 1, M
            WRITE (NOUT,*)
            WRITE (NOUT, 99999) 'Real ', (U(I*M+J), I=0, N-1)
            WRITE (NOUT, 99999) 'Imag ', (V(I*M+J), I=0, N-1)
         CONTINUE
 100
         CALL COGGQF(M,N,X,IFAIL)
         CALL CO6FQF(M,N,X,'Subsequent',TRIG,WORK,IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Original data as restored by inverse transform'
         WRITE (NOUT,*)
         DO 120 J = 1, M
            WRITE (NOUT,99999) ' ', (X(I*M+J),I=0,N-1)
  120
         CONTINUE
         GO TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of M or N'
      END IF
 140 STOP
99999 FORMAT (1X,A,6F10.4)
      END
```

C06FPF.4 [NP3086/18]

9.2 Program Data

CO6FPF Example Program Data

3 6

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

9.3 Program Results

CO6FPF Example Program Results

Original data values

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

Discrete Fourier transforms in Hermitian format

1.0737	-0.1041	0.1126	-0.1467	-0.3738	-0.0044
1.3961	-0.0365	0.0780	-0.1521	-0.0607	0.4666
1.1237	0.0914	0.3936	0.1530	0.3458	-0.0508

Fourier transforms in full complex form

Real	1.0737	-0.1041	0.1126	-0.1 4 67	0.1126	-0.1041
Imag	0.0000	-0.0044	-0.3738	0.0000	0.3738	0.0044
Real	1.3961	-0.0365	0.0780	-0.1521	0.0780	-0.0365
Imag	0.0000	0.4666	-0.0607	0.0000	0.0607	-0.4666
Real	1.1237	0.0914	0.3936	0.1530	0.3936	0.0914
Imag	0.0000	-0.0508	0.3458	0.0000	-0.3458	0.0508

Original data as restored by inverse transform

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

C06FQF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FQF computes the discrete Fourier transforms of m Hermitian sequences, each containing n complex data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6FQF(M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

CHARACTER*1 INIT

3 Description

Given m Hermitian sequences of n complex data values z_j^p , for $j=0,1,\ldots,n-1$; $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier transforms of all the sequences defined by:

$$\hat{x}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j^p \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

The transformed values are purely real (see also the Chapter Introduction).

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

$$\hat{x}_k^p = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j^p \times \exp\left(+i\frac{2\pi jk}{n}\right).$$

To compute this form, this routine should be preceded by a call to C06GQF to form the complex conjugates of the \hat{z}_i^p .

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is included for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

2: N — INTEGER

On entry: the number of data values in each sequence, n.

Constraint: $N \geq 1$.

3: X(M*N) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of the array in Hermitian form. If the n data values z_j^p are written as $x_j^p + iy_j^p$, then for $0 \le j \le n/2$, x_j^p is contained in X(p,j), and for $1 \le j \le (n-1)/2$, y_j^p is contained in X(p,n-j). (See also Section 2.1.2 of the Chapter Introduction.)

On exit: the components of the m discrete Fourier transforms, stored as if in a two-dimensional array of dimension (1:M,0:N-1). Each of the m transforms is stored as a row of the array, overwriting the corresponding original sequence. If the n components of the discrete Fourier transform are denoted by \hat{x}_k^p , for $k=0,1,\ldots,n-1$, then the mn elements of the array X contain the values

$$\hat{x}_0^1, \hat{x}_0^2, \dots, \hat{x}_0^m, \ \hat{x}_1^1, \hat{x}_1^2, \dots, \ \hat{x}_1^m, \dots, \ \hat{x}_{n-1}^1, \hat{x}_{n-1}^2, \dots, \hat{x}_{n-1}^m$$

4: INIT — CHARACTER*1

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06FPF, C06FQF or C06FRF.

If INIT contains 'R' (Restart), then the routine assumes that trigonometric coefficients for the particular value of N are supplied in the array TRIG, but does not check that C06FPF, C06FQF or C06FRF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is compatible with the array TRIG.

Constraint: INIT = 'I', 'S' or 'R'.

5: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S' or 'R, TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

6: WORK(M*N) - real array

Work space

7: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'S' or 'R'.

C06FQF.3

```
IFAIL = 4
```

Not used at this Mark.

```
IFAIL = 5
```

On entry, INIT = 'S' or 'R', but the array TRIG and the current value of n are inconsistent.

```
IFAIL = 6
```

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are expanded into full complex form using C06GSF and printed. The discrete Fourier transforms are then computed (using C06FQF) and printed out. Inverse transforms are then calculated by calling C06FPF followed by C06GQF showing that the original sequences are restored.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6FQF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    MMAX, NMAX
  PARAMETER
                    (MMAX=5,NMAX=20)
   INTEGER
                    NIN, NOUT
  PARAMETER
                    (NIN=5, NOUT=6)
   . Local Scalars .
   INTEGER
                    I, IFAIL, J, M, N
   .. Local Arrays ..
                    TRIG(2*NMAX), U(MMAX*NMAX), V(MMAX*NMAX),
  real
                    WORK(2*NMAX*MMAX), X(MMAX*NMAX)
   .. External Subroutines ..
                    CO6FPF, CO6FQF, CO6GQF, CO6GSF
  EXTERNAL
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6FQF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN,*,END=140) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
     DO 40 J = 1, M
         READ (NIN,*) (X(I*M+J),I=0,N-1)
```

[NP3086/18]

```
CONTINUE
  40
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Original data values'
        WRITE (NOUT,*)
        DO 60 J = 1, M
           WRITE (NOUT,99999) ' ', (X(I*M+J),I=0,N-1)
  60
        CONTINUE
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Original data written in full complex form'
        IFAIL = 0
        CALL COGGSF(M,N,X,U,V,IFAIL)
        DO 80 J = 1, M
           WRITE (NOUT,*)
            WRITE (NOUT, 99999) 'Real', (U(I*M+J), I=0, N-1)
            WRITE (NOUT, 99999) 'Imag ', (V(I*M+J), I=0, N-1)
  80
        CONTINUE
        CALL CO6FQF(M,N,X,'Initial',TRIG,WORK,IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Discrete Fourier transforms (real values)'
        WRITE (NOUT,*)
        DO 100 J = 1, M
            WRITE (NOUT, 99999) ', (X(I*M+J), I=0, N-1)
 100
        CONTINUE
        CALL CO6FPF(M, N, X, 'Subsequent', TRIG, WORK, IFAIL)
        CALL COGGQF(M,N,X,IFAIL)
        WRITE (NOUT, *)
        WRITE (NOUT,*) 'Original data as restored by inverse transform'
        WRITE (NOUT,*)
        DO 120 J = 1, M
            WRITE (NOUT, 99999) ', (X(I*M+J), I=0, N-1)
 120
         CONTINUE
         GD TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of M or N'
      END IF
 140 STOP
99999 FORMAT (1X,A,6F10.4)
      END
```

9.2 Program Data

```
C06FQF Example Program Data

3 6

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
```

9.3 Program Results

CO6FQF Example Program Results

Original	data	values
----------	------	--------

	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
Original	data wri	itten in fi	ull complex	k form		
,			_			
Real	0.3854	0.6772	0.1138	0.6751	0.1138	0.6772
Imag	0.0000	0.1424	0.6362	0.0000	-0.6362	-0.1424
•						
Real	0.5417	0.2983	0.1181	0.7255	0.1181	0.2983
Imag	0.0000	0.8723	0.8638	0.0000	-0.8638	-0.8723
Real	0.9172	0.0644	0.6037	0.6430	0.6037	0.0644
Imag	0.0000	0.4815	0.0428	0.0000	-0.0428	-0.4815
${\tt Discrete}$	Fourier	transform	s (real val	lues)		
	1.0788	0.6623	-0.2391	-0.5783	0.4592	-0.4388
	0.8573	1.2261	0.3533	-0.2222	0.3413	-1.2291
	1.1825	0.2625	0.6744	0.5523	0.0540	-0.4790
Original	data as	restored 1	by inverse	transform		
	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

[NP3086/18] C06FQF.5 (last)

C06FRF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FRF computes the discrete Fourier transforms of m sequences, each containing n complex data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6FRF(M, N, X, Y, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

CHARACTER*1 INIT

3 Description

Given m sequences of n complex data values z_j^p , for $j=0,1,\ldots,n-1$; $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier transforms of all the sequences defined by:

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j^p \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

The discrete Fourier transform is sometimes defined using a positive sign in the exponential term

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j^p \times \exp\left(+i\frac{2\pi jk}{n}\right).$$

To compute this form, this routine should be preceded and followed by a call of C06GCF to form the complex conjugates of the z_j^p and the \hat{z}_k^p .

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: M — INTEGER

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

2: N - INTEGER

On entry: the number of complex values in each sequence, n.

Constraint: $N \geq 1$.

[NP3086/18] C06FRF.1

3: X(M*N) - real array

Input/Output

4: Y(M*N) - real array

Input/Output

On entry: the real and imaginary parts of the complex data must be stored in X and Y respectively as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of each array. In other words, if the real parts of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$, then the mn elements of the array X must contain the values

$$x_0^1, x_0^2, \dots, x_0^m, x_1^1, x_1^2, \dots, x_1^m, \dots, x_{n-1}^1, x_{n-1}^2, \dots, x_{n-1}^m.$$

On exit: X and Y are overwritten by the real and imaginary parts of the complex transforms.

5: INIT — CHARACTER*1

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06FPF, C06FQF or C06FRF.

If INIT contains 'R' (Restart) then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06FPF, C06FQF or C06FRF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is compatible with the array TRIG.

Constraint: INIT = 'I', 'S' or 'R'.

6: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S', or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

7: WORK(2*M*N) - real array

Workspace

8: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4

Not used at this Mark.

```
IFAIL = 5
```

On entry, INIT = 'S' or 'R', but the array TRIG and the current value of n are inconsistent.

IFAIL = 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as computed by C06FRF). Inverse transforms are then calculated using C06GCF and C06FRF and printed out, showing that the original sequences are restored.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6FRF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    MMAX, NMAX
   PARAMETER
                     (MMAX=5, NMAX=20)
                    NIN, NOUT
   INTEGER
   PARAMETER
                     (NIN=5, NOUT=6)
   .. Local Scalars ..
   INTEGER
                    I, IFAIL, J, M, N
   .. Local Arrays ..
   real
                    TRIG(2*NMAX), WORK(2*MMAX*NMAX), X(MMAX*NMAX).
                    Y(MMAX*NMAX)
   .. External Subroutines ..
   EXTERNAL
                    CO6FRF, CO6GCF
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6FRF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN,*) (X(I*M+J),I=0,N-1)
         READ (NIN,*) (Y(I*M+J),I=0,N-1)
40
      CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
     DO 60 J = 1, M
```

[NP3086/18] C06FRF.3

```
WRITE (NOUT,*)
           WRITE (NOUT,99999) 'Real', (X(I*M+J),I=0,N-1)
           WRITE (NOUT,99999) 'Imag ', (Y(I*M+J),I=0,N-1)
  60
        CONTINUE
        IFAIL = 0
        CALL CO6FRF(M,N,X,Y,'Initial',TRIG,WORK,IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Discrete Fourier transforms'
        DO 80 J = 1, M
           WRITE (NOUT,*)
           WRITE (NOUT,99999) 'Real ', (X(I*M+J),I=0,N-1)
           WRITE (NOUT,99999) 'Imag ', (Y(I*M+J),I=0,N-1)
        CONTINUE
  80
        CALL COGGCF(Y,M*N,IFAIL)
        CALL CO6FRF(M,N,X,Y,'Subsequent',TRIG,WORK,IFAIL)
        CALL COGGCF(Y,M*N,IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Original data as restored by inverse transform'
        DO 100 J = 1, M
            WRITE (NOUT,*)
            WRITE (NOUT, 99999) 'Real', (X(I*M+J), I=0, N-1)
            WRITE (NOUT, 99999) 'Imag ', (Y(I*M+J), I=0, N-1)
 100
        CONTINUE
        GD TO 20
     ELSE
        WRITE (NOUT,*) 'Invalid value of M or N'
      END IF
 120 STOP
99999 FORMAT (1X,A,6F10.4)
      END
```

9.2 Program Data

CO6FRF Example Program Data

3 6					
0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
0.9089	0.3118	0.3465	0.6198	0.2668	0.1614
0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
0.6214	0.8681	0.7060	0.8652	0.9190	0.3355

9.3 Program Results

CO6FRF Example Program Results

Original data values

```
Real 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
Imag 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
```

Real	0.9172	0.06 44	0.6037	0.6430	0.0428	0.4815
Imag	0.9089	0.3118	0.3465	0.6198	0.2668	0.1614
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355
Discrete	Fourier	transforms	S			
Real	1.0737	-0.5706	0.1733	-0.1467	0.0518	0.3625
Imag	1.3961	-0.0409	-0.2958	-0.1521	0.4517	-0.0321
Real	1.1237	0.1728	0.4185	0.1530	0.3686	0.0101
Imag	1.0677	0.0386	0.7481	0.1752	0.0565	0.1403
Real	0.9100	-0.3054	0.4079	-0.0785	-0.1193	-0.5314
Imag	1.7617	0.0624	-0.0695	0.0725	0.1285	-0.4335
Original	data as	restored b	y inverse	transform		
Real	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
Imag	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
Real	0.9172	0.06 44	0.6037	0.6430	0.0428	0.4815
Imag	0.9089	0.3118	0.3 4 65	0.6198	0.2668	0.1614
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355

[NP3086/18]

C06FUF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06FUF computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors.

2. Specification

```
SUBROUTINE CO6FUF (M, N, X, Y, INIT, TRIGM, TRIGN, WORK, IFAIL)

INTEGER

M, N, IFAIL

Y(M*N), Y(M*N), TRIGM(2*M), TRIGN(2*N),

WORK(2*M*N)

CHARACTER*1

INIT
```

3. Description

This routine computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values $z_{j_1j_2}$, where $j_1 = 0,1,...,m-1$, $j_2 = 0,1,...,n-1$.

The discrete Fourier transform is here defined by:

$$\hat{z}_{k_1 k_2} = \frac{1}{\sqrt{mn}} \sum_{j_1=0}^{m-1} \sum_{j_2=0}^{n-1} z_{j_1 j_2} \times \exp\left(-2\pi i \left(\frac{j_1 k_1}{m} + \frac{j_2 k_2}{n}\right)\right),$$

where $k_1 = 0,1,...,m-1$, $k_2 = 0,1,...,n-1$.

(Note the scale factor of $\frac{1}{\sqrt{mn}}$ in this definition.)

To compute the inverse discrete Fourier transform, defined with $\exp(+2\pi i(...))$ in the above formula instead of $\exp(-2\pi i(...))$, this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the data values and the transform.

This routine calls C06FRF to perform multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham [1]. It is designed to be particularly efficient on vector processors.

4. References

[1] BRIGHAM, E.O.

The Fast Fourier Transform. Prentice-Hall, 1973.

[2] TEMPERTON, C.

Self-sorting Mixed-radix Fast Fourier Transforms.

J. Comput. Phys., 52, pp. 1-23, 1983.

5. Parameters

1: M - INTEGER.

Input

On entry: the number of rows, m, of the arrays X and Y.

Constraint: $M \geq 1$.

2: N - INTEGER.

Input

On entry: the number of columns, n, of the arrays X and Y.

Constraint: $N \geq 1$.

[NP2136/15]

3: X(M*N) - real array.

Input/Output
Input/Output

4: Y(M*N) - real array.

On entry: the real and imaginary parts of the complex data values must be stored in arrays X and Y respectively. If X and Y are regarded as two-dimensional arrays of dimension (0:M-1,0:N-1), then $X(j_1j_2)$ and $Y(j_1j_2)$ must contain the real and imaginary parts of z_{i,i_2} .

On exit: the real and imaginary parts respectively of the corresponding elements of the computed transform.

5: INIT - CHARACTER*1.

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the arrays TRIGM and TRIGN, then INIT must be set equal to 'I' or 'i', (Initial call).

If INIT contains 'S' or 's', (Subsequent call), then the routine assumes that trigonometric coefficients for the specified values of m and n are supplied in the arrays TRIGM and TRIGN, having been calculated in a previous call to the routine.

If INIT contains 'R' or 'r', (Restart), then the routine assumes that trigonometric coefficients for the particular values of m and n are supplied in the arrays TRIGM and TRIGN, but does not check that the routine has previously been called. This option allows the TRIGM and TRIGN arrays to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I' or 'i'. The routine carries out a simple test to check that the current values of m and n are compatible with the arrays TRIGM and TRIGN.

Constraint: INIT = 'I', 'i', 'S', 's', 'R' or 'r'.

6: TRIGM(2*M) - real array.

Input/Output

7: TRIGN(2*N) - real array.

Input/Output

On entry: if INIT = 'S', 's', 'R' or 'r', TRIGM and TRIGN must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIGM and TRIGN need not be set.

If m = n the same array may be supplied for TRIGM and TRIGN.

On exit: TRIGM and TRIGN contain the required coefficients (computed by the routine if INIT = 'I' or 'i').

8: WORK(2*M*N) - real array.

Workspace

9: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'i', 'S', 's', 'R' or 'r'.

Page 2 [NP2136/15]

IFAIL = 4

On entry, INIT = 'S' or 's', but C06FUF has not previously been called.

IFAIL = 5

On entry, INIT = 'S', 's', 'R' or 'r', but at least one of the arrays TRIGM and TRIGN is inconsistent with the current value of M or N.

7. Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8. Further Comments

The time taken by the routine is approximately proportional to $mn \times \log(mn)$, but also depends on the factorization of the individual dimensions m and n. The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9. Example

This program reads in a bivariate sequence of complex data values and prints the twodimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06FUF Example Program Text
   Mark 14 Revised.
                     NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    NIN, NOUT
   PARAMETER
                    (NIN=5, NOUT=6)
   INTEGER
                    MMAX, NMAX, MNMAX
  PARAMETER
                    (MMAX=96, NMAX=96, MNMAX=MMAX*NMAX)
   .. Local Scalars .
   INTEGER
                    IFAIL, M, N
   .. Local Arrays .
  real
                    TRIGM(2*MMAX), TRIGN(2*NMAX), WORK(2*MNMAX),
                    X(MNMAX), Y(MNMAX)
    . External Subroutines .
  EXTERNAL
                    CO6FUF, CO6GCF, READXY, WRITXY
   .. Executable Statements ..
  WRITE (NOUT, *) 'C06FUF Example Program Results'
  Skip heading in data file
  READ (NIN, *)
20 READ (NIN, *, END=40) M, N
   IF (M*N.GE.1 .AND. M*N.LE.MNMAX) THEN
      CALL READXY(NIN, X, Y, M, N)
      WRITE (NOUT, *)
     WRITE (NOUT, *) 'Original data values'
      CALL WRITXY(NOUT, X, Y, M, N)
      IFAIL = 0
     -- Compute transform
     CALL CO6FUF(M,N,X,Y,'Initial',TRIGM,TRIGN,WORK,IFAIL)
     WRITE (NOUT, *)
     WRITE (NOUT, *) 'Components of discrete Fourier transform'
     CALL WRITXY(NOUT, X, Y, M, N)
     -- Compute inverse transform
     CALL COGGCF(Y,M*N,IFAIL)
     CALL C06FUF(M,N,X,Y,'Subsequent',TRIGM,TRIGN,WORK,IFAIL)
     CALL CO6GCF(Y,M*N,IFAIL)
```

[NP2136/15] Page 3

```
WRITE (NOUT, *)
              WRITE (NOUT, *)
                'Original sequence as restored by inverse transform'
              CALL WRITXY(NOUT, X, Y, M, N)
              GO TO 20
          ELSE
              WRITE (NOUT, *) ' ** Invalid value of M or N'
          END IF
       40 STOP
          END
          SUBROUTINE READXY(NIN, X, Y, N1, N2)
          Read 2-dimensional complex data
           .. Scalar Arguments .
                               N1, N2, NIN
          INTEGER
          .. Array Arguments ..
                               X(N1,N2), Y(N1,N2)
          real
           .. Local Scalars ..
          INTEGER
                                I, J
           .. Executable Statements ..
          DO 20 I = 1, N1
              READ (NIN, \star) (X(I, J), J=1, N2)
              READ (NIN, \star) (Y(I, J), J=1, N2)
       20 CONTINUE
           RETURN
           END
           SUBROUTINE WRITXY (NOUT, X, Y, N1, N2)
           Print 2-dimensional complex data
           .. Scalar Arguments ..
                               N1, N2, NOUT
           INTEGER
           .. Array Arguments .
                                X(N1,N2), Y(N1,N2)
           real
           .. Local Scalars ..
    *
                                I, J
           INTEGER
           .. Executable Statements ..
           DO 20 I = 1, N1
              WRITE (NOUT, *)
              WRITE (NOUT, 99999) 'Real', (X(I,J),J=1,N2)
WRITE (NOUT, 99999) 'Imag', (Y(I,J),J=1,N2)
       20 CONTINUE
           RETURN
    99999 FORMAT (1X,A,7F10.3,/(6X,7F10.3))
           END
9.2. Program Data
    CO6FUF Example Program Data
       5 : Number of rows, M, and columns, N, in X and Y 1.000 0.999 0.987 0.936 0.802 :
                                                              X(0,J), J=0,...,N-1

Y(0,J), J=0,...,N-1
                                                  0.802 :
                             -0.159
                                        -0.352
                                                   -0.597
         0.000
                   -0.040
                                                               X(1,J), J=0,...,N-1
                                                   0.731
                              0.963
                                         0.891
                                                           :
         0.994
                   0.989
                                       -0.454
                                                  -0.682 :
0.467 :
                                                              Y(1,J), J=0,...,N-1

X(2,J), J=0,...,N-1
                   -0.151
                              -0.268
        -0.111
                                        0.694
                   0.885
                              0.823
         0.903
                             -0.568
                                                   -0.884: Y(2,J), J=0,...,N-1
                                        -0.720
         -0.430
                   -0.466
```

Page 4 [NP2136/15]

9.3. Program Results

C06FUF Example Program Results

Original	data	values
----------	------	--------

Real	1.000	0.999	0.987	0.936	0.802
Imag	0.000	-0.040	-0.159	-0.352	-0.597
Real	0.994	0.989	0.963	0.891	0.731
Imag	-0.111	-0.151	-0.268	-0.454	-0.682
-					0.002
Real	0.903	0.885	0.823	0.694	0.467
Imag	-0.430	-0.466	-0.568	-0.720	-0.884
Componen	ts of dis	crete Four	ier transf	orm	
Real	3.373	0.481	0.251	0.054	-0.419
Imag	-1.519	-0.091	0.178	0.319	0.415
Deel	0.457	0.055			
Real Imag	0. 4 57 0.137	0.055 0.032	0.009 0.039	-0.022 0.036	-0.076 0.004
	0.157	0.032	0.039	0.036	0.004
Real	-0.170	-0.037	-0.042	-0.038	-0.002
Imag	0.493	0.058	0.008	-0.025	-0.083
Original	Seguence	as restor	ed by inve	rse transfo	
originar	sequence	as rescor	ed by inve	ise clansic) I III
Real	1.000	0.999	0.987	0.936	0.802
Imag	0.000	-0.040	-0.159	-0.352	-0.597
Real	0.994	0.989	0.963	0.891	0.731
Imag	-0.111	-0.151	-0.268	-0.454	-0.682
Real	0.903	0.885	0.823	0.694	0.467
Imag	-0.430	-0.466	-0.568	-0.720	-0.884

[NP2136/15] Page 5 (last)

C06FXF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06FXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6FXF(N1, N2, N3, X, Y, INIT, TRIGN1, TRIGN2, TRIGN3,

WORK, IFAIL)

INTEGER

N1, N2, N3, IFAIL

real

X(N1*N2*N3), Y(N1*N2*N3), TRIGN1(2*N1),

TRIGN2(2*N2), TRIGN3(2*N3), WORK(2*N1*N2*N3)

CHARACTER*1

INIT

3 Description

This routine computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex data values z_{i_1,i_2,i_3} , where $j_1=0,1,\ldots,n_1-1,\,j_2=0,1,\ldots,n_2-1,\,j_3=0,1,\ldots,n_3-1$.

The discrete Fourier transform is here defined by:

$$\hat{z}_{k_1k_2k_3} = \frac{1}{\sqrt{n_1n_2n_3}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} \sum_{j_3=0}^{n_3-1} z_{j_1j_2j_3} \times \exp\left(-2\pi i \left(\frac{j_1k_1}{n_1} + \frac{j_2k_2}{n_2} + \frac{j_3k_3}{n_3}\right)\right),$$

where $k_1=0,1,\ldots,n_1-1,\,k_2=0,1,\ldots,n_2-1,\,k_3=0,1,\ldots,n_3-1.$

(Note the scale factor of $\frac{1}{\sqrt{n_1n_2n_3}}$ in this definition.)

To compute the inverse discrete Fourier transform, defined with $\exp(+2\pi i(\ldots))$ in the above formula instead of $\exp(-2\pi i(\ldots))$, this routine should be preceded and followed by calls of C06GCF to form the complex conjugates of the data values and the transform.

This routine calls C06FRF to perform multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm (Brigham [1]). It is designed to be particularly efficient on vector processors.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: N1 — INTEGER Input

On entry: the first dimension of the transform, n_1 .

Constraint: N1 > 1.

2: N2 — INTEGER

On entry: the second dimension of the transform, n_2 .

Constraint: $N2 \ge 1$.

[NP3086/18] C06FXF.1

3: N3 — INTEGER

On entry: the third dimension of the transform, n_3 .

Constraint: $N3 \ge 1$.

4: X(N1*N2*N3) - real array

Input/Output

5: Y(N1*N2*N3) - real array

Input/Output

On entry: the real and imaginary parts of the complex data values must be stored in arrays X and Y respectively. If X and Y are regarded as three-dimensional arrays of dimension (0:N1-1, 0:N2-1, 0:N3-1), then $X(j_1, j_2, j_3)$ and $Y(j_1, j_2, j_3)$ must contain the real and imaginary parts of $z_{j_1j_2j_3}$.

On exit: the real and imaginary parts respectively of the corresponding elements of the computed transform.

6: INIT — CHARACTER*1

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the arrays TRIGN1, TRIGN2 and TRIGN3, then INIT must be set equal to 'I', (Initial call).

If INIT = 'S', (Subsequent call), then the routine assumes that trigonometric coefficients for the specified values of n_1 , n_2 and n_3 are supplied in the arrays TRIGN1, TRIGN2 and TRIGN3, having been calculated in a previous call to the routine.

If INIT = 'R', (Restart), then the routine assumes that trigonometric coefficients for the specified values of n_1 , n_2 and n_3 are supplied in the arrays TRIGN1, TRIGN2 and TRIGN3, but does not check that the routine has previously been called. This option allows the TRIGN1, TRIGN2 and TRIGN3 arrays to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current values of n_1 , n_2 and n_3 are compatible with the arrays TRIGN1, TRIGN2 and TRIGN3.

Constraint: INIT = 'I', 'S' or 'R'.

7: TRIGN1(2*N1) - real array

Input/Output

8: TRIGN2(2*N2) - real array

Input/Output

9: TRIGN3(2*N3) — real array

Input/Output

On entry: if INIT = 'S' or 'R', TRIGN1, TRIGN2 and TRIGN3 must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIGN1, TRIGN2 and TRIGN3 need not be set. If $n_i = n_j$ the same array may be supplied for TRIGNi and TRIGNj, for i, j = 1, 2, 3.

On exit: TRIGN1, TRIGN2 and TRIGN3 contain the required coefficients (computed by the routine if INIT = 'I').

10: WORK(2*N1*N2*N3) — real array

Work space

11: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, N1 < 1.

```
IFAIL = 2
```

On entry, N2 < 1.

IFAIL = 3

On entry, N3 < 1.

IFAIL = 4

On entry, INIT is not one of 'I', 'S' or 'R'.

IFAIL = 5

Not used at this Mark.

IFAIL = 6

On entry, INIT = 'S' or 'R', but at least one of the arrays TRIGN1, TRIGN2 and TRIGN3 is inconsistent with the current value of N1, N2 or N3.

IFAIL = 7

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n_1 n_2 n_3 \times \log(n_1 n_2 n_3)$, but also depends on the factorization of the individual dimensions n_1 , n_2 and n_3 . The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9 Example

This program reads in a trivariate sequence of complex data values and prints the three-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6FXF Example Program Text
Mark 17 Release. NAG Copyright 1995.
.. Parameters ..
                 NIN, NOUT
INTEGER
                 (NIN=5, NOUT=6)
PARAMETER
INTEGER
                 N1MAX, N2MAX, N3MAX, NMAX
                  (N1MAX=16, N2MAX=16, N3MAX=16,
PARAMETER
                 NMAX=N1MAX*N2MAX*N3MAX)
.. Local Scalars .
INTEGER
                 IFAIL, N, N1, N2, N3
.. Local Arrays ..
                 TRIGN1(2*N1MAX), TRIGN2(2*N2MAX),
real
                 TRIGN3(2*N3MAX), WORK(2*NMAX), X(NMAX), Y(NMAX)
```

```
.. External Subroutines ..
   EXTERNAL
                     CO6FXF, CO6GCF, READXY, WRITXY
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6FXF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=40) N1, N2, N3
   N = N1*N2*N3
   IF (N.GE.1 .AND. N.LE.NMAX) THEN
      CALL READXY(NIN, X, Y, N1, N2, N3)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
      CALL WRITXY(NOUT, X, Y, N1, N2, N3)
      IFAIL = 0
      -- Compute transform
      CALL CO6FXF(N1,N2,N3,X,Y,'Initial',TRIGN1,TRIGN2,TRIGN3,WORK,
                   IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Components of discrete Fourier transform'
      CALL WRITXY(NOUT, X, Y, N1, N2, N3)
      -- Compute inverse transform
      CALL COGGCF(Y,N,IFAIL)
      CALL CO6FXF(N1,N2,N3,X,Y,'Subsequent',TRIGN1,TRIGN2,TRIGN3,
                  WORK, IFAIL)
      CALL COGGCF(Y,N,IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*)
        'Original sequence as restored by inverse transform'
      CALL WRITXY(NOUT, X, Y, N1, N2, N3)
      GO TO 20
   ELSE
      WRITE (NOUT,*) ' ** Invalid value of n1, n2 or n3'
   END IF
40 STOP
   END
   SUBROUTINE READXY(NIN,X,Y,N1,N2,N3)
   Read 3-dimensional complex data
   .. Scalar Arguments ..
   INTEGER
                     N1, N2, N3, NIN
   .. Array Arguments .
   real
                     X(N1,N2,N3), Y(N1,N2,N3)
   .. Local Scalars ..
   INTEGER
                     I, J, K
   .. Executable Statements ..
   DO 40 I = 1, N1
      DO 20 J = 1, N2
         READ (NIN,*) (X(I,J,K),K=1,N3)
         READ (NIN,*) (Y(I,J,K),K=1,N3)
      CONTINUE
40 CONTINUE
   RETURN
   END
```

C06FXF.4 [NP3086/18]

```
SUBROUTINE WRITXY(NOUT, X, Y, N1, N2, N3)
      Print 3-dimensional complex data
      .. Scalar Arguments ..
                         N1, N2, N3, NOUT
      INTEGER
      .. Array Arguments ..
                         X(N1,N2,N3), Y(N1,N2,N3)
      real
      .. Local Scalars ..
      INTEGER
                         I, J, K
      .. Executable Statements ..
      DO 40 I = 1, N1
         WRITE (NOUT,*)
         WRITE (NOUT,99998) 'z(i,j,k) for i = ', I
         DO 20 J = 1, N2
            WRITE (NOUT,*)
            WRITE (NOUT, 99999) 'Real', (X(I, J, K), K=1, N3)
            WRITE (NOUT,99999) 'Imag', (Y(I,J,K),K=1,N3)
   20
         CONTINUE
   40 CONTINUE
      RETURN
99999 FORMAT (1X,A,7F10.3,/(6X,7F10.3))
99998 FORMAT (1X,A,I6)
      END
```

9.2 Program Data

```
CO6FXF Example Program Data
2 3 4 : values of N1, N2, N3
             0.999
                                         : X(0,0,J), J=0,...,N3-1
    1.000
                       0.987
                                 0.936
                                           Y(0,0,J), J=0,...,N3-1
    0.000
             -0.040
                       -0.159
                                -0.352
                                        : X(0,1,J), J=0,...,N3-1
    0.994
              0.989
                       0.963
                                 0.891
                       -0.268
                                -0.454
                                        : Y(0,1,J), J=0,...,N3-1
   -0.111
            -0.151
                                        : X(0,2,J), J=0,...,N3-1
    0.903
             0.885
                       0.823
                                0.694
                                        : Y(0,2,J), J=0,...,N3-1
   -0.430
             -0.466
                       -0.568
                                -0.720
                                        : X(1,0,J), J=0,...,N3-1
    0.500
             0.499
                       0.487
                                0.436
                                         : Y(1,0,J), J=0,...,N3-1
    0.500
              0.040
                       0.159
                                 0.352
                                         : X(1,1,J), J=0,...,N3-1
                       0.463
                                 0.391
    0.494
              0.489
                       0.268
                                 0.454
                                        : Y(1,1,J), J=0,...,N3-1
              0.151
    0.111
                                         : X(1,2,J), J=0,...,N3-1
                                 0.194
              0.385
                        0.323
    0.403
    0.430
              0.466
                        0.568
                                 0.720
                                         : Y(1,2,J), J=0,...,N3-1
```

9.3 Program Results

CO6FXF Example Program Results

Original data values

```
z(i,j,k) for i =
                     0.999
                               0.987
                                          0.936
Real
          1.000
          0.000
                    -0.040
                              -0.159
                                         -0.352
Imag
          0.994
                     0.989
                               0.963
                                          0.891
Real
Imag
         -0.111
                   -0.151
                              -0.268
                                         -0.454
Real
          0.903
                     0.885
                               0.823
                                         0.694
                                         -0.720
Imag
         -0.430
                   -0.466
                              -0.568
```

[NP3086/18] C06FXF.5

z(i,j,k) for i =	2			
Real	0.500	0.499	0.487	0.436	
Imag	0.500	0.040	0.159	0.352	
Real	0.494	0.489	0.463	0.391	
Imag	0.111	0.151	0.268	0.454	
Real	0.403	0.385	0.323	0.194	
Imag	0.430	0.466	0.568	0.720	
Componer	nts of dis	crete Four	ier transf	orm	
z(i,j,k) for i =	1			
Real	3.292	0.051	0.113	0.051	
Imag	0.102	-0.042	0.102	0.246	
J					
Real	0.143	0.016	-0.024	-0.050	
Imag	-0.086	0.153	0.127	0.086	
Ū					
Real	0.143	-0.050	-0.024	0.016	
Imag	0.290	0.118	0.077	0.051	
•					
z(i,j,k)) for i =	2			
Real	1.225	0.355	0.000	-0.355	
Imag	-1.620	0.083	0.162	0.083	
Real	0.424	0.020	0.013	-0.007	
Imag	0.320	-0.115	-0.091	-0.080	
Real	-0.424	0.007	-0.013	-0.020	
Imag	0.320	-0.080	-0.091	-0.115	
Origina	l sequence	as restor	ed by inve	rse transfo	rm
z(i,j,k)) for i =	1			
D1	1 000	0.000	0 007	0.036	
Real	1.000 0.000	0.999 -0.040	0.987 -0.159	0.936 -0.352	
Imag	0.000	-0.040	-0.159	-0.352	
Real	0.994	0.989	0.963	0.891	
	-0.111	-0.151	-0.268	-0.454	
Imag	-0.111	-0.151	0.200	-0.404	
Real	0.903	0.885	0.823	0.694	
Imag	-0.430	-0.466	-0.568	-0.720	
Imag	0.450	0.100	0.000	0.720	
z(i,j,k) for i =	2			
Real	0.500	0.499	0.487	0.436	
Imag	0.500	0.040	0.159	0.352	
				-	
Real	0.494	0.489	0.463	0.391	
Imag	0.111	0.151	0.268	0.454	
9					

Real	0.403	0.385	0.323	0.194
Imag	0.430	0.466	0.568	0.720

[NP3086/18] C06FXF.7 (last)

C06GBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06GBF forms the complex conjugate of a Hermitian sequence of n data values.

2. Specification

```
SUBROUTINE CO6GBF (X, N, IFAIL)
INTEGER N, IFAIL
real X(N)
```

3. Description

This is a utility routine for use in conjunction with C06EAF, C06EBF, C06FAF or C06FBF to calculate inverse discrete Fourier transforms (see the Chapter Introduction).

4. References

None.

5. Parameters

1: X(N) - real array.

Input/Output

On entry: if the data values z_j are written as $x_j + iy_j$ and if X is declared with bounds (0:N-1) in the (sub)program from which C06GBF is called, then for $0 \le j \le n/2$, X(j) must contain $x_j = (x_{n-j})$, while for $n/2 < j \le n-1$, X(j) must contain $-y_j = (x_{n-j})$. In other words, X must contain the Hermitian sequence in Hermitian form. (See also Section 2.1.2 of the Chapter Introduction).

On exit: the imaginary parts y_i are negated. The real parts x_i are not referenced.

2: N - INTEGER.

On entry: the number of data values, n.

Constraint: $N \ge 1$.

3: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

```
IFAIL = 1N < 1.
```

7. Accuracy

Exact.

8. Further Comments

The time taken by the routine is negligible.

[NP1692/14] Page 1

9. Example

This program reads in a sequence of real data values, calls C06EAF followed by C06GBF to compute their inverse discrete Fourier transform, and prints this after expanding it from Hermitian form into a full complex sequence.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06GBF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    NMAX
   PARAMETER
                     (NMAX=20)
   AMILIGER NIN, NOUT
PARAMETER
                    (NIN=5, NOUT=6)
   .. Local Scalars ..
   INTEGER
                     IFAIL, J, N, N2, NJ
   .. Local Arrays ..
   real
                     A(0:NMAX-1), B(0:NMAX-1), X(0:NMAX-1)
   .. External Subroutines .
   EXTERNAL
                    CO6EAF, CO6GBF
   .. Intrinsic Functions ..
   INTRINSIC
                    MOD
   .. Executable Statements ..
   WRITE (NOUT, *) 'C06GBF Example Program Results'
   Skip heading in data file
READ (NIN,*)
20 READ (NIN,*,END=100) N
   IF (N.GT.1 .AND. N.LT.NMAX) THEN
      DO 40 J = 0, N - 1
         READ (NIN, *) X(J)
40
      CONTINUE
      IFAIL = 0
      CALL CO6EAF(X,N,IFAIL)
      CALL CO6GBF(X,N,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, *)
        'Components of inverse discrete Fourier transform'
      WRITE (NOUT, *)
WRITE (NOUT, *)
                                   Real
                                              Imag'
      WRITE (NOUT, *)
      A(0) = X(0)
      B(0) = 0.0e0
      N2 = (N-1)/2
      DO 60 J = 1, N2
         NJ = N - J
         A(J) = X(J)
         A(NJ) = X(J)
         B(J) = X(NJ)
         B(NJ) = -X(NJ)
60
      CONTINUE
      IF (MOD(N,2).EQ.0) THEN
         A(N2+1) = X(N2+1)
         B(N2+1) = 0.0e0
      END IF
      DO 80 J = 0, N - 1
         WRITE (NOUT, 99999) J, A(J), B(J)
80
      CONTINUE
```

Page 2 [NP1692/14]

```
GO TO 20
ELSE
WRITE (NOUT,*) 'Invalid value of N'
END IF
100 STOP

*
99999 FORMAT (1X,16,2F10.5)
END
```

9.2. Program Data

```
C06GBF Example Program Data
7
0.34907
0.54890
0.74776
0.94459
1.13850
1.32850
1.51370
```

9.3. Program Results

C06GBF Example Program Results

Components of inverse discrete Fourier transform

	Real	Imag
0 1 2 3 4 5	2.48361 -0.26599 -0.25768 -0.25636 -0.25636	0.00000 -0.53090 -0.20298 -0.05806 0.05806 0.20298
6	-0.26599	0.53090

[NP1692/14] Page 3 (last)

C06GCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06GCF forms the complex conjugate of a sequence of n data values.

2. Specification

```
SUBROUTINE CO6GCF (Y, N, IFAIL)
INTEGER N, IFAIL
real Y(N)
```

3. Description

This is a utility routine for use in conjunction with C06ECF or C06FCF to calculate inverse discrete Fourier transforms (see the Chapter Introduction).

4. References

None.

5. Parameters

1: Y(N) - real array.

Input/Output

On entry: if Y is declared with bounds (0:N-1) in the (sub)program which C06GCF is called, then Y(j) must contain the imaginary part of the jth data value, for $0 \le j \le n-1$. On exit: these values are negated.

2: N - INTEGER.

Input

On entry: the number of data values, n.

Constraint: $N \ge 1$.

3: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

```
IFAIL = 1
N < 1.
```

7. Accuracy

Exact.

8. Further Comments

The time taken by the routine is negligible.

9. Example

This program reads in a sequence of complex data values and prints their inverse discrete Fourier transform as computed by calling C06GCF, followed by C06ECF and C06GCF again.

[NP1692/14] Page 1

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06GCF Example Program Text
     Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                        NMAX
     PARAMETER
                        (NMAX=20)
      INTEGER
                        NIN, NOUT
     PARAMETER
                        (NIN=5, NOUT=6)
      .. Local Scalars ..
                        IFAIL, J, N
     INTEGER
      .. Local Arrays ..
                        X(0:NMAX-1), Y(0:NMAX-1)
     real
      .. External Subroutines ..
      EXTERNAL
                        COSECF, COSGCF
      .. Executable Statements ..
      WRITE (NOUT, *) 'CO6GCF Example Program Results'
      Skip heading in data file
  READ (NIN,*)
20 READ (NIN,*,END=80) N
      IF (N.GT.1 .AND. N.LE.NMAX) THEN
         DO 40 J = 0, N - 1
            READ (NIN, \star) X(J), Y(J)
  40
         CONTINUE
         IFAIL = 0
         CALL CO6GCF(Y,N,IFAIL)
         CALL COSECF(X,Y,N,IFAIL)
         CALL CO6GCF(Y,N,IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT, *)
           'Components of inverse discrete Fourier transform'
         WRITE (NOUT, *)
         WRITE (NOUT, *)
                                      Real
                                                 Imaq'
         WRITE (NOUT, *)
         DO 60 J = 0, N - 1
            WRITE (NOUT, 99999) J, X(J), Y(J)
   60
         CONTINUE
         GO TO 20
      ELSE
         WRITE (NOUT, *) 'Invalid value of N'
      END IF
   80 STOP
99999 FORMAT (1X,16,2F10.5)
```

9.2. Program Data

```
C06GCF Example Program Data
7
0.34907 -0.37168
0.54890 -0.35669
0.74776 -0.31175
0.94459 -0.23702
1.13850 -0.13274
1.32850 0.00074
1.51370 0.16298
```

Page 2 [NP1692/14]

9.3. Program Results

C06GCF Example Program Results

Components of inverse discrete Fourier transform

	Real	Imag
0	2.48361	-0.47100
1	0.01983	-0.56496
2	-0.14825	-0.30840
3	-0.22506	-0.17477
4	-0.28767	-0.05865
5	-0.36711	0.09756
6	-0.55180	0.49684

C06GQF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06GQF forms the complex conjugates of m Hermitian sequences, each containing n data values.

2. Specification

```
SUBROUTINE C06GQF (M, N, X, IFAIL)
INTEGER M, N, IFAIL
real X(M*N)
```

3. Description

This is a utility routine for use in conjunction with C06FPF and C06FQF to calculate inverse discrete Fourier transforms (see the Chapter Introduction).

4. References

None.

5. Parameters

1: M – INTEGER. Input

On entry: the number of Hermitian sequences to be conjugated, m.

Constraint: $M \ge 1$.

2: N – INTEGER. Input

On entry: the number of data values in each Hermitian sequence, n.

Constraint: $N \ge 1$.

3: X(M*N) - real array.

Input/Output

On entry: the data must be stored in array X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the *m* sequences is stored in a **row** of the array in Hermitian form. If the *n* data values z_j^p are written as $x_j^p + iy_j^p$, then for $0 \le j \le n/2$, x_j^p is contained in X(p,j), and for $1 \le j \le (n-1)/2$, y_j^p is contained in X(p,n-j). (See also Section 2.1.2 of the Chapter Introduction.)

On exit: the imaginary parts y_i^p are negated. The real parts x_i^p are not referenced.

4: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, M < 1.

[NP1692/14] Page 1

```
IFAIL = 2
On entry, N < 1.
```

7. Accuracy

Exact.

8. Further Comments

None.

9. Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are expanded into full complex form using C06GSF and printed. The sequences are then conjugated (using C06GQF) and the conjugated sequences are expanded into complex form using C06GSF and printed out.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06GQF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
                     MMAX, NMAX
   INTEGER
                      (MMAX=5, NMAX=20)
   PARAMETER
                     NIN, NOUT
   INTEGER
   PARAMETER
                      (NIN=5, NOUT=6)
   .. Local Scalars ..
                      I, IFAIL, J, M, N
   INTEGER
   .. Local Arrays ..
                      U(MMAX*NMAX), V(MMAX*NMAX), X(MMAX*NMAX)
   real
   .. External Subroutines .. EXTERNAL C06GQF, C06GSF
   .. Executable Statements ..
   WRITE (NOUT, *) 'C06GQF Example Program Results'
   Skip heading in data file
   READ (NIN, *)
20 READ (NIN, *, END=140) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
          READ (NIN, *) (X(I*M+J), I=0, N-1)
40
      CONTINUE
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data values'
      WRITE (NOUT, *)
      DO 60 J = 1, M
          WRITE (NOUT, 99999) '
                                   ', (X(I*M+J), I=0, N-1)
60
      CONTINUE
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data written in full complex form'
      IFAIL = 0
      CALL CO6GSF(M, N, X, U, V, IFAIL)
      DO 80 J = 1, M
          WRITE (NOUT, *)
          WRITE (NOUT, 99999) 'Real ', (U(I*M+J), I=0, N-1) WRITE (NOUT, 99999) 'Imag ', (V(I*M+J), I=0, N-1)
80
      CONTINUE
      CALL CO6GQF(M,N,X,IFAIL)
```

Page 2 [NP1692/14]

```
WRITE (NOUT, *)
          WRITE (NOUT, *) 'Conjugated data values'
          WRITE (NOUT, *)
          DO 100 J = 1, M
             WRITE (NOUT, 99999) ' ', (X(I*M+J), I=0, N-1)
 100
          CONTINUE
          CALL CO6GSF(M,N,X,U,V,IFAIL)
          WRITE (NOUT, *)
          WRITE (NOUT, *) 'Conjugated data written in full complex form'
          CALL CO6GSF(M,N,X,U,V,IFAIL)
          DO 120 J = 1, M
             WRITE (NOUT, *)
             WRITE (NOUT, 99999) 'Real', (U(I*M+J), I=0, N-1) WRITE (NOUT, 99999) 'Imag', (V(I*M+J), I=0, N-1)
  120
          CONTINUE
          GO TO 20
      ELSE
          WRITE (NOUT, *) 'Invalid value of M or N'
      END IF
  140 STOP
99999 FORMAT (1X,A,6F10.4)
      END
```

9.2. Program Data

C06GQF Example Program Data 6 0.6751 0.6362 0.7255 0.8638 0.6430 0.0428 0.1138 0.1424 0.3854 0.6772 0.5417 0.2983 0.1181 0.8723 0.4815 0.0428 0.0644 0.9172 0.6037

9.3. Program Results

C06GQF Example Program Results

Original data values

	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424				
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723				
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815				
Original data written in full complex form										
Real	0.3854	0.6772	0.1138	0.6751	0.1138	0.6772				
Imag	0.0000	0.1 424	0.6362	0.0000	-0.6362	-0.1424				
Real	0.5417	0.2983	0.1181	0.7255	0.1181	0.2983				
Imag	0.0000	0.8723	0.8638	0.0000	-0.8638	-0.8723				
Real	0.9172	0.0644	0.6037	0.6430	0.6037	0.0644				
Imag	0.0000	0.4815	0.0428	0.0000	-0.0428	-0.4815				
Conjugated data values										
	0.3854	0.6772	0.1138	0.6751	-0.6362	-0.1424				
	0.5417	0.2983	0.1181	0.7255	-0.8638	-0.8723				
	0.9172	0.0644	0.6037	0.6430	-0.0428	-0.4815				

[NP1692/14] Page 3

Conjugated data written in full complex form									
Real	0.3854	0.6772	0.1138	0.6751	0.1138	0.6772			
Imag	0.0000	-0.1424	-0.6362	0.0000	0.6362	0.1424			
Real	0.5417	0.2983	0.1181	0.7255	0.1181	0.2983			
Imag	0.0000	-0.8723	-0.8638	0.0000	0.8638	0.8723			
Real	0.9172	0.0644	0.6037	0.6430	0.6037	0.0644			
Imag	0.0000	-0.4815	-0.0428	0.0000	0.0428	0.4815			

Page 4 (last) [NP1692/14]

C06GSF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06GSF takes m Hermitian sequences, each containing n data values, and forms the real and imaginary parts of the m corresponding complex sequences.

2. Specification

SUBROUTINE CO6GSF (M, N, X, U, V, IFAIL)

INTEGER M, N, IFAIL

real X(M*N), U(M*N), V(M*N)

3. Description

This is a utility routine for use in conjunction with C06FPF and C06FQF (see the Chapter Introduction).

4. References

None.

5. Parameters

1: M – INTEGER. Input

On entry: the number of Hermitian sequences, m, to be converted into complex form.

Constraint: $M \ge 1$.

2: N – INTEGER. Input

On entry: the number of data values, n, in each sequence.

Constraint: $N \ge 1$.

3: X(M*N) - real array.

Input

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of the array in Hermitian form. If the n data values z_j^p are written as $x_j^p + iy_j^p$, then for $0 \le j \le n/2$, x_j^p is contained in X(p,j), and for $1 \le j \le (n-1)/2$, y_j^p is contained in X(p,n-j). (See also Section 2.1.2 of the Chapter Introduction.)

4: U(M*N) - real array.

Output

5: V(M*N) - real array.

Output

On exit: the real and imaginary parts of the m sequences of length n, are stored in U and V respectively, as if in two-dimensional arrays of dimension (1:M,0:N-1); each of the m sequences is stored as if in a row of each array. In other words, if the real parts of the pth sequence are denoted by x_j^p , for j=0,1,...,n-1 then the mn elements of the array U contain the values

$$x_0^1, x_0^2, ..., x_0^m, \ x_1^1, x_1^2, ..., x_1^m, \ ... \ , \ x_{n-1}^1, x_{n-1}^2, ..., x_{n-1}^m.$$

6: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP1692/14] Page 1

6. Error Indicators and Warnings

Errors detected by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

```
IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.
```

7. Accuracy

Exact.

8. Further Comments

None.

9. Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are then expanded into full complex form using C06GSF and printed.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06GSF Example Program Text
  Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
  INTEGER
                    MMAX, NMAX
  PARAMETER
                    (MMAX=5,NMAX=20)
                    NIN, NOUT
  PARAMETER
  INTEGER
                    (NIN=5, NOUT=6)
   .. Local Scalars ..
  INTEGER
                    I, IFAIL, J, M, N
  .. Local Arrays .
  real
                    U(MMAX*NMAX), V(MMAX*NMAX), X(MMAX*NMAX)
   .. External Subroutines ..
                    C06GSF
  EXTERNAL
   .. Executable Statements ..
  WRITE (NOUT, *) 'C06GSF Example Program Results'
  Skip heading in data file
  READ (NIN, *)
20 READ (NIN, *, END=100) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN, \star) (X(I\starM+J), I=0, N-1)
      CONTINUE
40
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data values'
      WRITE (NOUT, *)
      DO 60 J = 1, M
         WRITE (NOUT, 99999) '
                                   ', (X(I*M+J), I=0, N-1)
60
      CONTINUE
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data written in full complex form'
      IFAIL = 0
      CALL CO6GSF(M,N,X,U,V,IFAIL)
```

Page 2 [NP1692/14]

```
DO 80 J = 1, M
WRITE (NOUT,*)
                WRITE (NOUT, 99999) 'Real ', (U(I*M+J), I=0, N-1) WRITE (NOUT, 99999) 'Imag', (V(I*M+J), I=0, N-1)
    80
            CONTINUE
            GO TO 20
        ELSE
            WRITE (NOUT, *) 'Invalid value of M or N'
        END IF
  100 STOP
99999 FORMAT (1X, A, 6F10.4)
```

9.2. Program Data

C06GSF Example Program Data

3 6					
0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

9.3. Program Results

Imag

C06GSF Example Program Results

0.4815

Original data values

0.0000

	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
Original	data writ	ten in ful	l complex	form		
Real	0.3854	0.6772	0.1138	0.6751	0.1138	0.6772
Imag	0.0000	0.1424	0.6362	0.0000	-0.6362	-0.1424
Real	0.5 4 17	0.2983	0.1181	0.7255	0.1181	0.2983
Imag	0.0000	0.8723	0.8638	0.0000	-0.8638	-0.8723
Real	0.9172	0.0644	0.6037	0.6430	0.6037	0.0644

0.0428

0.0000

-0.0428

-0.4815

C06HAF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06HAF computes the discrete Fourier sine transforms of m sequences of real data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6HAF(M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

CHARACTER*1 INIT

3 Description

Given m sequences of n-1 real data values x_j^p , for $j=1,2,\ldots,n-1$; $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier sine transforms of all the sequences defined by:

$$\hat{x}_{k}^{p} = \sqrt{\frac{2}{n}} \sum_{j=1}^{n-1} x_{j}^{p} \times \sin\left(jk\frac{\pi}{n}\right), \quad k = 1, 2, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\sqrt{\frac{2}{n}}$ in this definition.)

The Fourier sine transform defined above is its own inverse, and two consecutive calls of this routine with the same data will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is specified at both left and right boundaries (Swarztrauber [2]). (See the Chapter Introduction.)

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

[NP3086/18] C06HAF.1

2: N — INTEGER

On entry: one more than the number of real values in each sequence, i.e., the number of values in each sequence is n-1.

Constraint: N > 1.

3: X(M*N) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,1:N); each of the m sequences is stored in a row of the array. In other words, if the n-1 data values of the pth sequence to be transformed are denoted by x_j^p , for $j=1,2,\ldots,n-1$; $p=1,2,\ldots,m$, then the first m(n-1) elements of the array X must contain the values

$$x_1^1, x_1^2, \dots, x_1^m, x_2^1, x_2^2, \dots, x_2^m, \dots, x_{n-1}^1, x_{n-1}^2, \dots, x_{n-1}^m$$

The *n*th element of each row x_n^p , for p = 1, 2, ..., m, is required as workspace. These m elements may contain arbitrary values on entry, and are set to zero by the routine.

On exit: the m Fourier transforms stored as if in a two-dimensional array of dimension (1:M,1:N). Each of the m transforms is stored in a row of the array, overwriting the corresponding original sequence. If the n-1 components of the pth Fourier sine transform are denoted by \hat{x}_k^p , for $k=1,2,\ldots,n-1$; $p=1,2,\ldots,m$, then the mn elements of the array X contain the values

$$\hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \hat{x}_2^1, \hat{x}_2^2, \dots, \hat{x}_2^m, \dots, \hat{x}_{n-1}^1, \hat{x}_{n-1}^2, \dots, \hat{x}_{n-1}^m, 0, 0, \dots, 0 \ (m \text{ times}).$$

If n = 1, the m elements of X are set to zero.

4: INIT — CHARACTER*1

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06HAF, C06HBF, C06HCF or C06HDF.

If INIT contains 'R' (Restart), then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06HAF, C06HBF, C06HCF or C06HDF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is consistent with the array TRIG.

Constraint: INIT =, 'I', 'S' or 'R'.

5: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

6: WORK(M*N) - real array

Workspace

7: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP3086/18]

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4

Not used at this Mark.

IFAIL = 5

On entry, INIT = 'S' or 'R', but the array TRIG and the current value of N are inconsistent.

IFAIL = 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their Fourier sine transforms (as computed by C06HAF). It then calls C06HAF again and prints the results which may be compared with the original sequence.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- * CO6HAF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NMAX
PARAMETER (MMAX=5,NMAX=20)

* .. Local Scalars ..

```
INTEGER
                           I, IFAIL, J, M, N
          .. Local Arrays ..
                           TRIG(2*NMAX), WORK(MMAX*NMAX), X(NMAX*MMAX)
          real
           .. External Subroutines ..
          EXTERNAL
                           CO6HAF
          .. Executable Statements ..
          WRITE (NOUT,*) 'CO6HAF Example Program Results'
          Skip heading in data file
          READ (NIN,*)
       20 READ (NIN, *, END=120) M, N
          IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
             DO 40 J = 1, M
                 READ (NIN,*) (X((I-1)*M+J),I=1,N-1)
             CONTINUE
       40
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Original data values'
             WRITE (NOUT,*)
             DO 60 J = 1, M
                WRITE (NOUT, 99999) (X((I-1)*M+J), I=1, N-1)
             CONTINUE
       60
             IFAIL = 0
             -- Compute transform
             CALL CO6HAF(M,N,X,'Initial',TRIG,WORK,IFAIL)
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Discrete Fourier sine transforms'
             WRITE (NOUT,*)
             DO 80 J = 1, M
                WRITE (NOUT, 99999) (X((I-1)*M+J), I=1, N-1)
       80
             CONTINUE
             -- Compute inverse transform
             CALL CO6HAF(M,N,X,'Subsequent',TRIG,WORK,IFAIL)
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Original data as restored by inverse transform'
             WRITE (NOUT,*)
             DO 100 J = 1, M
                 WRITE (NOUT, 99999) (X((I-1)*M+J), I=1, N-1)
      100
             CONTINUE
             GD TO 20
          ELSE
             WRITE (NOUT,*) 'Invalid value of M or N'
          END IF
      120 STOP
    99999 FORMAT (6X,6F10.4)
          END
9.2 Program Data
    CO6HAF Example Program Data
                                      (number of values in each sequence)+1, N
    3 6: Number of sequences, M,
     0.6772 0.1138 0.6751 0.6362 0.1424 : X, sequence 1
     0.2983 0.1181 0.7255 0.8638 0.8723 : X, sequence 2
```

0.0644 0.6037 0.6430 0.0428 0.4815 : X, sequence 3

9.3 Program Results

CO6HAF Example Program Results

Original data values

0.6772	0.1138	0.6751	0.6362	0.1424
0.2983	0.1181	0.7255	0.8638	0.8723
0.0644	0.6037	0.6430	0.0428	0.4815
Fourier	sine trans	forms		

Discrete

1.0014	0.0062	0.0834	0.5286	0.2514
1.2477	-0.6599	0.2570	0.0858	0.2658
0.8521	0.0719	-0.0561	-0.4890	0.2056

Original data as restored by inverse transform

0.6772	0.1138	0.6751	0.6362	0.1424
0.2983	0.1181	0.7255	0.8638	0.8723
0.0644	0.6037	0.6430	0.0428	0.4815

C06HBF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06HBF computes the discrete Fourier cosine transforms of m sequences of real data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6HBF(M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

real X(M*(N+1)), TRIG(2*N), WORK(M*N)

CHARACTER*1 INIT

3 Description

Given m sequences of n+1 real data values x_j^p , for $j=0,1,\ldots,n$; $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier cosine transforms of all the sequences defined by:

$$\hat{x}_k^p = \sqrt{\frac{2}{n}} \left\{ \frac{1}{2} x_0^p + \sum_{j=1}^{n-1} x_j^p \times \cos\left(jk\frac{\pi}{n}\right) + \frac{1}{2} (-1)^k x_n^p \right\}, \quad k = 0, 1, \dots, n; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\sqrt{\frac{2}{n}}$ in this definition.)

The Fourier cosine transform is its own inverse and two calls of this routine with the same data will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of the solution is specified at both left and right boundaries (Swarztrauber [2]). (See the Chapter Introduction.)

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

[NP3086/18] C06HBF.1

2: N — INTEGER Input

On entry: one less than the number of real values in each sequence, i.e., the number of values in each sequence is n + 1.

Constraint: $N \geq 1$.

3:
$$X(M*(N+1)) - real \operatorname{array}$$

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N); each of the m sequences is stored in a row of the array. In other words, if the (n+1) data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n$; $p=1,2,\ldots,m$, then the m(n+1) elements of the array X must contain the values

$$x_0^1, x_0^2, \dots, x_0^m, x_1^1, x_1^2, \dots, x_1^m, \dots, x_n^1, x_n^2, \dots, x_n^m.$$

On exit: the m Fourier cosine transforms stored as if in a two-dimensional array of dimension (1:M,0:N). Each of the m transforms is stored in a row of the array, overwriting the corresponding original data. If the (n+1) components of the pth Fourier cosine transform are denoted by \hat{x}_k^p , for $k=0,1,\ldots,n$; $p=1,2,\ldots,m$, then the m(n+1) elements of the array X contain the values

$$\hat{x}_0^1, \hat{x}_0^2, \dots, \hat{x}_0^m, \hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \dots, \hat{x}_n^1, \hat{x}_n^2, \dots, \hat{x}_n^m$$

4: INIT — CHARACTER*1

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06HAF, C06HBF, C06HCF or C06HDF.

If INIT contains 'R' (Restart), then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06HAF, C06HBF, C06HCF or C06HDF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is consistent with the array TRIG.

Constraint: INIT = 'I', 'S' or 'R'.

5: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I'.

6: WORK(M*N) - real array

Workspace

7: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4

Not used at this Mark.

IFAIL = 5

On entry, INIT = 'S' or 'R', but the array TRIG and the current value of n are inconsistent.

IFAIL = 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their Fourier cosine transforms (as computed by C06HBF). It then calls the routine again and prints the results which may be compared with the original sequence.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

- * CO6HBF Example Program Text
- * Mark 14 Revised. NAG Copyright 1989.
- * .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER MMAX, NMAX

PARAMETER (MMAX=5,NMAX=20)

* .. Local Scalars ..

[NP3086/18] C06HBF.3

```
I, IFAIL, J, M, N
     INTEGER
     .. Local Arrays ..
                       TRIG(2*NMAX), WORK(MMAX*NMAX), X((NMAX+1)*MMAX)
     real
      .. External Subroutines ..
                       CO6HBF
     EXTERNAL
     .. Executable Statements ...
     WRITE (NOUT.*) 'CO6HBF Example Program Results'
     Skip heading in data file
     READ (NIN,*)
  20 READ (NIN, *, END=120) M, N
     IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
         DO 40 J = 1, M
            READ (NIN,*) (X(I*M+J),I=0,N)
  40
         CONTINUE
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Original data values'
         WRITE (NOUT,*)
         DO 60 J = 1, M
           WRITE (NOUT, 99999) (X(I*M+J), I=0, N)
  60
         CONTINUE
         IFAIL = 0
         -- Compute transform
         CALL CO6HBF(M,N,X,'Initial',TRIG,WORK,IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Discrete Fourier cosine transforms'
         WRITE (NOUT,*)
         DO 80 J = 1, M
            WRITE (NOUT, 99999) (X(I*M+J), I=0, N)
  80
         CONTINUE
         -- Compute inverse transform
         CALL CO6HBF(M,N,X,'Subsequent',TRIG,WORK,IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT,*) 'Original data as restored by inverse transform'
         WRITE (NOUT,*)
         DO 100 J = 1, M
            WRITE (NOUT, 99999) (X(I*M+J), I=0, N)
 100
         CONTINUE
         GO TO 20
         WRITE (NOUT,*) 'Invalid value of M or N'
      END IF
  120 STOP
99999 FORMAT (6X,7F10.4)
      END
```

9.2 Program Data

```
C06HBF Example Program Data
3 6: Number of sequences, M, (number of values in each sequence)-1, N
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562: X, sequence 1
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936: X, sequence 2
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057: X, sequence 3
```

9.3 Program Results

CO6HBF Example Program Results

Original	data	values
----------	------	--------

O								
	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424	0.9562	
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723	0.4936	
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815	0.2057	
Discrete	Fourier	cosine tr	ansforms					
	1.6833	-0.0482	0.0176	0.1368	0.3240	-0.5830	-0.0427	
	1.9605	-0.4884	-0.0655	0.4444	0.0964	0.0856	-0.2289	
	1.3838	0.1588	-0.0761	-0.1184	0.3512	0.5759	0.0110	
Original	data as	restored	by inverse	transform				
	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424	0.9562	
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723	0.4936	
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815	0.2057	

[NP3086/18] C06HBF.5 (last)

C06HCF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06HCF computes the discrete quarter-wave Fourier sine transforms of m sequences of real data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6HCF(DIRECT, M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

CHARACTER*1 DIRECT, INIT

3 Description

Given m sequences of n real data values x_j^p , for j = 1, 2, ..., n; p = 1, 2, ..., m, this routine simultaneously calculates the quarter-wave Fourier sine transforms of all the sequences defined by:

$$\hat{x}_{k}^{p} = \frac{1}{\sqrt{n}} \left\{ \sum_{j=1}^{n-1} x_{j}^{p} \times \sin \left(j(2k-1) \frac{\pi}{2n} \right) + \frac{1}{2} (-1)^{k-1} x_{n}^{p} \right\}, \quad \text{if DIRECT} = \text{'F'},$$

or its inverse

$$x_k^p = \frac{2}{\sqrt{n}} \sum_{j=1}^n \hat{x}_j^p \times \sin\left((2j-1)k\frac{\pi}{2n}\right), \quad \text{if DIRECT} = 'B',$$

for k = 1, 2, ..., n; p = 1, 2, ..., m.

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original

The transform calculated by this routine can be used to solve Poisson's equation when the solution is specified at the left boundary, and the derivative of the solution is specified at the right boundary (Swarztrauber [2]). (See the Chapter Introduction.)

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

[NP3086/18] C06HCF.1

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed, that is the inverse, then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

3: N — INTEGER

Input

On entry: the number of real values in each sequence, n.

Constraint: $N \geq 1$.

4: X(M*N) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,1:N); each of the m sequences is stored in a **row** of the array. In other words, if the data values of the p th sequence to be transformed are denoted by x_j^p , for $j=1,2,\ldots,n$; $p=1,2,\ldots,m$, then the mn elements of the array X must contain the values

$$x_1^1, x_1^2, \ldots, x_1^m, x_2^1, x_2^2, \ldots, x_2^m, \ldots, x_n^1, x_n^2, \ldots, x_n^m.$$

On exit: the m quarter-wave sine transforms stored as if in a two-dimensional array of dimension (1:M,1:N). Each of the m transforms is stored in a **row** of the array, overwriting the corresponding original sequence. If the n components of the pth quarter-wave sine transform are denoted by \hat{x}_k^p , for $k = 1, 2, \ldots, n$; $p = 1, 2, \ldots, m$, then the mn elements of the array X contain the values

$$\hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \ \hat{x}_2^1, \hat{x}_2^2, \dots, \hat{x}_2^m, \dots, \ \hat{x}_n^1, \hat{x}_n^2, \dots, \hat{x}_n^m.$$

5: INIT — CHARACTER*1

Input

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06HAF, C06HBF, C06HCF or C06HDF.

If INIT contains 'R' (Restart), then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that routines C06HAF, C06HBF, C06HCF or C06HDF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is consistent with the array TRIG.

Constraint: INIT = 'I', 'S' or 'R'.

6: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

7: WORK(M*N) - real array

Workspace

[NP3086/18]

8: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4

Not used at this Mark.

IFAIL = 5

On entry, INIT =, 'S' or 'R', but the array TRIG and the current value of N are inconsistent.

IFAIL = 6

On entry, DIRECT is not one of 'F' or 'B'.

IFAIL = 7

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their quarter-wave sine transforms as computed by C06HCF with DIRECT = or 'F'. It then calls the routine again with DIRECT = 'B' and prints the results which may be compared with the original data.

[NP3086/18] C06HCF.3

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6HCF Example Program Text
   Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
                     NIN. NOUT
   INTEGER
                     (NIN=5, NOUT=6)
   PARAMETER
   INTEGER
                     MMAX, NMAX
   PARAMETER
                     (MMAX=5,NMAX=20)
   .. Local Scalars ..
                     I, IFAIL, J, M, N
   INTEGER
   .. Local Arrays ..
                     TRIG(2*NMAX), WORK(MMAX*NMAX), X(NMAX*MMAX)
   real
   .. External Subroutines ...
                     CO6HCF
   EXTERNAL
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6HCF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
          READ (NIN,*) (X(I*M+J),I=0,N-1)
40
      CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
      WRITE (NOUT,*)
      DO 60 J = 1, M
          WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
60
      CONTINUE
      IFAIL = 0
      -- Compute transform
      CALL COGHCF('Forward', M, N, X, 'Initial', TRIG, WORK, IFAIL)
      WRITE (NOUT,*)
       WRITE (NOUT,*) 'Discrete quarter-wave Fourier sine transforms'
      WRITE (NOUT,*)
      DO 80 J = 1, M
          WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
80
       CONTINUE
       -- Compute inverse transform
       CALL CO6HCF('Backward', M, N, X, 'Subsequent', TRIG, WORK, IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Original data as restored by inverse transform'
       WRITE (NOUT,*)
       DO 100 J = 1, M
          WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
100
       CONTINUE
       GO TO 20
    ELSE
       WRITE (NOUT,*) 'Invalid value of M or N'
    END IF
120 STOP
```

*
99999 FORMAT (6X,7F10.4)
END

9.2 Program Data

CO6HCF Example Program Data

3 6 : Number of sequences, M, and number of values in each sequence, N

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 : X, sequence 1

0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 : X, sequence 2

0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : X, sequence 3

9.3 Program Results

CO6HCF Example Program Results

Original data values

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0 9172	0 0644	0.6037	0.6430	0.0428	0.4815

Discrete quarter-wave Fourier sine transforms

0.7304	0.2078	0.1150	0.2577	-0.2869	-0.0815
0.9274	-0.1152	0.2532	0.2883	-0.0026	-0.0635
0.6268	0.3547	0.0760	0.3078	0.4987	-0.0507

Original data as restored by inverse transform

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

[NP3086/18] C06HCF.5 (last)

C06HDF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06HDF computes the discrete quarter-wave Fourier cosine transforms of m sequences of real data values. This routine is designed to be particularly efficient on vector processors.

2 Specification

SUBROUTINE CO6HDF(DIRECT, M, N, X, INIT, TRIG, WORK, IFAIL)

INTEGER M, N, IFAIL

real X(M*N), TRIG(2*N), WORK(M*N)

CHARACTER*1 DIRECT, INIT

3 Description

Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$; $p=1,2,\ldots,m$, this routine simultaneously calculates the quarter-wave Fourier cosine transforms of all the sequences defined by:

$$\hat{x}_k^p = \frac{1}{\sqrt{n}} \left\{ \frac{1}{2} x_0^p + \sum_{j=1}^{n-1} x_j^p \times \cos\left(j(2k-1)\frac{\pi}{2n}\right) \right\}, \quad \text{if DIRECT} = \text{'F' or 'f'},$$

or its inverse

$$x_k^p = \frac{2}{\sqrt{n}} \sum_{j=0}^{n-1} \hat{x}_j^p \times \cos\left((2j-1)k\frac{\pi}{2n}\right), \quad \text{if DIRECT} = \text{'B' or 'b'},$$

for k = 0, 1, ..., n - 1; p = 1, 2, ..., m.

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of the solution is specified at the left boundary, and the solution is specified at the right boundary (Swarztrauber [2]). (See the Chapter Introduction.)

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4, 5 and 6. This routine is designed to be particularly efficient on vector processors, and it becomes especially fast as m, the number of transforms to be computed in parallel, increases.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

[NP3086/18] C06HDF.1

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed, that is the inverse, then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: M > 1.

3: N — INTEGER

Input

On entry: the number of real values in each sequence, n.

Constraint: N > 1.

4: X(M*N) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$; $p=1,2,\ldots,m$, then the mn elements of the array X must contain the values

$$x_0^1, x_0^2, \dots, x_0^m, \ x_1^1, x_1^2, \dots, x_1^m, \dots, \ x_{n-1}^1, x_{n-1}^2, \dots, x_{n-1}^m.$$

On exit: the m quarter-wave cosine transforms stored as if in a two-dimensional array of dimension (1:M,0:N-1). Each of the m transforms is stored in a **row** of the array, overwriting the corresponding original sequence. If the n components of the pth quarter-wave cosine transform are denoted by \hat{x}_k^p , for $k = 0, 1, \ldots, n-1$; $p = 1, 2, \ldots, m$, then the mn elements of the array X contain the values

$$\hat{x}_0^1, \hat{x}_0^2, \dots, \hat{x}_0^m, \hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \dots, \hat{x}_{n-1}^1, \hat{x}_{n-1}^2, \dots, \hat{x}_{n-1}^m$$

5: INIT — CHARACTER*1

Inpu

On entry: if the trigonometric coefficients required to compute the transforms are to be calculated by the routine and stored in the array TRIG, then INIT must be set equal to 'I' (Initial call).

If INIT contains 'S' (Subsequent call), then the routine assumes that trigonometric coefficients for the specified value of n are supplied in the array TRIG, having been calculated in a previous call to one of C06HAF, C06HBF, C06HCF or C06HDF.

If INIT contains 'R' (Restart), then the routine assumes that trigonometric coefficients for the particular value of n are supplied in the array TRIG, but does not check that C06HAF, C06HBF, C06HCF or C06HDF have previously been called. This option allows the TRIG array to be stored in an external file, read in and re-used without the need for a call with INIT equal to 'I'. The routine carries out a simple test to check that the current value of n is consistent with the array TRIG.

Constraint: INIT = 'I', 'S' or 'R'.

6: TRIG(2*N) - real array

Input/Output

On entry: if INIT = 'S' or 'R', TRIG must contain the required coefficients calculated in a previous call of the routine. Otherwise TRIG need not be set.

On exit: TRIG contains the required coefficients (computed by the routine if INIT = 'I').

7: WORK(M*N) - real array

Workspace

8: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, INIT is not one of 'I', 'S' or 'R'.

IFAIL = 4

Not used at this Mark.

IFAIL = 5

On entry, INIT =, 'S' or 'R', but the array TRIG and the current value of N are inconsistent.

IFAIL = 6

On entry, DIRECT is not one of 'F' or 'B'.

IFAIL = 7

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their quarter-wave cosine transforms as computed by C06HDF with DIRECT = 'F'. It then calls the routine again with DIRECT = or 'B' and prints the results which may be compared with the original data.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6HDF Example Program Text
    Mark 14 Revised. NAG Copyright 1989.
    .. Parameters ..
    INTEGER
                     NIN, NOUT
    PARAMETER
                      (NIN=5, NOUT=6)
    INTEGER
                     MMAX, NMAX
    PARAMETER
                     (MMAX=5,NMAX=20)
    .. Local Scalars ..
                     I, IFAIL, J, M, N
    INTEGER
    .. Local Arrays ..
                     TRIG(2*NMAX), WORK(MMAX*NMAX), X(NMAX*MMAX)
    real
    .. External Subroutines ..
    EXTERNAL
                     CO6HDF
    .. Executable Statements ..
    WRITE (NOUT,*) 'CO6HDF Example Program Results'
    Skip heading in data file
    READ (NIN,*)
20 READ (NIN, *, END=120) M, N
    IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
       DO 40 J = 1, M
          READ (NIN,*) (X(I*M+J),I=0,N-1)
 40
       CONTINUE
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Original data values'
       WRITE (NOUT,*)
       DO 60 J = 1, M
          WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
 60
       CONTINUE
       IFAIL = 0
       -- Compute transform
       CALL CO6HDF('Forward', M, N, X, 'Initial', TRIG, WORK, IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*)
         'Discrete quarter-wave Fourier cosine transforms'
       WRITE (NOUT,*)
       DO 80 J = 1, M
          WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
 80
       CONTINUE
       -- Compute inverse transform
       CALL CO6HDF('Backward', M, N, X, 'Subsequent', TRIG, WORK, IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Original data as restored by inverse transform'
       WRITE (NOUT,*)
       DO 100 J = 1, M
          WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
100
       CONTINUE
       GD TD 20
    ELSE
       WRITE (NOUT,*) 'Invalid value of M or N'
    END IF
```

```
120 STOP

*
99999 FORMAT (6X,7F10.4)
END
```

9.2 Program Data

```
C06HDF Example Program Data
3 6: Number of sequences, M, and number of values in each sequence, N
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424: X, sequence 1
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723: X, sequence 2
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815: X, sequence 3
```

9.3 Program Results

CO6HDF Example Program Results

Original data values

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

Discrete quarter-wave Fourier cosine transforms

```
    0.7257
    -0.2216
    0.1011
    0.2355
    -0.1406
    -0.2282

    0.7479
    -0.6172
    0.4112
    0.0791
    0.1331
    -0.0906

    0.6713
    -0.1363
    -0.0064
    -0.0285
    0.4758
    0.1475
```

Original data as restored by inverse transform

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

[NP3086/18]

` .		1

·		

C06LAF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06LAF estimates values of the inverse Laplace transform of a given function using a Fourier series approximation. Real and imaginary parts of the function, and a bound on the exponential order of the inverse, are required.

2. Specification

```
SUBROUTINE CO6LAF (FUN, N, T, VALINV, ERREST, RELERR, ALPHAB, TFAC,

MXTERM, NTERMS, NA, ALOW, AHIGH, NFEVAL, WORK,

IFAIL)

INTEGER

N, MXTERM, NTERMS, NA, NFEVAL, IFAIL

real

T(N), VALINV(N), ERREST(N), RELERR, ALPHAB, TFAC,

ALOW, AHIGH, WORK(4*MXTERM+2)

EXTERNAL

FUN
```

3. Description

Given a function F(p) defined for complex values of p, this routine estimates values of its inverse Laplace transform by Crump's method [2]. (For a definition of the Laplace transform and its inverse, see the Chapter Introduction.)

Crump's method applies the epsilon algorithm (Wynn [3]) to the summation in Durbin's Fourier series approximation [1]

$$f(t_j) \simeq \frac{e^{at_j}}{\tau} \left[\frac{1}{2} F(a) - \sum_{k=1}^{\infty} \left\{ \operatorname{Re}(F(a + \frac{k\pi i}{\tau})) \cos \frac{k\pi t_j}{\tau} - \operatorname{Im}(F(a + \frac{k\pi i}{\tau})) \sin \frac{k\pi t_j}{\tau} \right\} \right],$$

for j=1,2,...,n, by choosing a such that a prescribed relative error should be achieved. The method is modified slightly if t=0.0 so that an estimate of f(0.0) can be obtained when it has a finite value. τ is calculated as $t_{fac} \times \max(0.01,t_j)$, where $t_{fac} > 0.5$. The user specifies t_{fac} and α_b , an upper bound on the exponential order α of the inverse function f(t). α has two alternative interpretations:

(i) α is the smallest number such that

$$|f(t)| \le m \times \exp(\alpha t)$$
 for large t,

(ii) α is the real part of the singularity of F(p) with largest real part.

The method depends critically on the value of α . See Section 8 for further details. The routine calculates at least two different values of the parameter a, such that $a > \alpha_b$, in an attempt to achieve the requested relative error and provide error estimates. The values of t_j , for j = 1, 2, ..., n, must be supplied in monotonically increasing order. The routine calculates the values of the inverse function $f(t_j)$ in decreasing order of j.

4. References

[1] DURBIN, F.

Numerical Inversion of Laplace Transforms: an Efficient Improvement to Dubner and Abate's Method.

Comput. J., 17, pp. 371-376, 1974.

[2] CRUMP, K.S.

Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation. J. Assoc. Comput. Mach., 23, pp. 89-96, 1976.

[NP1692/14] Page 1

[3] WYNN, P.

On a Device for Computing the $e_m(S_n)$ Transformation. Math. Tables Aids Comp. 10, pp. 91-96, 1956.

5. Parameters

1: FUN – SUBROUTINE, supplied by the user.

External Procedure

FUN must evaluate the real and imaginary parts of the function F(p) for a given value of p.

Its specification is:

```
SUBROUTINE FUN(PR, PI, FR, FI)
 real
               PR, PI, FR, FI
    PR - real.
1:
                                                                                    Input
2:
    PI - real.
                                                                                    Input
         On entry: the real and imaginary parts of the argument p.
3:
    FR - real.
                                                                                  Output
4:
    FI - real.
                                                                                  Output
         On exit: the real and imaginary parts of the value F(p).
```

FUN must be declared as EXTERNAL in the (sub)program from which C06LAF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

2: N - INTEGER.

Input

On entry: the number of points, n, at which the value of the inverse Laplace transform is required.

Constraint: $N \ge 1$.

3: T(N) - real array.

Input

On entry: each T(j) must specify a point at which the inverse Laplace transform is required, for j = 1,2,...,n.

Constraint: $0.0 \le T(1) < T(2) < ... < T(n)$.

4: VALINV(N) - real array.

Output

On exit: an estimate of the value of the inverse Laplace transform at t = T(j), for j = 1, 2, ..., n.

5: ERREST(N) - real array.

Output

On exit: an estimate of the error in VALINV(j). This is usually an estimate of relative error but, if VALINV(j) < RELERR, ERREST(j) estimates the absolute error. ERREST(j) is unreliable when VALINV(j) is small but slightly greater than RELERR.

6: RELERR - real.

Input

On entry: the required relative error in the values of the inverse Laplace transform. If the absolute value of the inverse is less than RELERR, then absolute accuracy is used instead. RELERR must be in the range $0.0 \le \text{RELERR} < 1.0$. If RELERR is set too small or to 0.0, then the routine uses a value sufficiently larger than machine precision.

7: ALPHAB - real.

Input

On entry: α_b , an upper bound for α (see Section 3). Usually, α_b should be specified equal to, or slightly larger than, the value of α . If $\alpha_b < \alpha$ then the prescribed accuracy may not be achieved or completely incorrect results may be obtained. If α_b is too large the routine will be inefficient and convergence may not be achieved.

Page 2 [NP1692/14]

Note: it is as important to specify α_b correctly as it is to specify the correct function for inversion.

8: TFAC – real. Input

On entry: t_{fac} , a factor to be used in calculating the parameter τ . Larger values (e.g. 5.0) may be specified for difficult problems, but these may require very large values of MXTERM.

Suggested value: TFAC = 0.8.

Constraint: TFAC > 0.5.

9: MXTERM - INTEGER.

Input

On entry: the maximum number of (complex) terms to be used in the evaluation of the Fourier series.

Suggested value: MXTERM \geq 100, except for very simple problems.

Constraint: MXTERM ≥ 1.

10: NTERMS - INTEGER.

Output

On exit: the number of (complex) terms actually used.

11: NA – INTEGER. Output

On exit: the number of values of a used by the routine. See Section 8.

12: ALOW – real. Output

On exit: the smallest value of a used in the algorithm. This may be used for checking the value of ALPHAB – see Section 8.

13: AHIGH – real. Output

On exit: the largest value of a used in the algorithm. This may be used for checking the value of ALPHAB – see Section 8.

14: NFEVAL - INTEGER.

Output

On exit: the number of calls to FUN made by the routine.

15: WORK(4*MXTERM+2) - real array.

Workspace

16: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL $\neq 0$ on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

[NP1692/14] Page 3

IFAIL = 1

```
On entry, N < 1, or MXTERM < 1, or RELERR < 0.0, or RELERR \geq 1.0, or TFAC \leq 0.5.
```

IFAIL = 2

```
On entry, T(1) < 0.0, or T(1),T(2),...,T(N) are not in strictly increasing order.
```

IFAIL = 3

T(N) is too large for this value of ALPHAB. If necessary, scale the problem as described in Section 8.

IFAIL = 4

The required accuracy cannot be obtained. It is possible that ALPHAB is less than α . Alternatively, the problem may be especially difficult. Try increasing TFAC, ALPHAB or both.

IFAIL = 5

Convergence failure in the epsilon algorithm. Some values of VALINV(j) may be calculated to the desired accuracy; this may be determined by examining the values of ERREST(j). Try reducing the range of T or increasing MXTERM. If IFAIL = 5 still results, try reducing TFAC.

IFAIL = 6

All values of VALINV(j) have been calculated but not all are to the requested accuracy; the values of ERREST(j) should be examined carefully. Try reducing the range of t, or increasing TFAC, ALPHAB or both.

7. Accuracy

The error estimates are often very close to the true error but, because the error control depends on an asymptotic formula, the required error may not always be met. There are two principal causes of this: Gibbs' phenomena, and zero or small values of the inverse Laplace transform.

Gibbs' phenomena (see the Chapter Introduction) are exhibited near t = 0.0 (due to the method) and around discontinuities in the inverse Laplace transform f(t). If there is a discontinuity at t = c then the method converges such that $f(c) \rightarrow (f(c-)+f(c+))/2$.

Apparent loss of accuracy, when f(t) is small, may not be serious. Crump's method keeps control of relative error so that good approximations to small function values may appear to be very inaccurate. If |f(t)| is estimated to be less than RELERR then this routine switches to absolute error estimation. However, when |f(t)| is slightly larger than RELERR the relative error estimates are likely to cause IFAIL = 6. If this is found inconvenient it can sometimes be avoided by adding k/p to the function F(p), which shifts the inverse to k+f(t).

Loss of accuracy may also occur for highly oscillatory functions.

More serious loss of accuracy can occur if α is unknown and is incorrectly estimated. See Section 8.

8. Further Comments

8.1. Timing

The value of n is less important in general than the value of NTERMS. Unless the subroutine FUN is very inexpensive to compute, the timing is proportional to NA×NTERMS. For simple problems NA = 2 but in difficult problems NA may be somewhat larger.

Page 4 [NP1692/14]

8.2. Precautions

The user is referred to the Chapter Introduction for advice on simplifying problems with particular difficulties, e.g. where the inverse is known to be a step function.

The method does not work well for large values of t when α is positive. It is advisable, especially if IFAIL = 3 is obtained, to scale the problem if $|\alpha|$ is much greater than 1.0. See the Chapter Introduction.

The range of values of t specified for a particular call should not be greater than about 10 units. This is because the method uses parameters based on the value T(n) and these tend to be less appropriate as t becomes smaller. However, as the timing of the routine is not especially dependent on n, it is usually far more efficient to evaluate the inverse for ranges of t than to make separate calls to the routine for each value of t.

The most important parameter to specify correctly is ALPHAB, an upper bound for α . If, on entry, ALPHAB is sufficently smaller than α then completely incorrect results will be obtained with IFAIL = 0. Unless α is known theoretically it is strongly advised that the user should test any estimated value used. This may be done by specifying a single value of t (i.e T(n), n=1) with two sets of suitable values of TFAC, RELERR and MXTERM, and examining the resulting values of ALOW and AHIGH. The value of T(1) should be chosen very carefully and the following points should be borne in mind:

- (i) T(1) should be small but not too close to 0.0 because of Gibbs' phenomenon (see Section 7).
- (ii) the larger the value of T(1), the smaller the range of values of a that will be used in the algorithm,
- (iii) T(1) should ideally not be chosen such that f(T(1)) = 0.0 or a very small value. For suitable problems T(1) might be chosen as, say, 0.1 or 1.0 depending on these factors. The routine calculates ALOW from the formula

ALOW = ALPHAB -
$$\frac{\ln(0.1 \times \text{RELERR})}{2 \times \tau}$$
.

Additional values of a are computed by adding $1/\tau$ to the previous value. As $\tau = \text{TFAC} \times \text{T}(n)$, it will be seen that large values of TFAC and RELERR will test for a close to ALPHAB. Small values of TFAC and RELERR will test for a large. If the result of both tests is IFAIL = 0, with comparable values for the inverse, then this gives some credibility to the chosen value of ALPHAB. The user should note that this test could be more computationally expensive than the calculation of the inverse itself. The example program (see Section 9) illustrates how such a test may be performed.

9. Example

The example program estimates the inverse Laplace transform of the function F(p) = 1/(p+1/2). The true inverse of F(p) is $\exp(-t/2)$. Two preliminary calls to the routine are made to verify that the chosen value of ALPHAB is suitable. For these tests the single value T(1) = 1.0 is used. To test values of a close to ALPHAB, the values TFAC = 5.0 and RELERR = 0.01 are chosen. To test larger a, the values TFAC = 0.8 and RELERR = 1.0E-3 are used. Because the values of the computed inverse are similar and TFAIL = 0 in each case, these tests show that there is unlikely to be a singularity of F(p) in the region $-0.04 \le Re p \le 6.51$.

[NP1692/14] Page 5

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6LAF Example Program Text
*
      Mark 14 Revised. NAG Copyright 1989.
      .. Parameters ..
                       NMAX, MXTERM
      INTEGER
      PARAMETER
                        (NMAX=20, MXTERM=200)
                        NOUT
      INTEGER
                       (NOUT=6)
      PARAMETER
      .. Local Scalars ..
                        AHIGH, ALOW, ALPHAB, RELERR, TFAC
      real
                        I, IFAIL, N, NA, NFEVAL, NTERMS
      INTEGER
      .. Local Arrays ..
     real
                        ERREST(NMAX), T(NMAX), TRUREL(NMAX),
                        TRURES(NMAX), VALINV(NMAX), WORK(4*MXTERM+2)
       .. External Subroutines ..
      EXTERNAL CO6LAF, FUN
      .. Intrinsic Functions ..
      TNTRINSIC
                      ABS, EXP, real
      .. Executable Statements ..
      WRITE (NOUT, *) 'C06LAF Example Program Results'
      WRITE (NOUT, *)
      WRITE (NOUT, *) '(results may be machine-dependent)'
      ALPHAB = -0.5e0
      T(1) = 1.0e0
      Test for values of a close to ALPHAB.
      RELERR = 0.01e0
      TFAC = 7.5e0
      WRITE (NOUT, *)
      WRITE (NOUT, 99997) 'Test with T(1) = ', T(1)
      WRITE (NOUT, *)
     WRITE (NOUT, 99999) ' MXTERM =', MXTERM, ' TFAC =', TFAC,
     + ' ALPHAB =', ALPHAB, ' RELERR =', RELERR
      IFAIL = -1
      CALL CO6LAF (FUN, 1, T, VALINV, ERREST, RELERR, ALPHAB, TFAC, MXTERM,
                  NTERMS, NA, ALOW, AHIGH, NFEVAL, WORK, IFAIL)
      IF (IFAIL.GT.0 .AND. IFAIL.LT.5) GO TO 60
      WRITE (NOUT, *)
      WRITE (NOUT, *) '
                          Т
                                                   \exp(-T/2)',
                                   Result
     + 'Relative error Error estimate'
      TRURES(1) = EXP(-T(1)/2.0e0)
      TRUREL(1) = ABS((VALINV(1)-TRURES(1))/TRURES(1))
      WRITE (NOUT, 99998) T(1), VALINV(1), TRURES(1), TRUREL(1),
     + ERREST(1)
     WRITE (NOUT, *)
     WRITE (NOUT, 99996) 'NTERMS =', NTERMS, 'NFEVAL =', NFEVAL, + 'ALOW =', ALOW, 'AHIGH =', AHIGH, 'IFAIL =', IFAIL
      Test for larger values of a.
      RELERR = 1.0e-3
      TFAC = 0.8e0
      WRITE (NOUT, *)
      WRITE (NOUT, 99997) 'Test with T(1) = ', T(1)
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) ' MXTERM =', MXTERM, ' TFAC =', TFAC,
     + ' ALPHAB =', ALPHAB, ' RELERR =', RELERR
      IFAIL = -1
```

Page 6 [NP1692/14]

```
CALL CO6LAF (FUN, 1, T, VALINV, ERREST, RELERR, ALPHAB, TFAC, MXTERM,
                   NTERMS, NA, ALOW, AHIGH, NFEVAL, WORK, IFAIL)
      IF (IFAIL.GT.0 .AND. IFAIL.LT.5) GO TO 60
      WRITE (NOUT, *)
      WRITE (NOUT, *) '
                          Т
                                                    \exp(-T/2) ',
                                     Result
     + 'Relative error Error estimate'
      TRURES(1) = EXP(-T(1)/2.0e0)
      TRUREL(1) = ABS((VALINV(1)-TRURES(1))/TRURES(1))
      WRITE (NOUT, 99998) T(1), VALINV(1), TRURES(1), TRUREL(1),
     + ERREST(1)
      WRITE (NOUT, *)
     WRITE (NOUT, 99996) 'NTERMS =', NTERMS, 'NFEVAL =', NFEVAL, + 'ALOW =', ALOW, 'AHIGH =', AHIGH, 'IFAIL =', IFAIL
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Compute inverse'
      WRITE (NOUT, *)
      WRITE (NOUT, 99999) ' MXTERM =', MXTERM, ' TFAC =', TFAC,
     + ' ALPHAB =', ALPHAB, ' RELERR =', RELERR
      WRITE (NOUT, *)
      WRITE (NOUT, *) '
                                                    \exp(-T/2) ',
                          т
                                     Result
     + 'Relative error Error estimate'
      N = 5
      DO 20 I = 1, N
         T(I) = real(I)
   20 CONTINUE
      IFAIL = -1
      CALL CO6LAF (FUN, N, T, VALINV, ERREST, RELERR, ALPHAB, TFAC, MXTERM,
                   NTERMS, NA, ALOW, AHIGH, NFEVAL, WORK, IFAIL)
      IF (IFAIL.GT.0 .AND. IFAIL.LT.5) GO TO 60
      DO 40 I = 1, N
         TRURES(I) = EXP(-T(I)/2.0e0)
         TRUREL(I) = ABS((VALINV(I)-TRURES(I))/TRURES(I))
   40 CONTINUE
      WRITE (NOUT, 99998) (T(I), VALINV(I), TRURES(I), TRUREL(I), ERREST(I),
     + I=1,N)
   60 WRITE (NOUT, *)
     WRITE (NOUT, 99996) 'NTERMS =', NTERMS, 'NFEVAL =', NFEVAL, + 'ALOW =', ALOW, 'AHIGH =', AHIGH, 'IFAIL =', IFAIL
99999 FORMAT (1X,A,I4,A,F6.2,A,F6.2,A,1P,e8.1)
99998 FORMAT (1X,F4.1,7X,F6.3,9X,F6.3,8X,e8.1,8X,e8.1)
99997 FORMAT (1X,A,F4.1)
99996 FORMAT (1X,A,I4,A,I4,A,F7.2,A,F7.2,A,I2)
      SUBROUTINE FUN(PR, PI, FR, FI)
      Function to be inverted
      .. Scalar Arguments ..
                      FI, FR, PI, PR
       .. External Subroutines ..
      EXTERNAL
                    A02ACF
       .. Executable Statements ..
      CALL A02ACF(1.0e0, 0.0e0, PR+0.5e0, PI, FR, FI)
      RETURN
      END
```

9.2. Program Data

None.

[NP1692/14] Page 7

9.3. Program Results

```
C06LAF Example Program Results
```

(results may be machine-dependent)

Test with T(1) = 1.0

MXTERM = 200 TFAC = 7.50 ALPHAB = -0.50 RELERR = 1.0E-02

T Result $\exp(-T/2)$ Relative error Error estimate 0.607 0.1E-02 0.4E-02

NTERMS = 18 NFEVAL = 36 ALOW = -0.04 AHIGH = 0.09 IFAIL = 0

Test with T(1) = 1.0

MXTERM = 200 TFAC = 0.80 ALPHAB = -0.50 RELERR = 1.0E-03

T Result $\exp(-T/2)$ Relative error Error estimate 1.0 0.607 0.2E-04 0.8E-04

NTERMS = 13 NFEVAL = 28 ALOW = 5.26 AHIGH = 6.51 IFAIL = 0

Compute inverse

MXTERM = 200 TFAC = 0.80 ALPHAB = -0.50 RELERR = 1.0E-03

T	Result	exp(-T/2)	Relative error	Error estimate
1.0	0.607	0.607	0.5E-04	0.3E-03
2.0	0.368	0.368	0.7E-05	0.9E-04
3.0	0.223	0.223	0.2E-04	0.8E-04
4.0	0.135	0.135	0.1E-04	0.8E-04
5.0	0.082	0.082	0.2E-04	0.8E-04

NTERMS = 23 NFEVAL = 43 ALOW = 0.65 AHIGH = 0.90 IFAIL = 0

Page 8 (last) [NP1692/14]

C06LBF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

C06LBF computes the inverse Laplace transform f(t) of a user-supplied function F(s), defined for complex s. The routine uses a modification of Weeks' method which is suitable when f(t) has continuous derivatives of all orders. The routine returns the coefficients of an expansion which approximates f(t) and can be evaluated for given values of t by subsequent calls of C06LCF.

2. Specification

```
SUBROUTINE C06LBF (F, SIGMA0, SIGMA, B, EPSTOL, MMAX, M,

ACOEF, ERRVEC, IFAIL)

INTEGER

MMAX, M, IFAIL

real

SIGMA0, SIGMA, B, EPSTOL, ACOEF(MMAX), ERRVEC(8)

complex

F

EXTERNAL

F
```

3. Description

Given a function f(t) of a real variable t, its Laplace transform F(s) is a function of a complex variable s, defined by:

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \qquad \text{Re } s > \sigma_0.$$

Then f(t) is the inverse Laplace transform of F(s). The value σ_0 is referred to as the abscissa of convergence of the Laplace transform; it is the rightmost real part of the singularities of F(s).

This routine, along with its companion C06LCF, attempts to solve the following problem:

given a function F(s), compute values of its inverse Laplace transform f(t) for specified values of t.

The method is a modification of Weeks' method (see Garbow et al. [1]), which approximates f(t) by a truncated Laguerre expansion:

$$\tilde{f}(t) = e^{\sigma t} \sum_{i=0}^{m-1} a_i e^{-bt/2} L_i(bt), \qquad \sigma > \sigma_0, \quad b > 0$$

where $L_i(x)$ is the Laguerre polynomial of degree *i*. This routine computes the coefficients a_i of the above Laguerre expansion; the expansion can then be evaluated for specified *t* by calling C06LCF. The user must supply the value of σ_0 , and also suitable values for σ and *b*: see Section 8 for guidance.

The method is only suitable when f(t) has continuous derivatives of all orders. For such functions the approximation $\tilde{f}(t)$ is usually good and inexpensive. The routine will fail with an error exit if the method is not suitable for the supplied function F(s).

The routine is designed to satisfy an accuracy criterion of the form:

$$\left| \frac{f(t) - \tilde{f}(t)}{e^{\sigma t}} \right| < \varepsilon_{tol}, \quad \text{for all } t$$

where ε_{tol} is a user-supplied bound. The error measure on the left hand side is referred to as the **pseudo-relative error**, or **pseudo-error** for short. Note that if $\sigma > 0$ and t is large, the absolute error in $\tilde{f}(t)$ may be very large.

C06LBF is derived from the subroutine MODUL1 in [2].

[NP1692/14] Page 1

4. References

[1] GARBOW B.S., GIUNTA G., LYNESS J.N. and MURLI A.

Software for an implementation of Weeks' method for the inverse Laplace transform problem.

A.C.M. Trans. Math. Software, 14, pp. 163-170, 1988.

[2] GARBOW B.S., GIUNTA G., LYNESS J.N. and MURLI A.

Algorithm 662: A Fortran software package for the numerical inversion of the Laplace transform based on Weeks' method.

A.C.M. Trans. Math. Software, 14, pp. 171-176, 1988.

5. Parameters

1: F - complex FUNCTION, supplied by the user.

External Procedure

F must return the value of the Laplace transform function F(s) for a given complex value of s.

Its specification is:

complex FUNCTION F (S) complex S

1: S - complex.

Input

On entry: the value of s for which F(s) must be evaluated. The real part of S is greater than σ_0 .

F must be declared as EXTERNAL in the (sub)program from which C06LBF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

2: SIGMA0 – *real*.

Input

On entry: the abscissa of convergence of the Laplace transform, σ_0 .

3: SIGMA - real.

Input/Output

On entry: the parameter σ of the Laguerre expansion. If on entry SIGMA $\leq \sigma_0$, SIGMA is reset to $\sigma_0 + 0.7$.

On exit: the value actually used for σ , as just described.

4: B - real.

Input/Output

On entry: the parameter b of the Laguerre expansion. If on entry B < $2(\sigma - \sigma_0)$, B is reset to $2.5(\sigma - \sigma_0)$.

On exit: the value actually used for b, as just described.

5: EPSTOL - real.

Input

On entry: the required relative pseudo-accuracy, that is, an upper bound on $|f(t)-\hat{f}(t)|e^{-\sigma t}$.

6: MMAX - INTEGER.

Input

On entry: an upper bound on the number of Laguerre expansion coefficients to be computed. The number of coefficients actually computed is always a power of 2, so MMAX should be a power of 2; if MMAX is not a power of 2 then the maximum number of coefficients calculated will be the largest power of 2 less than MMAX.

Suggested value: MMAX = 1024 is sufficient for all but a few exceptional cases.

Constraint: $MMAX \ge 8$.

7: M – INTEGER.

Output

On exit: the number of Laguerre expansion coefficients actually computed. The number of calls to F is M/2 + 2.

Page 2 [NP1692/14]

8: ACOEF(MMAX) - real array.

Output

On exit: the first M elements contain the computed Laguerre expansion coefficients, a_i .

9: ERRVEC(8) - real array.

Output

On exit: an 8-component vector of diagnostic information:

ERRVEC(1) = overall estimate of the pseudo-error $|f(t) - \tilde{f}(t)|e^{-\sigma t}$;

= ERRVEC(2) + ERRVEC(3) + ERRVEC(4);

ERRVEC(2) = estimate of the discretisation pseudo-error;

ERRVEC(3) = estimate of the truncation pseudo-error;

ERRVEC(4) = estimate of the condition pseudo-error on the basis of minimal noise levels in function values;

ERRVEC(5) = K, coefficient of a heuristic decay function for the expansion coefficients;

ERRVEC(6) = R, base of the decay function for the expansion coefficients;

ERRVEC(7) = logarithm of the largest expansion coefficient; and

ERRVEC(8) = logarithm of the smallest nonzero expansion coefficient.

The values K and R returned in ERRVEC(5) and ERRVEC (6) define a decay function KR^{-i} constructed by the routine for the purposes of error estimation. It satisfies

$$|a_i| < KR^{-i}$$
, for $i = 1,2,...,m$.

10: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL $\neq 0$ on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

On entry, MMAX < 8.

IFAIL = 2

The estimated pseudo-error bounds are slightly larger than EPSTOL. Note, however, that the actual errors in the final results may be smaller than EPSTOL as bounds independent of the value of t are pessimistic.

IFAIL = 3

Computation was terminated early because the estimate of rounding error was greater than EPSTOL. Increasing EPSTOL may help.

IFAIL = 4

The decay rate of the coefficients is too small. Increasing MMAX may help.

IFAIL = 5

The decay rate of the coefficients is too small. In addition the rounding error is such that the required accuracy cannot be obtained. Increasing MMAX or EPSTOL may help.

[NP1692/14] Page 3

IFAIL = 6

The behaviour of the coefficients does not enable reasonable prediction of error bounds. Check the value of SIGMA0. In this case, ERRVEC(i) is set to -1.0, for i = 1 to 5.

When IFAIL ≥ 3, changing SIGMA or B may help. If not, the method should be abandoned.

7. Accuracy

The error estimate returned in ERRVEC(1) has been found in practice to be a highly reliable bound on the pseudo-error $|f(t)-\tilde{f}(t)|e^{-\sigma t}$.

8. Further Comments

8.1 The Role of σ_a

Nearly all techniques for inversion of the Laplace transform require the user to supply the value of σ_0 , the convergence abscissa, or else an upper bound on σ_0 . For this routine, one of the reasons for having to supply σ_0 is that the parameter σ must be greater than σ_0 ; otherwise the series for $\tilde{f}(t)$ will not converge.

If you do not know the value of σ_0 , you must be prepared for significant preliminary effort, either in experimenting with the method and obtaining chaotic results, or in attempting to locate the rightmost singularity of F(s).

The value of σ_0 is also relevant in defining a natural accuracy criterion. For large t, f(t) is of uniform numerical order $ke^{\sigma_0 t}$, so a natural measure of relative accuracy of the approximation $\tilde{f}(t)$ is:

$$\varepsilon_{nat}(t) = (\tilde{f}(t) - f(t))/e^{\sigma_0 t}$$
.

The routine uses the supplied value of σ_0 only in determining the values of σ and b (see below); thereafter it bases its computation entirely on σ and b.

8.2 Choice of σ

Even when the value of σ_0 is known, choosing a value for σ is not easy. Briefly, the series for $\tilde{f}(t)$ converges slowly when $\sigma - \sigma_0$ is small, and faster when $\sigma - \sigma_0$ is larger. However the natural accuracy measure satisfies

$$|\varepsilon_{nat}(t)| < \varepsilon_{tol} e^{(\sigma-\sigma_0)t}$$

and this degrades exponentially with t, the exponential constant being $\sigma - \sigma_0$.

Hence, if you require meaningful results over a large range of values of t, you should choose $\sigma - \sigma_0$ small, in which case the series for $\tilde{f}(t)$ converges slowly; while for a smaller range of values of t, you can allow $\sigma - \sigma_0$ to be larger and obtain faster convergence.

The default value for σ used by the routine is $\sigma_0 + 0.7$. There is no theoretical justification for this.

8.3 Choice of b

The simplest advice for choosing b is to set $b/2 \ge \sigma - \sigma_0$. The default value used by the routine is $2.5(\sigma - \sigma_0)$.

A more refined choice is to set

$$b/2 \ge \min_{i} |\sigma - s_{i}|$$

where s_i are the singularities of F(s).

Page 4 [NP1692/14]

9. Example

To compute values of the inverse Laplace transform of the function

$$F(s) = \frac{3}{s^2 - 9}.$$

The exact answer is

$$f(t) = \sinh 3t$$
.

The program first calls C06LBF to compute the coefficients of the Laguerre expansion, and then calls C06LCF to evaluate the expansion at t = 1, 2, 3, 4, 5.

9.1. Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
C06LBF Example Program Text
*
      Mark 14 Release. NAG Copyright 1989.
      .. Parameters ..
      INTEGER
                        MMAX
      PARAMETER
                        (MMAX=512)
      INTEGER
                        NOUT
      PARAMETER
                        (NOUT=6)
      .. Local Scalars ..
                        B, EPSTOL, EXACT, FINV, PSERR, SIGMA, SIGMAO, T
      real
      INTEGER
                        IFAIL, J, M
      .. Local Arrays .
     real
                        ACOEF(MMAX), ERRVEC(8)
      .. External Subroutines .
      EXTERNAL
                        CO6LBF, CO6LCF
      .. External Functions ..
     complex
                       F
     EXTERNAL
                       F
      .. Intrinsic Functions ..
      INTRINSIC
                      ABS, EXP, real, SINH
      .. Executable Statements .
     WRITE (NOUT, *) 'CO6LBF Example Program Results'
     SIGMA0 = 3.0e0
     EPSTOL = 0.00001e0
     SIGMA = 0.0e0
     B = 0.0e0
     IFAIL = 0
     Compute inverse transform
     CALL CO6LBF(F, SIGMAO, SIGMA, B, EPSTOL, MMAX, M, ACOEF, ERRVEC, IFAIL)
     WRITE (NOUT, *)
     WRITE (NOUT, 99999) 'No. of coefficients returned by CO6LBF =', M
     WRITE (NOUT, *)
     WRITE (NOUT, *)
                           Computed
                                              Exact
                                                         Pseudo'
     WRITE (NOUT, *)
                               f(t)
                                               f(t)
                                                           error'
     WRITE (NOUT, *)
     Evaluate inverse transform for different values of t
     DO 20 J = 0, 5
        T = real(J)
        CALL COGLCF(T, SIGMA, B, M, ACOEF, ERRVEC, FINV, IFAIL)
        EXACT = SINH(3.0e0*T)
        PSERR = ABS(FINV-EXACT)/EXP(SIGMA*T)
        WRITE (NOUT, 99998) T, FINV, EXACT, PSERR
  20 CONTINUE
     STOP
```

[NP1692/14]

9.2. Program Data

None.

9.3. Program Results

CO6LBF Example Program Results

No. of coefficients returned by CO6LBF = 64

t	Computed f(t)	Exact f(t)	Pseudo error
0.00E+00	1.5129E-09	0.0000E+00	1.5E-09
1.00E+00	1.0018E+01	1.0018E+01	1.7E-09
2.00E+00	2.0171E+02	2.0171E+02	1.2E-10
3.00E+00	4.0515E+03	4.0515E+03	9.8E-10
4.00E+00	8.1377E+04	8.1377E+04	3.0E-10
5.00E+00	1.6345E+06	1.6345E+06	1.7E-09

Page 6 (last) [NPI692/14]

C06LCF - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details. The routine name may be precision-dependent.

1. **Purpose**

C06LCF evaluates an inverse Laplace transform at a given point, using the expansion coefficients computed by C06LBF.

2. **Specification**

SUBROUTINE CO6LCF (T, SIGMA, B, M, ACOEF, ERRVEC, FINV, IFAIL)

INTEGER M, IFAIL

real T, SIGMA, B, ACOEF(M), ERRVEC(8), FINV

Description

This routine is designed to be used following a call to C06LBF, which computes an inverse Laplace transform by representing it as a Laguerre expansion of the form:

$$\tilde{f}(t) = e^{\sigma t} \sum_{i=0}^{m-1} a_i e^{-bt/2} L_i(bt), \qquad \sigma > \sigma_0, \quad b > 0$$

where $L_i(x)$ is the Laguerre polynomial of degree i.

This routine simply evaluates the above expansion for a specified value of t.

C06LCF is derived from the subroutine MODUL2 in [1].

References

[1] GARBOW B.S., GIUNTA G., LYNESS J.N. and MURLI A.

Algorithm 662: A Fortran software package for the numerical inversion of the Laplace transform based on Weeks' method.

A.C.M. Trans. Math. Software, 14, pp. 171-176, 1988.

5. **Parameters**

1: T-real.Input

On entry: the value t for which the inverse Laplace transform f(t) must be evaluated.

- 2: SIGMA - real. Input
- 3: B-real.
- Input 4: M - INTEGER. Input
- 5: ACOEF(M) - real array.Input
- ERRVEC(8) real array. 6:

On entry: SIGMA, B, M, ACOEF and ERRVEC must be unchanged from the previous call of C06LBF.

FINV - real. 7: Output

On exit: the approximation to the inverse Laplace transform at t.

8: IFAIL - INTEGER.

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL $\neq 0$ on exit, users are recommended to set IFAIL to -1 before entry. It is then essential to test the value of IFAIL on exit.

[NP1692/14] Page 1

6. Error Indicators and Warnings

Errors or warnings specified by the routine:

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

IFAIL = 1

The approximation to f(t) is too large to be representable: FINV is set to 0.0.

IFAIL = 2

The approximation to f(t) is too small to be representable: FINV is set to 0.0.

7. Accuracy

The error estimate returned by C06LBF in ERRVEC(1) has been found in practice to be a highly reliable bound on the pseudo-error $|f(t)-\tilde{f}(t)|e^{-\sigma t}$.

8. Further Comments

The routine is primarily designed to evaluate $\tilde{f}(t)$ when t > 0. When $t \le 0$, the result approximates the analytic continuation of f(t); the approximation becomes progressively poorer as t becomes more negative.

9. Example

See example for C06LBF.

[NP1692/14]

C06PAF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PAF calculates the discrete Fourier transform of a sequence of n real data values or of a Hermitian sequence of n complex data values.

2 Specification

SUBROUTINE CO6PAF(DIRECT, X, N, WORK, IFAIL)

CHARACTER*1 DIRECT INTEGER N, IFAIL

real X(N+2), WORK(2*N+15)

3 Description

Given a sequence of n real data values x_j , for j = 0, 1, ..., n - 1, this routine calculates their discrete Fourier transform (in the Forward direction) defined by

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

The transformed values \hat{z}_k are complex, but they form a Hermitian sequence (i.e., \hat{z}_{n-k} is the complex conjugate of \hat{z}_k), so they are completely determined by n real numbers (since \hat{z}_0 is real, as is $\hat{z}_{n/2}$ for n even).

Alternatively, given a Hermitian sequence of n complex data values z_j , this routine calculates their inverse (backward) discrete Fourier transform defined by

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_j \times \exp\left(i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1.$$

The transformed values \hat{x}_k are real.

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in the above definitions.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2].

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

[NP3390/19] C06PAF.1

2: X(N+2) — real array

Input/Output

On entry: if X is declared with bounds (0:N+1) in the (sub)program from which C06PAF is called, then:

if DIRECT is set to 'F', X(j) must contain x_j , for j = 0, 1, ..., n-1; if DIRECT is set to 'B', X(2*k) and X(2*k+1) must contain the real and imaginary parts respectively of \hat{z}_k , for k = 0, 1, ..., n/2. (Note that for the sequence \hat{z}_k to be Hermitian, the

imaginary part of \hat{z}_0 , and of $\hat{z}_{n/2}$ for n even, must be zero).

On exit:

if DIRECT is set to 'F' and X is declared with bounds (0:N+1) then X(2*k) and X(2*k+1) will contain the real and imaginary parts respectively of \hat{z}_k , for k = 0, 1, ..., n/2;

if DIRECT is set to 'B' and X is declared with bounds (0:N+1) then X(j) will contain x_j , for j = 0, 1, ..., n-1.

3: N — INTEGER

Input

On entry: the number of data values, n. The total number of prime factors of N, counting repetitions, must not exceed 30.

Constraint: N > 1.

4: WORK(2*N+15) - real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current value of N with this implementation.

5: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, $N \leq 1$.

IFAIL = 2

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 3

On entry, at least one of the prime factors of N is greater than 19.

IFAIL = 4

On entry, N has more than 30 prime factors.

IFAIL = 5

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This program reads in a sequence of real data values and prints their discrete Fourier transform (as computed by C06PAF with DIRECT set to 'F'), after expanding it from complex Hermitian form into a full complex sequence.

It then performs an inverse transform, using C06PAF with DIRECT set to 'B', and prints the sequence obtained alongside the original data values.

9.1 Program Text

```
CO6PAF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
   INTEGER
                    NIN, NOUT
                     (NIN=5, NOUT=6)
   PARAMETER
   INTEGER
                    NMAX
   PARAMETER
                     (NMAX=20)
   .. Local Scalars ..
   INTEGER
                    IFAIL, J, N, NJ
   .. Local Arrays ..
                    WORK(2*NMAX+15), X(0:NMAX+1), XX(0:NMAX-1)
   real
   .. External Subroutines ..
   EXTERNAL
                    CO6PAF
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PAF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=120) N
   IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 0, N - 1
         READ (NIN,*) X(J)
         XX(J) = X(J)
      CONTINUE
40
      IFAIL = 0
      CALL CO6PAF('F', X, N, WORK, IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Components of discrete Fourier transform'
      WRITE (NOUT,*)
      WRITE (NOUT, *) '
                                 Real
                                            Imag'
      WRITE (NOUT,*)
      DO 60 J = 0, N/2
         WRITE (NOUT, 99999) J, X(2*J), X(2*J+1)
60
      CONTINUE
```

[NP3390/19] C06PAF.3

```
DO 80 J = N/2 + 1, N - 1
           NJ = N - J
           WRITE (NOUT,99999) J, X(2*NJ), -X(2*NJ+1)
        CONTINUE
  80
        CALL CO6PAF('B',X,N,WORK,IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT, *)
           'Original sequence as restored by inverse transform'
        WRITE (NOUT,*)
         WRITE (NOUT,*) '
                                Original Restored'
         WRITE (NOUT,*)
         DO 100 J = 0, N - 1
            WRITE (NOUT,99999) J, XX(J), X(J)
         CONTINUE
  100
         GO TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of N'
      END IF
  120 CONTINUE
      STOP
99999 FORMAT (1X, I5, 2F10.5)
      END
```

9.2 Program Data

CO6PAF Example Program Data 7

0.34907

0.54890

0.74776

0.94459

1.13850

1.32850

1.51370

9.3 Program Results

CO6PAF Example Program Results

Components of discrete Fourier transform

	Real	Imag		
0	2.48361	0.00000		
1	-0.26599	0.53090		
2	-0.25768	0.20298		
3	-0.25636	0.05806		
4	-0.25636	-0.05806		
5	-0.25768	-0.20298		
6	-0.26599	-0.53090		

Original sequence as restored by inverse transform

	Original	Restored
0	0.34907	0.34907
1	0.54890	0.54890
2	0.74776	0.74776
3	0.94459	0.94459
4	1.13850	1.13850
5	1.32850	1.32850
6	1.51370	1.51370

[NP3390/19] C06PAF.5 (last)

C06PCF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PCF calculates the discrete Fourier transform of a sequence of n complex data values (using complex data type).

2 Specification

SUBROUTINE COGPCF(DIRECT, X, N, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

N, IFAIL

complex

X(N), WORK(2*N+15)

3 Description

Given a sequence of n complex data values z_j , for j = 0, 1, ..., n-1, this routine calculates their (forward or backward) discrete Fourier transform defined by

$$\hat{z}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j \times \exp\left(\pm i \frac{2\pi j k}{n}\right), \quad k = 0, 1, \dots, n-1.$$

(Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2].

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: X(N) - complex array

Input/Output

On entry: if X is declared with bounds (0:N-1) in the (sub)program from which C06PCF is called, then X(j) must contain z_j , for $j=0,1,\ldots,n-1$.

On exit: the components of the discrete Fourier transform. If X is declared with bounds (0:N-1) in the (sub)program from which C06PCF is called, then for $0 \le k \le n-1$, \hat{z}_k is contained in X(k).

[NP3390/19] C06PCF.1

3: N — INTEGER Input

On entry: the number of data values, n. The total number of prime factors of N, counting repetitions, must not exceed 30.

Constraint: $N \geq 1$.

4: WORK(2*N+15) - complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current value of N with this implementation.

5: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, N < 1.

IFAIL = 2

On entry, DIRECT is not equal to one of 'F' or 'B'.

IFAIL = 3

On entry, N has more than 30 prime factors.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This program reads in a sequence of complex data values and prints their discrete Fourier transform (as computed by C06PCF with DIRECT set to 'F').

It then performs an inverse transform, using C06PCF with DIRECT set to 'B', and prints the sequence obtained alongside the original data values.

C06PCF.2 [NP3390/19]

9.1 Program Text

```
COGPCF Example Program Text.
  Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
   INTEGER
                   (NIN=5,NOUT=6)
  PARAMETER
  INTEGER
                   NMAX
  PARAMETER
                   (NMAX=20)
   .. Local Scalars ..
                   IFAIL, J, N
  INTEGER
   .. Local Arrays ..
                   WORK(2*NMAX+15), X(0:NMAX-1), XX(0:NMAX-1)
  complex
   .. External Subroutines ..
  EXTERNAL
                   CO6PCF
   .. Intrinsic Functions ..
  INTRINSIC
                  real, imag
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PCF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=100) N
   IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 0, N - 1
        READ (NIN,*) X(J)
        XX(J) = X(J)
40
      CONTINUE
      IFAIL = 0
      CALL CO6PCF('F', X, N, WORK, IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT, *) 'Components of discrete Fourier transform'
      WRITE (NOUT, *)
      WRITE (NOUT,*) '
                                    Real
                                              Imag'
      WRITE (NOUT, *)
      DO 60 J = 0, N - 1
         WRITE (NOUT, 99999) J, real(X(J)), imag(X(J))
      CONTINUE
60
      CALL CO6PCF('B', X, N, WORK, IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*)
        'Original sequence as restored by inverse transform'
      WRITE (NOUT, *)
      WRITE (NOUT,*)
                                                   Restored'
                          Original
      WRITE (NOUT, *)
                       Real
                                 Imag
                                                Real
                                                           Imag'
      WRITE (NOUT, *)
      DO 80 J = 0, N - 1
         WRITE (NOUT, 99999) J, XX(J), X(J)
80
      CONTINUE
      GO TO 20
   ELSE
      WRITE (NOUT, *) 'Invalid value of N'
```

[NP3390/19] C06PCF.3

```
END IF

100 CONTINUE

STOP

*

99999 FORMAT (1X,15,2(:5X,'(',F8.5,',',F8.5,')'))

END
```

9.2 Program Data

```
CO6PCF Example Program Data
7
(0.34907, -0.37168)
(0.54890, -0.35669)
(0.74776, -0.31175)
(0.94459, -0.23702)
(1.13850, -0.13274)
(1.32850, 0.00074)
(1.51370, 0.16298)
```

9.3 Program Results

COGPCF Example Program Results

Components of discrete Fourier transform

	Real	Imag		
0	(2.48361,-	0.47100)		
1	(-0.55180,	0.49684)		
2	(-0.36711,	0.09756)		
3	(-0.28767,-	0.05865)		
4	(-0.22506,-	0.17477)		
5	(-0.14825,-	0.30840)		
6	(0.01983,-	0.56496)		

Original sequence as restored by inverse transform

	Original	Restored
	Real Imag	Real Imag
0	(0.34907,-0.37168)	(0.34907,-0.37168)
1	(0.54890,-0.35669)	(0.54890,-0.35669)
2	(0.74776,-0.31175)	(0.74776,-0.31175)
3	(0.94459,-0.23702)	(0.94459,-0.23702)
4	(1.13850,-0.13274)	(1.13850,-0.13274)
5	(1.32850, 0.00074)	(1.32850, 0.00074)
6	(1.51370, 0.16298)	(1.51370, 0.16298)

C06PFF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PFF computes the discrete Fourier transform of one variable in a multivariate sequence of complex data values.

2 Specification

SUBROUTINE CO6PFF(DIRECT, NDIM, L, ND, N, X, WORK, LWORK, IFAIL)

CHARACTER*1 DIRECT

INTEGER NDIM, L, ND(NDIM), N, LWORK, IFAIL

complex X(N), WORK(LWORK)

3 Description

This routine computes the discrete Fourier transform of one variable (the *l*th say) in a multivariate sequence of complex data values $z_{j_1j_2...j_m}$, where $j_1=0,1,...,n_1-1,\,j_2=0,1,...,n_2-1$, and so on. Thus the individual dimensions are $n_1,n_2,...,n_m$, and the total number of data values is $n=n_1\times n_2\times ...\times n_m$.

The routine computes n/n_l one-dimensional transforms defined by

$$\hat{z}_{j_1 \dots k_l \dots j_m} = \frac{1}{\sqrt{n_l}} \sum_{j_l=0}^{n_l-1} z_{j_1 \dots j_l \dots j_m} \times \exp\left(\pm \frac{2\pi i j_l k_l}{n_l}\right)$$

where $k_l = 0, 1, ..., n_l - 1$. The plus or minus sign in the argument of the exponential terms in the above definition determine the direction of the transform: a minus sign defines the **forward** direction and a plus sign defines the **backward** direction.

(Note the scale factor of $\frac{1}{\sqrt{n_1}}$ in this definition.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The data values must be supplied in a one-dimensional complex array in accordance with the Fortran convention for storing multi-dimensional data (i.e., with the first subscript j_1 varying most rapidly).

This routine calls C06PRF to perform one-dimensional discrete Fourier transforms. Hence, the routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2].

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: NDIM — INTEGER

Input

On entry: the number of dimensions (or variables) in the multivariate data, m.

Constraint: $NDIM \geq 1$.

[NP3390/19]

3: L — INTEGER

Input

On entry: the index of the variable (or dimension) on which the discrete Fourier transform is to be performed, l.

Constraint: $1 \le L \le NDIM$.

4: ND(NDIM) — INTEGER array

Input

On entry: ND(i) must contain n_i (the dimension of the *i*th variable), for i = 1, 2, ..., m. The total number of prime factors of ND(l), counting repetitions, must not exceed 30.

Constraint: $ND(i) \ge 1$ for all i.

5: N — INTEGER

Input

On entry: the total number of data values, n.

Constraint: $N = ND(1) \times ND(2) \times ... \times ND(NDIM)$.

6: X(N) - complex array

Input/Output

On entry: $X(1+j_1+n_1j_2+n_1n_2j_3+\ldots)$ must contain the complex data value $z_{j_1j_2\ldots j_m}$, for $0 \le j_1 < n_1$ and $0 \le j_2 < n_2,\ldots$; i.e., the values are stored in consecutive elements of the array according to the Fortran convention for storing multi-dimensional arrays.

On exit: the corresponding elements of the computed transform.

7: WORK(LWORK) — complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current value of N with this implementation.

8: LWORK — INTEGER

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06PFF is called.

Constraint: LWORK $\geq N + ND(L) + 15$.

9: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, NDIM < 1.

IFAIL = 2

On entry, L < 1 or L > NDIM.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

```
IFAIL = 4
```

On entry, at least one of ND(i) < 1 for some i.

IFAIL = 5

On entry, $N \neq ND(1) \times ND(2) \times ... \times ND(NDIM)$.

IFAIL = 6

On entry, LWORK is too small. The minimum amount of workspace required is returned in WORK(1).

IFAIL = 7

On entry, ND(L) has more than 30 prime factors.

IFAIL = 8

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n_l$, but also depends on the factorization of n_l . The routine is somewhat faster than average if the only prime factors of n_l are 2, 3 or 5; and fastest of all if n_l is a power of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the discrete Fourier transform of the second variable. It then performs an inverse transform and prints the sequence so obtained, which may be compared with the original data values.

9.1 Program Text

```
* Mark 19 Release. NAG Copyright 1999.

* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NDIM, NMAX, LWORK
```

CO6PFF Example Program Text.

PARAMETER (NDIM=2,NMAX=96,LWORK=2*NMAX+15)

* .. Local Scalars ..

INTEGER IFAIL, L, N

* .. Local Arrays ..

complex WORK(LWORK), X(NMAX)

INTEGER ND(NDIM)

* .. External Subroutines ..

EXTERNAL CO6PFF, READX, WRITX

* .. Executable Statements ..

WRITE (NOUT,*) 'CO6PFF Example Program Results'

* Skip heading in data file

READ (NIN,*)

20 CONTINUE

[NP3390/19] C06PFF.3

```
READ (NIN, *, END=40) ND(1), ND(2), L
      N = ND(1)*ND(2)
      IF (N.GE.1 .AND. N.LE.NMAX) THEN
         CALL READX(NIN,X,ND(1),ND(2))
         WRITE (NOUT, *)
         WRITE (NOUT, *) 'Original data'
         CALL WRITX(NOUT, X, ND(1), ND(2))
         IFAIL = 0
         Compute transform
         CALL CO6PFF('F', NDIM, L, ND, N, X, WORK, LWORK, IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT, 99999) 'Discrete Fourier transform of variable ', L
         CALL WRITX(NOUT, X, ND(1), ND(2))
         Compute inverse transform
         CALL CO6PFF('B', NDIM, L, ND, N, X, WORK, LWORK, IFAIL)
         WRITE (NOUT,*)
         WRITE (NOUT,*)
           'Original sequence as restored by inverse transform'
         CALL WRITX(NOUT, X, ND(1), ND(2))
         GO TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of N'
      END IF
   40 CONTINUE
      STOP
99999 FORMAT (1X,A,I1)
     END
      SUBROUTINE READX(NIN,X,N1,N2)
     Read 2-dimensional complex data
      .. Scalar Arguments ..
      INTEGER
                N1, N2, NIN
      .. Array Arguments ..
      complex X(N1,N2)
      .. Local Scalars ..
      INTEGER
                      I, J
      .. Executable Statements ..
     DO 20 I = 1, N1
         READ (NIN,*) (X(I,J),J=1,N2)
   20 CONTINUE
     RETURN
      END
      SUBROUTINE WRITX (NOUT, X, N1, N2)
      Print 2-dimensional complex data
      .. Scalar Arguments ..
                       N1, N2, NOUT
      INTEGER
      .. Array Arguments ..
      complex X(N1,N2)
      .. Local Scalars ..
                      I, J
      INTEGER
      .. Executable Statements ..
     DO 20 I = 1, N1
```

C06PFF.4 [NP3390/19]

9.2 Program Data

```
CO6PFF Example Program Data
         5
    3
     (1.000, 0.000)
     (0.999, -0.040)
     (0.987, -0.159)
     (0.936,-0.352)
     (0.802, -0.597)
     (0.994, -0.111)
     (0.989, -0.151)
     (0.963, -0.268)
     (0.891,-0.454)
     (0.731, -0.682)
     (0.903,-0.430)
     (0.885, -0.466)
     (0.823, -0.568)
     (0.694, -0.720)
     (0.467, -0.884)
```

9.3 Program Results

CO6PFF Example Program Results

Original data

```
( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597) ( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682) ( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884) Discrete Fourier transform of variable 2 ( 2.113,-0.513) ( 0.288, 0.000) ( 0.126, 0.130) (-0.003, 0.190) (-0.287, 0.194) ( 2.043,-0.745) ( 0.286,-0.032) ( 0.139, 0.115) ( 0.018, 0.189) (-0.263, 0.225) ( 1.687,-1.372) ( 0.260,-0.125) ( 0.170, 0.063) ( 0.079, 0.173) (-0.176, 0.299) Original sequence as restored by inverse transform ( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597) ( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682) ( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884)
```

[NP3390/19] C06PFF.5 (last)

			w	
•				
		•		

C06PJF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PJF computes the multi-dimensional discrete Fourier transform of a multivariate sequence of complex data values.

2 Specification

SUBROUTINE CO6PJF(DIRECT, NDIM, ND, N, X, WORK, LWORK, IFAIL)

CHARACTER*1 DIRECT

INTEGER NDIM, ND(NDIM), N, LWORK, IFAIL

complex X(N), WORK(LWORK)

3 Description

This routine computes the multi-dimensional discrete Fourier transform of a multi-dimensional sequence of complex data values $z_{j_1j_2...j_m}$, where $j_1=0,1,...,n_1-1$, $j_2=0,1,...,n_2-1$, and so on. Thus the individual dimensions are $n_1,n_2,...,n_m$, and the total number of data values $n=n_1\times n_2\times...\times n_m$.

The discrete Fourier transform is here defined (e.g.,, for m = 2) by

$$\hat{z}_{k_1,k_2} = \frac{1}{\sqrt{n}} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} z_{j_1j_2} \times \exp\left(\pm 2\pi i \left(\frac{j_1k_1}{n_1} + \frac{j_2k_2}{n_2}\right)\right),$$

where $k_1 = 0, 1, ..., n_1 - 1$ and $k_2 = 0, 1, ..., n_2 - 1$. The plus or minus sign in the argument of the exponential terms in the above definition determine the direction of the transform: a minus sign defines the **forward** direction and a plus sign defines the **backward** direction.

The extension to higher dimensions is obvious. (Note the scale factor of $\frac{1}{\sqrt{n}}$ in this definition.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The data values must be supplied in a one-dimensional array in accordance with the Fortran convention for storing multi-dimensional data (i.e., with the first subscript j_1 varying most rapidly).

This routine calls C06PRF to perform one-dimensional discrete Fourier transforms. Hence, the routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2].

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: NDIM — INTEGER

Input

On entry: the number of dimensions (or variables) in the multivariate data, m.

Constraint: NDIM ≥ 1 .

[NP3390/19]

3: ND(NDIM) — INTEGER array

Input

On entry: ND(i) must contain n_i (the dimension of the *i*th variable), for i = 1, 2, ..., m. The total number of prime factors of each ND(i), counting repetitions, must not exceed 30.

Constraint: $ND(i) \ge 1$.

4: N — INTEGER

Input

On entry: the total number of data values, n.

Constraint: $N = ND(1) \times ND(2) \times ... \times ND(NDIM)$.

5: X(N) - complex array

Input/Output

On entry: $X(1+j_1+n_1j_2+n_1n_2j_3+\ldots)$ must contain the complex data value $z_{j_1j_2\ldots j_m}$, for $0 \le j_1 \le n_1-1$ and $0 \le j_2 \le n_2-1,\ldots$; i.e., the values are stored in consecutive elements of the array according to the Fortran convention for storing multi-dimensional arrays.

On exit: the corresponding elements of the computed transform.

6: WORK(LWORK) — complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current value of N with this implementation.

7: LWORK — INTEGER

Input

On entry: the dimension of the array WORK as declared in the (sub)program from which C06PJF is called.

Constraint: LWORK $\geq N + 3 \times \max(ND(i)) + 15$, where i = 1, 2, ..., NDIM.

8: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, NDIM < 1.

IFAIL = 2

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 3

On entry, at least one of ND(i) < 1 for some i.

IFAIL = 4

On entry, $N \neq ND(1) \times ND(2) \times ... \times ND(NDIM)$.

IFAIL = 5

On entry, LWORK is too small. The minimum amount of workspace required is returned in WORK(1).

```
IFAIL = 6
```

On entry, ND(i) has more than 30 prime factors for some i.

IFAIL = 7

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of the individual dimensions ND(i). The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1 Program Text

```
CO6PJF Example Program Text.
  Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
  INTEGER
                    (NIN=5, NOUT=6)
  PARAMETER
  INTEGER
                    NDIM, NMAX, LWORK
                    (NDIM=2,NMAX=96,LWORK=4*NMAX+15)
  PARAMETER
   .. Local Scalars ..
   INTEGER
                    IFAIL, N
   .. Local Arrays ..
                    WORK(LWORK), X(NMAX)
   complex
   INTEGER
                    ND(NDIM)
   .. External Subroutines ..
                    CO6PJF, READX, WRITX
   .. Executable Statements ..
   WRITE (NOUT, *) 'CO6PJF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=40) ND(1), ND(2)
   N = ND(1)*ND(2)
   IF (N.GE.1 .AND. N.LE.NMAX) THEN
      CALL READX(NIN, X, ND(1), ND(2))
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
      CALL WRITX(NOUT, X, ND(1), ND(2))
      IFAIL = 0
      Compute transform
      CALL CO6PJF('F', NDIM, ND, N, X, WORK, LWORK, IFAIL)
```

[NP3390/19]

```
WRITE (NOUT, *)
         WRITE (NOUT,*) 'Components of discrete Fourier transform'
         CALL WRITX(NOUT, X, ND(1), ND(2))
         Compute inverse transform
         CALL CO6PJF('B', NDIM, ND, N, X, WORK, LWORK, IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT,*)
           'Original sequence as restored by inverse transform'
         CALL WRITX(NOUT, X, ND(1), ND(2))
         GO TO 20
      ELSE
         WRITE (NOUT, *) 'Invalid value of N'
      END IF
   40 CONTINUE
      STOP
      END
      SUBROUTINE READX(NIN, X, N1, N2)
      Read 2-dimensional complex data
      .. Scalar Arguments ..
      INTEGER
                       N1, N2, NIN
      .. Array Arguments ..
      complex
                      X(N1,N2)
      .. Local Scalars ..
      INTEGER
                       I, J
      .. Executable Statements ..
      DO 20 I = 1, N1
        READ (NIN,*) (X(I,J),J=1,N2)
   20 CONTINUE
      RETURN
      END
      SUBROUTINE WRITX(NOUT, X, N1, N2)
      Print 2-dimensional complex data
      .. Scalar Arguments ..
     INTEGER
                       N1, N2, NOUT
      .. Array Arguments ..
      complex X(N1,N2)
      .. Local Scalars ..
     INTEGER
                       I, J
      .. Executable Statements ..
     DO 20 I = 1, N1
        WRITE (NOUT,*)
         WRITE (NOUT, 99999) (X(I,J), J=1,N2)
   20 CONTINUE
      RETURN
99999 FORMAT (1X,7(:1X,'(',F6.3,',',F6.3,')'))
      END
```

C06PJF.4 [NP3390/19]

9.2 Program Data

```
CO6PJF Example Program Data
     (1.000, 0.000)
     (0.999, -0.040)
     (0.987, -0.159)
     (0.936, -0.352)
     (0.802, -0.597)
     (0.994, -0.111)
     (0.989, -0.151)
     (0.963, -0.268)
     (0.891,-0.454)
     (0.731,-0.682)
     (0.903, -0.430)
     (0.885, -0.466)
     (0.823, -0.568)
     (0.694, -0.720)
     (0.467, -0.884)
```

9.3 Program Results

CO6PJF Example Program Results

```
Original data values
```

```
( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597) ( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682) ( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884) Components of discrete Fourier transform ( 3.373,-1.519) ( 0.481,-0.091) ( 0.251, 0.178) ( 0.054, 0.319) (-0.419, 0.415) ( 0.457, 0.137) ( 0.055, 0.032) ( 0.009, 0.039) (-0.022, 0.036) (-0.076, 0.004) (-0.170, 0.493) (-0.037, 0.058) (-0.042, 0.008) (-0.038,-0.025) (-0.002,-0.083) Original sequence as restored by inverse transform ( 1.000, 0.000) ( 0.999,-0.040) ( 0.987,-0.159) ( 0.936,-0.352) ( 0.802,-0.597) ( 0.994,-0.111) ( 0.989,-0.151) ( 0.963,-0.268) ( 0.891,-0.454) ( 0.731,-0.682) ( 0.903,-0.430) ( 0.885,-0.466) ( 0.823,-0.568) ( 0.694,-0.720) ( 0.467,-0.884)
```

[NP3390/19] C06PJF.5 (last)

C06PKF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PKF calculates the circular convolution or correlation of two complex vectors of period n.

2 Specification

SUBROUTINE CO6PKF(JOB, X, Y, N, WORK, IFAIL)

INTEGER JOB, N, IFAIL

complex X(N), Y(N), WORK(2*N+15)

3 Description

This routine computes:

if JOB = 1, the discrete convolution of x and y, defined by

$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} = \sum_{j=0}^{n-1} x_{k-j} y_j;$$

if JOB = 2, the discrete correlation of x and y defined by

$$w_k = \sum_{j=0}^{n-1} \bar{x}_j y_{k+j}.$$

Here x and y are complex vectors, assumed to be periodic, with period n, i.e., $x_j = x_{j\pm n} = x_{j\pm 2n} = \dots$; z and w are then also periodic with period n.

Note that this usage of the terms 'convolution' and 'correlation' is taken from Brigham [1]. The term 'convolution' is sometimes used to denote both.

If \hat{x} , \hat{y} , \hat{z} and \hat{w} are the discrete Fourier transforms of these sequences, and \tilde{x} is the inverse discrete Fourier transform of the sequence x_i , i.e.,

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \text{ etc.},$$

and

$$\tilde{x}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(i \frac{2\pi j k}{n}\right),$$

then $\hat{z}_k = \sqrt{n} \cdot \hat{x}_k \hat{y}_k$ and $\hat{w}_k = \sqrt{n} \cdot \bar{\hat{x}}_k \hat{y}_k$ (the bar denoting complex conjugate).

This routine calls the same auxiliary routines as C06PCF to compute discrete Fourier transforms.

4 References

[1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall

5 Parameters

1: JOB — INTEGER Input

On entry: the computation to be performed:

$$\begin{split} &\text{if JOB} = 1,\, z_k = \sum_{j=0}^{n-1} x_j y_{k-j} \text{ (convolution)};\\ &\text{if JOB} = 2,\, w_k = \sum_{j=0}^{n-1} \hat{x}_j y_{k+j} \text{ (correlation)}. \end{split}$$

Constraint: JOB = 1 or 2.

2: X(N) - complex array

Input/Output

On entry: the elements of one period of the vector x. If X is declared with bounds (0:N-1) in the (sub)program from which C06PKF is called, then X(j) must contain x_j , for $j = 0, 1, \ldots, n-1$.

On exit: the corresponding elements of the discrete convolution or correlation.

3: Y(N) - complex array

Input/Output

On entry: the elements of one period of the vector y. If Y is declared with bounds (0:N-1) in the (sub)program from which C06PKF is called, then Y(j) must contain y_j , for $j=0,1,\ldots,n-1$.

On exit: the discrete Fourier transform of the convolution or correlation returned in the array X.

4: N — INTEGER

Input

On entry: n, the number of values in one period of the vectors X and Y. The total number of prime factors of N, counting repetitions, must not exceed 30.

Constraint: $N \geq 1$.

5: WORK(2*N+15) - complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current value of N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, N < 1.

IFAIL = 2

On entry, JOB \neq 1 or 2.

IFAIL = 3

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

IFAIL = 4

On entry, N has more than 30 prime factors.

7 Accuracy

The results should be accurate to within a small multiple of the machine precision.

8 Further Comments

The time taken by the routine is approximately proportional to $n \times \log n$, but also depends on the factorization of n. The routine is somewhat faster than average if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This program reads in the elements of one period of two complex vectors x and y, and prints their discrete convolution and correlation (as computed by C06PKF). In realistic computations the number of data values would be much larger.

9.1 Program Text

```
CO6PKF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
   INTEGER
                     (NIN=5, NOUT=6)
   PARAMETER
   INTEGER
                    NMAX
                     (NMAX=64)
   PARAMETER
   .. Local Scalars ..
   INTEGER
                     IFAIL, J, N
   .. Local Arrays ..
                    WORK(2*NMAX+15), XA(NMAX), XB(NMAX), YA(NMAX),
   complex
                    YB(NMAX)
   .. External Subroutines ..
   EXTERNAL
                    CO6PKF
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PKF Example Program Results'
   Skip heading in data file
   READ (NIN, *)
20 CONTINUE
   READ (NIN, *, END=80) N
   WRITE (NOUT,*)
   IF (N.GT.1 .AND. N.LE.NMAX) THEN
      DO 40 J = 1, N
         READ (NIN,*) XA(J), YA(J)
         XB(J) = XA(J)
         YB(J) = YA(J)
40
      CONTINUE
      IFAIL = 0
      CALL CO6PKF(1, XA, YA, N, WORK, IFAIL)
      CALL CO6PKF(2, XB, YB, N, WORK, IFAIL)
                                                        Correlation'
      WRITE (NOUT,*) '
                                Convolution
      WRITE (NOUT, *)
      DO 60 J = 1, N
         WRITE (NOUT, 99999) J - 1, XA(J), XB(J)
60
      CONTINUE
      GO TO 20
   ELSE
```

[NP3390/19] C06PKF.3

```
WRITE (NOUT,*) 'Invalid value of N'
END IF
80 CONTINUE
STOP

*
99999 FORMAT (1X,15,2(:1X,'(',F9.5,',',F9.5,')'))
```

9.2 Program Data

```
CO6PKF Example Program Data
```

```
(1.0E0,-0.5E0)
                     (0.5E0, -0.25E0)
                     (0.5E0, -0.25E0)
(1.0E0,-0.5E0)
                     (0.5E0, -0.25E0)
(1.0E0, -0.5E0)
                     (0.5E0, -0.25E0)
(1.0E0, -0.5E0)
(1.0E0, -0.5E0)
                     (0.0E0, -0.25E0)
                     (0.0E0, -0.25E0)
(0.0E0, -0.5E0)
                     (0.0E0,-0.25E0)
(0.0E0, -0.5E0)
(0.0E0, -0.5E0)
                     (0.0E0, -0.25E0)
                     (0.0E0,-0.25E0)
(0.0E0, -0.5E0)
```

9.3 Program Results

CO6PKF Example Program Results

```
Convolution Correlation

O ( -0.62500, -2.25000) ( 3.12500, -0.25000)
1 ( -0.12500, -2.25000) ( 2.62500, -0.25000)
2 ( 0.37500, -2.25000) ( 2.12500, -0.25000)
3 ( 0.87500, -2.25000) ( 1.62500, -0.25000)
4 ( 0.87500, -2.25000) ( 1.12500, -0.25000)
5 ( 0.37500, -2.25000) ( 1.62500, -0.25000)
6 ( -0.12500, -2.25000) ( 2.12500, -0.25000)
7 ( -0.62500, -2.25000) ( 2.62500, -0.25000)
8 ( -1.12500, -2.25000) ( 3.12500, -0.25000)
```

C06PKF.4 (last) [NP3390/19]

C06PPF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PPF computes the discrete Fourier transforms of m sequences, each containing n real data values or a Hermitian complex sequence stored in a complex storage format.

2 Specification

SUBROUTINE CO6PPF(DIRECT, M, N, X, WORK, IFAIL)

CHARACTER*1 DIRECT
INTEGER M, N, IFAIL

real X(M*(N+2)), WORK(M*N+2*N+2*M+15)

3 Description

Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier transforms of all the sequences defined by

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

The transformed values \hat{z}_k^p are complex, but for each value of p the \hat{z}_k^p form a Hermitian sequence (i.e., \hat{z}_{n-k}^p is the complex conjugate of \hat{z}_k^p), so they are completely determined by mn real numbers (since \hat{z}_0^p is real, as is $\hat{z}_{n/2}^p$ for n even).

Alternatively, given m Hermitian sequences of n complex data values z_j^p , this routine simultaneously calculates their inverse (backward) discrete Fourier transforms defined by

$$\hat{x}_{k}^{p} = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_{j}^{p} \times \exp\left(i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

The transformed values \hat{x}_k^p are real.

(Note the scale factor $\frac{1}{\sqrt{n}}$ in the above definition.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special coding is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

[NP3390/19]

2: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

3: N — INTEGER

Input

On entry: the number of real or complex values in each sequence, n.

Constraint: N > 1.

4: X(M*(N+2)) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a row of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$, then:

if DIRECT is set to 'F', X(j*M+p) must contain x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$; if DIRECT is set to 'B', X(2*k*M+p) and X((2*k+1)*M+p) must contain the real and imaginary parts respectively of \hat{z}_k^p , for $k=0,1,\ldots,n/2$ and $p=1,2,\ldots,m$. (Note that for the sequence \hat{z}_k^p to be Hermitian, the imaginary part of \hat{z}_0^p , and of $\hat{z}_{n/2}^p$ for n even, must be zero).

On exit:

if DIRECT is set to 'F' and X is declared with bounds (1:M,0:N+1) then X(p,2*k) and X(p,2*k+1) will contain the real and imaginary parts respectively of \hat{z}_k^p , for $k=0,1,\ldots,n/2$ and $p=1,2,\ldots,m$;

if DIRECT is set to 'B' and X is declared with bounds (1:M,0:N+1) then X(p,j) will contain x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$.

5: WORK(M*N+2*N+2*M+15) - real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their discrete Fourier transforms (as computed by C06PPF with DIRECT set to 'F'), after expanding them from complex Hermitian form into a full complex sequences.

Inverse transforms are then calculated by calling C06PPF with DIRECT set to 'B' showing that the original sequences are restored.

9.1 Program Text

```
CO6PPF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
   INTEGER
                    (NIN=5, NOUT=6)
   PARAMETER
                    MMAX, NMAX
   INTEGER
                    (MMAX=5,NMAX=20)
   PARAMETER
   .. Local Scalars ..
                    I, IFAIL, J, M, N
   INTEGER
   .. Local Arrays ..
                    WORK((MMAX+2)*(NMAX+2)+11), X((NMAX+2)*MMAX)
   real
   .. External Subroutines ..
  EXTERNAL
                    CO6PPF
   .. Executable Statements ..
  WRITE (NOUT,*) 'CO6PPF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN,*,END=140) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN, *) (X(I*M+J), I=0, N-1)
40
      CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT, *) 'Original data values'
      WRITE (NOUT,*)
      DO 60 J = 1, M
```

C06PPF.3

```
WRITE (NOUT,99999) ', (X(I*M+J),I=0,N-1)
             CONTINUE
       60
             IFAIL = 0
             CALL COGPPF('F', M, N, X, WORK, IFAIL)
             WRITE (NOUT,*)
             WRITE (NOUT, *)
               'Discrete Fourier transforms in complex Hermitian format'
             DO 80 J = 1, M
                WRITE (NOUT,*)
                WRITE (NOUT,99999) 'Real ', (X(2*I*M+J),I=0,N/2)
                WRITE (NOUT,99999) 'Imag ', (X((2*I+1)*M+J),I=0,N/2)
             CONTINUE
       80
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Fourier transforms in full complex form'
             DO 100 J = 1, M
                WRITE (NOUT, *)
                WRITE (NOUT,99999) 'Real ', (X(2*I*M+J),I=0,N/2),
                   (X(2*(N-I)*M+J), I=N/2+1, N-1)
                WRITE (NOUT,99999) 'Imag ', (X((2*I+1)*M+J),I=0,N/2),
                   (-X((2*(N-I)+1)*M+J),I=N/2+1,N-1)
      100
             CONTINUE
             CALL CO6PPF('B',M,N,X,WORK,IFAIL)
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Original data as restored by inverse transform'
             WRITE (NOUT,*)
             DO 120 J = 1, M
                WRITE (NOUT, 99999) ' ', (X(I*M+J), I=0, N-1)
             CONTINUE
      120
              GO TO 20
          ELSE
             WRITE (NOUT,*) 'Invalid value of M or N'
          END IF
      140 CONTINUE
          STOP
    99999 FORMAT (1X,A,9(:1X,F10.4))
           END
9.2 Program Data
    CO6PPF Example Program Data
```

```
6
3
       0.6772 0.1138 0.6751 0.6362
                                     0.1424
0.3854
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
                                     0.4815
0.9172 0.0644 0.6037 0.6430 0.0428
```

[NP3390/19] C06PPF.4

9.3 Program Results

COGPPF Example Program Results

0.9172

0.0644

Original data values

Urigina	I data va.	Lues				
	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
Discret	e Fourier	transforms	in complex	Hermitian fo	ormat	
Real	1.0737	-0.1041	0.1126	-0.1467		
Imag	0.0000	-0.0044	-0.3738	0.0000		
Real	1.3961	-0.0365	0.0780	-0.1521		
Imag	0.0000	0.4666	-0.0607	0.0000		
Real	1.1237	0.0914	0.3936	0.1530		
Imag	0.0000	-0.0508	0.3458	0.0000		
Fourier	transform	ms in full o	complex for	n.		
Real	1.0737	-0.1041	0.1126	-0.1467	0.1126	-0.1041
Imag	0.0000	-0.0044	-0.3738	0.0000	0.3738	0.0044
Real	1.3961	-0.0365	0.0780	-0.1521	0.0780	-0.0365
Imag	0.0000	0.4666	-0.0607	0.0000	0.0607	-0.4666
Real	1.1237	0.0914	0.3936	0.1530	0.3936	0.0914
Imag	0.0000	-0.0508	0.3458	0.0000	-0.3458	0.0508
Origina	l data as	restored by	y inverse t	ransform		
	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
	0.5417		0.1181	0.7255	0.8638	0.8723

0.6037

0.6430

0.0428

0.4815

C06PQF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PQF computes the discrete Fourier transforms of m sequences, each containing n real data values or a Hermitian complex sequence stored columnwise in a complex storage format.

2 Specification

SUBROUTINE CO6PQF(DIRECT, N, M, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

N, M, IFAIL

real

X((N+2)*M), WORK((M+2)*N+15)

3 Description

Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier transforms of all the sequences defined by

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j^p \times \exp\left(-i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

The transformed values \hat{z}_k^p are complex, but for each value of p the \hat{z}_k^p form a Hermitian sequence (i.e., \hat{z}_{n-k}^p is the complex conjugate of \hat{z}_k^p), so they are completely determined by mn real numbers (since \hat{z}_0^p is real, as is $\hat{z}_{n/2}^p$ for n even).

Alternatively, given m Hermitian sequences of n complex data values z_j^p , this routine simultaneously calculates their inverse (backward) discrete Fourier transforms defined by

$$\hat{x}_{k}^{p} = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} z_{j}^{p} \times \exp\left(i\frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

The transformed values \hat{x}_k^p are real.

(Note the scale factor $\frac{1}{\sqrt{n}}$ in the above definition.) A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special coding is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: N — INTEGER

Input

On entry: the number of real or complex values in each sequence, n.

Constraint: $N \geq 1$.

3: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

4: $X((N+2)*M) - real \operatorname{array}$

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (0:N+1,1:M); each of the m sequences is stored in a column of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$, then:

if DIRECT is set to 'F', X((p-1)*(N+2)+j) must contain x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$;

if DIRECT is set to 'B', X((p-1)*(N+2)+2*k) and X((p-1)*(N+2)+2*k+1) must contain the real and imaginary parts respectively of \hat{z}_k^p , for $k=0,1,\ldots,n/2$ and $p=1,2,\ldots,m$. (Note that for the sequence \hat{z}_k^p to be Hermitian, the imaginary part of \hat{z}_0^p , and of $\hat{z}_{n/2}^p$ for n even, must be zero).

On exit:

if DIRECT is set to 'F' and X is declared with bounds (0:N+1,1:M) then X(2*k,p) and X(2*k+1,p) will contain the real and imaginary parts respectively of \hat{z}_k^p , for $k=0,1,\ldots,n/2$ and $p=1,2,\ldots,m$;

if DIRECT is set to 'B' and X is declared with bounds (0:N+1,1:M) then X(j,p) will contain x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$.

5: WORK((M+2)*N+15) - real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

```
\begin{aligned} \text{IFAIL} &= 1 \\ &\quad \text{On entry}, \quad M < 1. \\ \\ \text{IFAIL} &= 2 \\ &\quad \text{On entry}, \quad N < 1. \end{aligned}
```

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 4

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their discrete Fourier transforms (as computed by C06PQF with DIRECT set to 'F'), after expanding them from complex Hermitian form into a full complex sequences.

Inverse transforms are then calculated by calling C06PQF with DIRECT set to 'B' showing that the original sequences are restored.

9.1 Program Text

```
CO6PQF Example Program Text.
Mark 19 Release. NAG Copyright 1999.
.. Parameters ..
INTEGER
                 NIN, NOUT
PARAMETER
                 (NIN=5, NOUT=6)
                 MMAX, NMAX
INTEGER
PARAMETER
                 (MMAX=5,NMAX=20)
.. Local Scalars ..
INTEGER
                 I, IFAIL, J, M, N
.. Local Arrays ..
                 WORK((MMAX+2)*NMAX+15), X((NMAX+2)*MMAX)
.. External Subroutines ..
EXTERNAL
                 CO6PQF
.. Executable Statements ..
WRITE (NOUT, *) 'CO6PQF Example Program Results'
```

[NP3390/19] C06PQF.3

```
Skip heading in data file
     READ (NIN,*)
  20 CONTINUE
     READ (NIN, *, END=140) M, N
     IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
        DO 40 J = 1, M*(N+2), N + 2
           READ (NIN,*) (X(J+I),I=0,N-1)
        CONTINUE
  40
        WRITE (NOUT, *)
        WRITE (NOUT,*) 'Original data values'
        WRITE (NOUT,*)
        DO 60 J = 1, M*(N+2), N + 2
           WRITE (NOUT,99999) ' ', (X(J+I),I=0,N-1)
        CONTINUE
  60
        IFAIL = 0
        CALL CO6PQF('F', N, M, X, WORK, IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT,*)
          'Discrete Fourier transforms in complex Hermitian format'
        DO 80 J = 1, M*(N+2), N + 2
           WRITE (NOUT, *)
           WRITE (NOUT,99999) 'Real ', (X(J+2*I),I=0,N/2)
           WRITE (NOUT,99999) 'Imag ', (X(J+2*I+1),I=0,N/2)
        CONTINUE
  80
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Fourier transforms in full complex form'
        DO 100 J = 1, M*(N+2), N + 2
           WRITE (NOUT, *)
           WRITE (NOUT,99999) 'Real ', (X(J+2*I),I=0,N/2),
              (X(J+2*(N-I)),I=N/2+1,N-1)
           WRITE (NOUT, 99999) 'Imag', (X(J+2*I+1), I=0, N/2),
              (-X(J+2*(N-I)+1),I=N/2+1,N-1)
 100
        CONTINUE
        CALL CO6PQF('B', N, M, X, WORK, IFAIL)
        WRITE (NOUT,*)
         WRITE (NOUT,*) 'Original data as restored by inverse transform'
         WRITE (NOUT,*)
         DO 120 J = 1, M*(N+2), N + 2
            WRITE (NOUT,99999) ' ', (X(J+I),I=0,N-1)
         CONTINUE
 120
         GO TO 20
      ELSE
         WRITE (NOUT,*) 'Invalid value of M or N'
      END IF
  140 CONTINUE
      STOP
99999 FORMAT (1X,A,9(:1X,F10.4))
      END
```

C06PQF.4 [NP3390/19]

9.2 Program Data

CO6PQF Example Program Data

3 6					
0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

9:3 Program Results

CO6PQF Example Program Results

Original data values

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

Discrete Fourier transforms in complex Hermitian format

Real	1.0737	-0.1041	0.1126	-0.1467
Imag	0.0000	-0.0044	-0.3738	0.0000
Real	1.3961	-0.0365	0.0780	-0.1521
Imag	0.0000	0.4666	-0.0607	0.0000
Real	1.1237	0.0914	0.3936	0.1530
Imag	0.0000	-0.0508	0.3458	0.0000

Fourier transforms in full complex form

Real Imag	1.0737 0.0000	-0.1041 -0.0044	0.1126 -0.3738	-0.1467 0.0000	0.1126 0.3738	-0.1041 0.0044
Real	1.3961	-0.0365	0.0780	-0.1521	0.0780	-0.0365
Imag	0.0000	0.4666	-0.0607	0.0000	0.0607	-0.4666
Real	1.1237	0.0914	0.3936	0.1530	0.3936	0.0914
Imag	0.0000	-0.0508	0.3458	0.0000	-0.3458	0.0508

Original data as restored by inverse transform

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

C06PRF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PRF computes the discrete Fourier transforms of m sequences, each containing n complex data values.

2 Specification

SUBROUTINE CO6PRF(DIRECT, M, N, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

M, N, IFAIL

complex

X(M*N), WORK(M*N+2*N+15)

3 Description

Given m sequences of n complex data values z_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the (forward or backward) discrete Fourier transforms of all the sequences defined by

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j^p \times \exp\left(\pm i \frac{2\pi jk}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: M > 1.

3: N — INTEGER

Input

On entry: the number of complex values in each sequence, n.

Constraint: $N \geq 1$.

[NP3390/19]

4: X(M*N) - complex array

Input/Output

On entry: the complex data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a row of each array. In other words, if the elements of the pth sequence to be transformed are denoted by z_j^p , for $j=0,1,\ldots,n-1$, then X(j*M+p) must contain z_j^p .

On exit: X is overwritten by the complex transforms.

5: WORK(M*N+2*N+15) - complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 4

On entry, N has more than 30 prime factors.

IFAIL = 5

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as computed by C06PRF with DIRECT set to 'F'). Inverse transforms are then calculated using C06PRF with DIRECT set to 'B' and printed out, showing that the original sequences are restored.

9.1 Program Text

```
CO6PRF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
   INTEGER
   PARAMETER
                    (NIN=5, NOUT=6)
   INTEGER
                    MMAX, NMAX
   PARAMETER
                    (MMAX=5,NMAX=20)
   .. Local Scalars ..
   INTEGER
                    I, IFAIL, J, M, N
   .. Local Arrays ..
                    WORK((MMAX+2)*NMAX+15), X(MMAX*NMAX)
   complex
   .. External Subroutines ..
   EXTERNAL
   .. Intrinsic Functions ..
                   real, imag
   INTRINSIC
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PRF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN,*) (X(I*M+J),I=0,N-1)
40
      CONTINUE
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Original data values'
      DO 60 J = 1, M
         WRITE (NOUT, *)
         WRITE (NOUT,99999) 'Real ', (real(X(I*M+J)),I=0,N-1)
         WRITE (NOUT,99999) 'Imag ', (imag(X(I*M+J)),I=0,N-1)
60
      CONTINUE
      IFAIL = 0
      CALL CO6PRF('F',M,N,X,WORK,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Discrete Fourier transforms'
      DO 80 J = 1, M
         WRITE (NOUT, *)
         WRITE (NOUT,99999) 'Real ', (real(X(I*M+J)),I=0,N-1)
         WRITE (NOUT,99999) 'Imag ', (imag(X(I*M+J)),I=0,N-1)
80
      CONTINUE
      CALL CO6PRF('B', M, N, X, WORK, IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data as restored by inverse transform'
      DO 100 J = 1, M
         WRITE (NOUT, *)
```

[NP3390/19] C06PRF.3

9.2 Program Data

```
CO6PRF Example Program Data
     3
     (0.3854, 0.5417)
     (0.6772, 0.2983)
     (0.1138,0.1181)
     (0.6751, 0.7255)
     (0.6362, 0.8638)
     (0.1424, 0.8723)
     (0.9172, 0.9089)
     (0.0644, 0.3118)
     (0.6037, 0.3465)
     (0.6430,0.6198)
     (0.0428, 0.2668)
     (0.4815,0.1614)
     (0.1156, 0.6214)
     (0.0685, 0.8681)
     (0.2060, 0.7060)
     (0.8630,0.8652)
     (0.6967, 0.9190)
     (0.2792, 0.3355)
```

9.3 Program Results

CO6PRF Example Program Results

Original data values

Real	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
Imag	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
Real	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
Imag	0.9089	0.3118	0.3465	0.6198	0.2668	0.1614
_						
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355
J						
Discrete	Fourier 1	transforms				
Real	1.0737	-0.5706	0.1733	-0.1467	0.0518	0.3625
	•	-0.0409	-0.2958	-0.1521	0.4517	-0.0321
Imag	1.3961	-0.0409	-0.2950	-0.1521	0.4017	0.0021
D - n 3	4 4027	0.1728	0.4185	0.1530	0.3686	0.0101
Real	1.1237	0.1/20	0.4100	0.1000	0.0000	0.0101

Imag	1.0677	0.0386	0.7481	0.1752	0.0565	0.1403
Real	0.9100	-0.3054	0.4079	-0.0785	-0.1193	-0.5314
Imag	1.7617	0.0624	-0.0695	0.0725	0.1285	-0.4335
Original	. data as	restored 1	by inverse	transform		
Real	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
Imag	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
Real	0.9172	0.0644	0.6037	0. 64 30	0.0428	0.4815
Imag	0.9089	0.3118	0.3465	0.6198	0.2668	0.1614
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355

C06PSF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PSF computes the discrete Fourier transforms of m sequences, stored as columns of an array, each containing n complex data values.

2 Specification

SUBROUTINE CO6PSF(DIRECT, N, M, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

N, M, IFAIL

complex

X(N*M), WORK(N*M+N+15)

3 Description

Given m sequences of n complex data values z_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the (forward or backward) discrete Fourier transforms of all the sequences defined by

$$\hat{z}_k^p = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} z_j^p \times \exp\left(\pm i \frac{2\pi j k}{n}\right), \quad k = 0, 1, \dots, n-1; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2]. Special code is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: N — INTEGER.

Input

On entry: the number of complex values in each sequence, n.

Constraint: $N \geq 1$.

3: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

4: X(N*M) - complex array

Input/Output

On entry: the complex data must be stored in X as if in a two-dimensional array of dimension (0:N-1,1:M); each of the m sequences is stored in a column of the array. In other words, if the elements of the pth sequence to be transformed are denoted by z_j^p , for $j=0,1,\ldots,n-1$ and X is declared as X(0:N-1,1:M), then X(j,p) must contain z_j^p .

On exit: X is overwritten by the complex transforms.

5: WORK(N*M+N+15) - complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 4

On entry, N has more than 30 prime factors.

IFAIL = 5

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as computed by C06PSF with DIRECT set to 'F'). Inverse transforms are then calculated using C06PSF with DIRECT set to 'B' and printed out, showing that the original sequences are restored.

9.1 Program Text

```
CO6PSF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                    NIN, NOUT
   INTEGER
                 ~ (NIN=5, NOUT=6)
   PARAMETER
   INTEGER
                    MMAX, NMAX
   PARAMETER
                    (MMAX=5,NMAX=20)
   .. Local Scalars ..
   INTEGER
                    I, IFAIL, J, M, N
   .. Local Arrays ..
                    WORK(NMAX+MMAX*NMAX+15), X(MMAX*NMAX)
   complex
   .. External Subroutines ..
   EXTERNAL
   .. Intrinsic Functions ..
                  real, imag
   INTRINSIC
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PSF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M*N, N
         READ (NIN,*) (X(J+I),I=0,N-1)
      CONTINUE
40
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
      DO 60 J = 1, M*N, N
         WRITE (NOUT, *)
         WRITE (NOUT, 99999) 'Real', (real(X(J+I)), I=0, N-1)
         WRITE (NOUT, 99999) 'Imag', (imag(X(J+I)), I=0, N-1)
60
      CONTINUE
      IFAIL = 0
      CALL CO6PSF('F',N,M,X,WORK,IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Discrete Fourier transforms'
      DO 80 J = 1, M*N, N
         WRITE (NOUT, *)
         WRITE (NOUT, 99999) 'Real', (real(X(J+I)), I=0, N-1)
         WRITE (NOUT, 99999) 'Imag ', (imag(X(J+I)), I=0, N-1)
80
      CONTINUE
      CALL CO6PSF('B',N,M,X,WORK,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Original data as restored by inverse transform'
      DO 100 J = 1, M*N, N
         WRITE (NOUT,*)
```

[NP3390/19] C06PSF.3

```
WRITE (NOUT,99999) 'Real ', (real(X(J+I)),I=0,N-1)
WRITE (NOUT,99999) 'Imag ', (imag(X(J+I)),I=0,N-1)

100 CONTINUE
GO TO 20
ELSE
WRITE (NOUT,*) 'Invalid value of M or N'
END IF
120 CONTINUE
STOP

*
99999 FORMAT (1X,A,6F10.4)
END
```

9.2 Program Data

```
CO6PSF Example Program Data
     (0.3854, 0.5417)
     (0.6772, 0.2983)
     (0.1138, 0.1181)
     (0.6751, 0.7255)
     (0.6362, 0.8638)
     (0.1424,0.8723)
     (0.9172, 0.9089)
     (0.0644,0.3118)
     (0.6037, 0.3465)
     (0.6430,0.6198)
     (0.0428, 0.2668)
     (0.4815, 0.1614)
     (0.1156, 0.6214)
     (0.0685, 0.8681)
     (0.2060, 0.7060)
     (0.8630, 0.8652)
      (0.6967, 0.9190)
      (0.2792, 0.3355)
```

9.3 Program Results

C06PSF.4

CO6PSF Example Program Results

Original data values

Real	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
Imag	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
Ū						
Real	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815
Imag	0.9089	0.3118	0.3465	0.6198	0.2668	0.1614
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355
•						
Discrete	Fourier	transforms	5			
Real	1.0737	-0.5706	0.1733	-0.1467	0.0518	0.3625
Imag	1.3961	-0.0409	-0.2958	-0.1521	0.4517	-0.0321
Real	1.1237	0.1728	0.4185	0.1530	0.3686	0.0101

[NP3390/19]

Imag	1.0677	0.0386	0.7481	0.1752	0.0565	0.1403	
Real	0.9100	-0.3054	0.4079	-0.0785	-0.1193	-0.5314	
Imag	1.7617	0.0624	-0.0695	0.0725	0.1285	-0.4335	
Original	data as	restored	by inverse	transform			•
Real	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424	
Imag	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723	
Real	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815	
Imag	0.9089	0.3118	0.3465	0.6198	0.2668	0.1614	
Real	0.1156	0.0685	0.2060	0.8630	0.6967	0.2792	
Imag	0.6214	0.8681	0.7060	0.8652	0.9190	0.3355	

[NP3390/19] C06PSF.5 (last)

C06PUF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PUF computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values (using complex data type).

2 Specification

SUBROUTINE CO6PUF(DIRECT, M, N, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

M, N, IFAIL

complex

X(M*N), WORK(M*N+N+M+30)

3 Description

This routine computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values $z_{j_1j_2}$, where $j_1=0,1,\ldots,m-1$ and $j_2=0,1,\ldots,n-1$.

The discrete Fourier transform is here defined by

$$\hat{z}_{k_1k_2} = \frac{1}{\sqrt{mn}} \sum_{j_1=0}^{m-1} \sum_{j_2=0}^{n-1} z_{j_1j_2} \times \exp\left(\pm 2\pi i \left(\frac{j_1k_1}{m} + \frac{j_2k_2}{n}\right)\right),$$

where $k_1 = 0, 1, ..., m-1$ and $k_2 = 0, 1, ..., n-1$.

(Note the scale factor of $\frac{1}{\sqrt{mn}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

This routine calls C06PRF to perform multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm in Brigham [1].

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: M — INTEGER

Input

On entry: the first dimension of the transform, m.

Constraint: $M \geq 1$.

3: N — INTEGER Input

On entry: the second dimension of the transform, n.

Constraint: $N \geq 1$.

4: X(M*N) - complex array

Input/Output

On entry: the complex data values. If X is regarded as a two-dimensional array of dimension (0:M-1,0:N-1), then $X(j_1,j_2)$ must contain $z_{j_1j_2}$.

On exit: the corresponding elements of the computed transform.

5: WORK(M*N+N+M+30) — complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 4

On entry, N has more than 30 prime factors.

IFAIL = 5

On entry, M has more than 30 prime factors.

IFAIL = 6

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $mn \times \log(mn)$, but also depends on the factorization of the individual dimensions m and n. The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9 Example

This program reads in a bivariate sequence of complex data values and prints the two-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1 Program Text

```
CO6PUF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                     NIN, NOUT
   INTEGER
                     (NIN=5, NOUT=6)
   PARAMETER
   INTEGER
                     MMAX, NMAX, MNMAX
   PARAMETER
                     (MMAX=96,NMAX=96,MNMAX=MMAX*NMAX)
   .. Local Scalars ..
   INTEGER
                     IFAIL, M, N
   .. Local Arrays ..
                     WORK (MMAX+NMAX+MNMAX+30), X (MNMAX)
   complex
   .. External Subroutines ..
   EXTERNAL
                     CO6PUF, READX, WRITX
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PUF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=40) M, N
   IF (M*N.GE.1 .AND. M*N.LE.MNMAX) THEN
      CALL READX(NIN,X,M,N)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Original data values'
      CALL WRITX(NOUT, X, M, N)
      IFAIL = 0
      -- Compute transform
      CALL CO6PUF('F', M, N, X, WORK, IFAIL)
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Components of discrete Fourier transform'
      CALL WRITX(NOUT, X, M, N)
      -- Compute inverse transform
      CALL CO6PUF('B', M, N, X, WORK, IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT,*)
        'Original sequence as restored by inverse transform'
      CALL WRITX(NOUT, X, M, N)
      GO TO 20
      WRITE (NOUT, *) ' ** Invalid value of M or N'
   END IF
```

[NP3390/19] C06PUF.3

```
40 CONTINUE
         STOP
         END
         SUBROUTINE READX(NIN, X, N1, N2)
         Read 2-dimensional complex data
         .. Scalar Arguments ..
                        N1, N2, NIN
         INTEGER
         .. Array Arguments ..
         complex X(N1,N2)
         .. Local Scalars ..
         INTEGER I, J
         .. Executable Statements ..
         DO 20 I = 1, N1
            READ (NIN,*) (X(I,J),J=1,N2)
      20 CONTINUE
         RETURN
         END
         SUBROUTINE WRITX(NOUT, X, N1, N2)
         Print 2-dimensional complex data
         .. Scalar Arguments ..
                          N1, N2, NOUT
         INTEGER
         .. Array Arguments ..
         complex X(N1,N2)
          .. Local Scalars ..
         INTEGER I, J
          .. Intrinsic Functions ..
         INTRINSIC real, imag
          .. Executable Statements ..
         DO 20 I = 1, N1
             WRITE (NOUT,*)
             WRITE (NOUT,99999) 'Real ', (real(X(I,J)),J=1,N2)
             WRITE (NOUT,99999) 'Imag', (imag(X(I,J)),J=1,N2)
       20 CONTINUE
          RETURN
    99999 FORMAT (1X,A,7F10.3,/(6X,7F10.3))
          END
9.2
     Program Data
    CO6PUF Example Program Data
    3 5 : Number of rows, M, and columns, N, in X and Y
        (1.000, 0.000)
        (0.999, -0.040)
        (0.987, -0.159)
        (0.936, -0.352)
        (0.802, -0.597)
         (0.994,-0.111)
         (0.989, -0.151)
         (0.963, -0.268)
         (0.891, -0.454)
         (0.731,-0.682)
         (0.903, -0.430)
         (0.885, -0.466)
         (0.823, -0.568)
         (0.694, -0.720)
```

[NP3390/19]

(0.467, -0.884)

9.3 Program Results

Real

Imag

Real

Imag

0.994

-0.111

0.903

-0.430

0.989

-0.151

0.885

-0.466

0.963

-0.268

0.823

-0.568

0.891

-0.454

0.694

-0.720

0.731

-0.682

0.467

-0.884

CO6PUF Example Program Results

Original data values

Real	1.000	0.999	0.987	0.936	0.802
Imag	0.000	-0.040	-0.159	-0.352	-0.597
Real	0.994	0.989	0.963	0.891	0.731
Imag	-0.111	-0.151	-0.268	-0.454	-0.682
Real	0.903	0.885	0.823	0.694	0.467
Imag	-0.430	-0.466	-0.568	-0.720	-0.884
Componer	ts of dis	crete Four	ier transf	orm	
Real	3.373	0.481	0.251	0.054	-0.419
Imag	-1.519	-0.091	0.178	0.319	0.415
Real	0.457	0.055	0.009	-0.022	-0.076
Imag	0.137	0.032	0.039	0.036	0.004
Real	-0.170	-0.037	-0.042	-0.038	-0.002
Imag	0.493	0.058	0.008	-0.025	-0.083
Original	sequence	as restor	ed by inve	rse transf	orm
-					
Real	1.000	0.999	0.987	0.936	0.802
Imag	0.000	-0.040	-0.159	-0.352	-0.597

[NP3390/19] C06PUF.5 (last)

• ı

C06PXF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06PXF computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex data values (using complex data type).

2 Specification

SUBROUTINE CO6PXF(DIRECT, N1, N2, N3, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

N1, N2, N3, IFAIL

complex

X(N1*N2*N3), WORK(N1*N2*N3+N1+N2+N3+45)

3 Description

This routine computes the three-dimensional discrete Fourier transform of a trivariate sequence of complex data values $z_{j_1j_2j_3}$, where $j_1=0,1,\ldots,n_1-1,\,j_2=0,1,\ldots,n_2-1$ and $j_3=0,1,\ldots,n_3-1$.

The discrete Fourier transform is here defined by

$$\hat{z}_{k_1k_2k_3} = \frac{1}{\sqrt{n_1n_2n_3}} \sum_{i_1=0}^{n_1-1} \sum_{i_2=0}^{n_2-1} \sum_{i_3=0}^{n_3-1} z_{j_1j_2j_3} \times \exp\left(\pm 2\pi i \left(\frac{j_1k_1}{n_1} + \frac{j_2k_2}{n_2} + \frac{j_3k_3}{n_3}\right)\right),$$

where $k_1 = 0, 1, \dots, n_1 - 1, k_2 = 0, 1, \dots, n_2 - 1$ and $k_3 = 0, 1, \dots, n_3 - 1$.

(Note the scale factor of $\frac{1}{\sqrt{n_1n_2n_3}}$ in this definition.) The minus sign is taken in the argument of the exponential within the summation when the forward transform is required, and the plus sign is taken when the backward transform is required. A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

This routine calls C06PRF to perform multiple one-dimensional discrete Fourier transforms by the fast Fourier transform (FFT) algorithm (Brigham [1]).

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Temperton C (1983) Self-sorting mixed-radix fast Fourier transforms J. Comput. Phys. 52 1-23

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: N1 — INTEGER

Input

On entry: the first dimension of the transform, n_1 .

Constraint: $N1 \ge 1$.

[NP3390/19]

3: N2 — INTEGER

Input

On entry: the second dimension of the transform, n_2 .

Constraint: $N2 \ge 1$.

4: N3 — INTEGER

Input

On entry: the third dimension of the transform, n_3 .

Constraint: $N3 \ge 1$.

5: X(N1*N2*N3) - complex array

Input/Output

On entry: the complex data values. If X is regarded as a three-dimensional array of dimension (0:N1-1,0:N2-1,0:N3-1), then $X(j_1,j_2,j_3)$ must contain $z_{j_1j_2j_3}$.

On exit: the corresponding elements of the computed transform.

6: WORK(N1*N2*N3+N1+N2+N3+45) — complex array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: the real part of WORK(1) contains the minimum workspace required for the current values of N1, N2 and N3 with this implementation.

7: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, N1 < 1.

IFAIL = 2

On entry, N2 < 1.

IFAIL = 3

On entry, N3 < 1.

IFAIL = 4

On entry, DIRECT not equal to one of 'F' or 'B'.

IFAIL = 5

On entry, N1 has more than 30 prime factors.

IFAIL = 6

On entry, N2 has more than 30 prime factors.

IFAIL = 7

On entry, N3 has more than 30 prime factors.

IFAIL = 8

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

[NP3390/19]

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $n_1n_2n_3 \times \log(n_1n_2n_3)$, but also depends on the factorization of the individual dimensions n_1 , n_2 and n_3 . The routine is somewhat faster than average if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

9 Example

This program reads in a trivariate sequence of complex data values and prints the three-dimensional Fourier transform. It then performs an inverse transform and prints the sequence so obtained, which may be compared to the original data values.

9.1 Program Text

```
CO6PXF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
   INTEGER
                    NIN, NOUT
   PARAMETER
                     (NIN=5, NOUT=6)
   INTEGER
                    N1MAX, N2MAX, N3MAX, NMAX, LWORK
   PARAMETER
                     (N1MAX=16, N2MAX=16, N3MAX=16,
                    NMAX=N1MAX*N2MAX*N3MAX,LWORK=N1MAX+N2MAX+N3MAX+
                    NMAX+45)
   .. Local Scalars .
   INTEGER
                    IFAIL, N, N1, N2, N3
   .. Local Arrays ..
                    WORK(LWORK), X(NMAX)
   complex
   .. External Subroutines ..
                    CO6PXF, READX, WRITX
   EXTERNAL
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6PXF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN, *, END=40) N1, N2, N3
   N = N1*N2*N3
   IF (N.GE.1 .AND. N.LE.NMAX) THEN
      CALL READX(NIN, X, N1, N2, N3)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Original data values'
      CALL WRITX(NOUT, X, N1, N2, N3)
      IFAIL = 0
      -- Compute transform
      CALL CO6PXF('F', N1, N2, N3, X, WORK, IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Components of discrete Fourier transform'
      CALL WRITX(NOUT, X, N1, N2, N3)
      -- Compute inverse transform
```

[NP3390/19] C06PXF.3

CALL CO6PXF('B',N1,N2,N3,X,WORK,IFAIL)

```
WRITE (NOUT, *)
        WRITE (NOUT,*)
          'Original sequence as restored by inverse transform'
        CALL WRITX(NOUT, X, N1, N2, N3)
        GO TO 20
     ELSE
        WRITE (NOUT,*) ' ** Invalid value of N1, N2 or N3'
     END IF
  40 CONTINUE
     STOP
     END
     SUBROUTINE READX(NIN,X,N1,N2,N3)
     Read 3-dimensional complex data
     .. Scalar Arguments ..
     INTEGER
                      N1, N2, N3, NIN
     .. Array Arguments ..
     complex X(N1,N2,N3)
     .. Local Scalars ..
     INTEGER
                      I, J, K
     .. Executable Statements ...
     DO 40 I = 1, N1
        DO 20 J = 1, N2
           READ (NIN, *) (X(I,J,K),K=1,N3)
        CONTINUE
  40 CONTINUE
     RETURN
     END
     SUBROUTINE WRITX (NOUT, X, N1, N2, N3)
     Print 3-dimensional complex data
     .. Scalar Arguments ..
                      N1, N2, N3, NOUT
     INTEGER
     .. Array Arguments ..
     complex X(N1,N2,N3)
     .. Local Scalars ..
                      I, J, K
     INTEGER
      .. Intrinsic Functions ..
     INTRINSIC
                   real, imag
      .. Executable Statements ..
     DO 40 I = 1, N1
        WRITE (NOUT,*)
        WRITE (NOUT,99998) 'z(i,j,k) for i = ', I
        DO 20 J = 1, N2
            WRITE (NOUT,*)
            \label{eq:write_nout} \mbox{WRITE (NOUT,99999) 'Real ', ($real(X(I,J,K)),K=1,N3)$}
            WRITE (NOUT,99999) 'Imag ', (imag(X(I,J,K)),K=1,N3)
  20
         CONTINUE
   40 CONTINUE
      RETURN
99999 FORMAT (1X,A,7F10.3,/(6X,7F10.3))
99998 FORMAT (1X,A,I6)
      END
```

9.2 Program Data

9.3 Program Results

CO6PXF Example Program Results

Original data values

z (i,j,k)	for i =	1		
Real	1.000	0.999	0.987	0.936
Imag	0.000	-0.040	-0.159	-0.352
Real	0.994	0.989	0.963	0.891
Imag	-0.111	-0.151	-0.268	-0.454
Real	0.903	0.885	0.823	0.694
Imag	-0.430	-0.466	-0.568	-0.720
z(i,j,k)	for i =	2		
Real	0.500	0.499	0.487	0.436
Imag	0.500	0.040	0.159	0.352
Real	0.494	0.489	0.463	0.391
Imag	0.111	0.151	0.268	0.454
Real	0.403	0.385	0.323	0.194
Imag	0.430	0.466	0.568	0.720

Components of discrete Fourier transform

z (i,j,k)	for i =	1		
Real	3.292	0.051	0.113	0.051
Imag	0.102	-0.042	0.102	0.246
Real	0.143	0.016	-0.024	-0.050
Imag	-0.086	0.153	0.127	0.086
Real	0.143	-0.050	-0.024	0.016
Imag	0.290	0.118	0.077	0.051
z(i,j,k)	for i =	2		
Real	1.225	0.355	0.000	-0.355
Imag	-1.620	0.083	0.162	0.083
Real	0.424	0.020	0.013	-0.007

[NP3390/19] C06PXF.5

Imag	0.320	-0.115	-0.091	-0.080	
			-0.013		
Imag	0.320	-0.080	-0.091	-0.115	
Original	sequence	as restor	ed by inve	rse transform	
z(i,j,k)	for i =	1			
Real	1.000	0.999	0.987	0.936	
Imag	0.000	-0.040	-0.159	-0.352	
Real	0.994	0.989	0.963	0.891	
Imag	-0.111	-0.151	-0.268	-0.454	
Real	0.903	0.885	0.823	0.694	
Imag	-0.430	-0.466	-0.568	-0.720	
z(i,j,k)	for i =	2			
Real	0.500	0.499	0.487	0.436	
Imag	0.500	0.040	0.159	0.352	
Real	0.494	0.489	0.463	0.391	
Imag	0.111	0.151	0.268	0.454	
Real	0.403	0.385	0.323	0.194	
		0.466		0.720	

C06RAF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06RAF computes the discrete Fourier sine transforms of m sequences of real data values.

2 Specification

SUBROUTINE COGRAF(M, N, X, WORK, IFAIL)
INTEGER M, N, IFAIL

real X(M*(N+2)), WORK(M*N+2*N+15)

3 Description

Given m sequences of n-1 real data values x_j^p , for $j=1,2,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier sine transforms of all the sequences defined by

$$\hat{x}_{k}^{p} = \sqrt{\frac{2}{n}} \sum_{j=1}^{n-1} x_{j}^{p} \times \sin\left(jk\frac{\pi}{n}\right), \quad k = 1, 2, ..., n-1; \quad p = 1, 2, ..., m.$$

(Note the scale factor $\sqrt{\frac{2}{n}}$ in this definition.)

Since the Fourier sine transform defined above is its own inverse, two consecutive calls of this routine will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is specified at both left and right boundaries (Swarztrauber [2]).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

2: N — INTEGER

On entry: one more than the number of real values in each sequence, i.e., the number of values in each sequence is n-1.

Constraint: $N \geq 1$.

[NP3390/19] C06RAF.1

3: $X(M*(N+2)) - real \operatorname{array}$

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,1:N+2); each of the m sequences is stored in a row of the array. In other words, if the n-1 data values of the pth sequence to be transformed are denoted by x_j^p , for $j=1,2,\ldots,n-1$ and $p=1,2,\ldots,m$, then the first m(n-1) elements of the array X must contain the values

$$x_1^1, x_1^2, \ldots, x_1^m, x_2^1, x_2^2, \ldots, x_2^m, \ldots, x_{n-1}^1, x_{n-1}^2, \ldots, x_{n-1}^m$$

The *n*th to (n+2)th elements of each row x_n^p, \ldots, x_{n+2}^p , for $p=1,2,\ldots,m$, are required as workspace. These 3m elements may contain arbitrary values as they are set to zero by the routine.

On exit: the m Fourier sine transforms stored as if in a two-dimensional array of dimension (1:M,1:N+2). Each of the m transforms is stored in a row of the array, overwriting the corresponding original sequence. If the (n-1) components of the pth Fourier sine transform are denoted by \hat{x}_k^p , for $k=1,2,\ldots,n-1$ and $p=1,2,\ldots,m$, then the m(n+2) elements of the array X contain the values

$$\hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \ \hat{x}_2^1, \hat{x}_2^2, \dots, \hat{x}_2^m, \dots, \ \hat{x}_{n-1}^1, \hat{x}_{n-1}^2, \dots, \hat{x}_{n-1}^m, 0, 0, \dots, 0 \ (3m \text{ times}).$$

4: WORK(M*N+2*N+15) — real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

5: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their Fourier sine transforms (as computed by C06RAF). It then calls C06RAF again and prints the results which may be compared with the original sequence.

9.1 Program Text

```
CO6RAF Example Program Text.
   Mark 19 Release. NAG Copyright 1998.
   .. Parameters ..
   INTEGER
                     NIN, NOUT
   PARAMETER
                     (NIN=5, NOUT=6)
   INTEGER
                     MMAX, NMAX
   PARAMETER
                     (MMAX=5,NMAX=20)
   .. Local Scalars ..
   INTEGER
                     I, IFAIL, J, M, N
   .. Local Arrays ..
   real
                    WORK(MMAX+NMAX+2+NMAX+15), X((NMAX+2)+MMAX)
   .. External Subroutines ..
   EXTERNAL
                     COGRAF
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6RAF Example Program Results'
   Skip heading in data file
   READ (NIN.*)
20 CONTINUE
   READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN,*) (X((I-1)*M+J), I=1, N-1)
40
      CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
      WRITE (NOUT, *)
      DO 60 J = 1, M
         WRITE (NOUT, 99999) (X((I-1)*M+J), I=1, N-1)
60
      CONTINUE
      IFAIL = 0
      -- Compute transform
      CALL COGRAF(M,N,X,WORK,IFAIL)
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Discrete Fourier sine transforms'
      WRITE (NOUT, *)
      DO 80 J = 1, M
         WRITE (NOUT, 99999) (X((I-1)*M+J), I=1, N-1)
80
      CONTINUE
      -- Compute inverse transform
      CALL COGRAF(M,N,X,WORK,IFAIL)
```

[NP3390/19] C06RAF.3

```
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*)
DD 100 J = 1, M
WRITE (NOUT,99999) (X((I-1)*M+J),I=1,N-1)

100 CONTINUE
GD TO 20
ELSE
WRITE (NOUT,*) 'Invalid value of M or N'
END IF

120 CONTINUE
STOP
*
99999 FORMAT (6X,6F10.4)
END
```

9.2 Program Data

```
C06RAF Example Program Data
3 6: Number of sequences, M, (number of values in each sequence)+1, N
0.6772 0.1138 0.6751 0.6362 0.1424 : X, sequence 1
0.2983 0.1181 0.7255 0.8638 0.8723 : X, sequence 2
0.0644 0.6037 0.6430 0.0428 0.4815 : X, sequence 3
```

9.3 Program Results

CO6RAF Example Program Results

Original data values

```
    0.6772
    0.1138
    0.6751
    0.6362
    0.1424

    0.2983
    0.1181
    0.7255
    0.8638
    0.8723

    0.0644
    0.6037
    0.6430
    0.0428
    0.4815
```

Discrete Fourier sine transforms

```
    1.0014
    0.0062
    0.0834
    0.5286
    0.2514

    1.2477
    -0.6599
    0.2570
    0.0859
    0.2658

    0.8521
    0.0719
    -0.0561
    -0.4890
    0.2056
```

Original data as restored by inverse transform

0.6772	0.1138	0.6751	0.6362	0.1424
0.2983	0.1181	0.7255	0.8638	0.8723
0.0644	0.6037	0.6430	0.0428	0.4815

C06RBF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06RBF computes the discrete Fourier cosine transforms of m sequences of real data values.

2 Specification

SUBROUTINE CO6RBF(M, N, X, WORK, IFAIL)
INTEGER
M, N, IFAIL
real
X(M*(N+3)), WORK(M*N+2*N+15)

3 Description

Given m sequences of n+1 real data values x_j^p , for $j=0,1,\ldots,n$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the Fourier cosine transforms of all the sequences defined by

$$\hat{x}_{k}^{p} = \sqrt{\frac{2}{n}} \left(\frac{1}{2} x_{0}^{p} + \sum_{j=1}^{n-1} x_{j}^{p} \times \cos \left(jk \frac{\pi}{n} \right) + \frac{1}{2} (-1)^{k} x_{n}^{p} \right), \quad k = 0, 1, \dots, n; \quad p = 1, 2, \dots, m.$$

(Note the scale factor $\sqrt{\frac{2}{n}}$ in this definition.)

Since the Fourier cosine transform is its own inverse, two consecutive calls of this routine will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of the solution is specified at both left and right boundaries (Swarztrauber [2]).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

5 Parameters

1: M — INTEGER Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

2: N — INTEGER Invu

On entry: one less than the number of real values in each sequence, i.e., the number of values in each sequence is n + 1.

Constraint: $N \geq 1$.

[NP3390/19] C06RBF.1

3: X(M*(N+3)) - real array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N+2); each of the m sequences is stored in a row of the array. In other words, if the (n+1) data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n$ and $p=1,2,\ldots,m$, then the first m(n+1) elements of the array X must contain the values

$$x_0^1, x_0^2, \ldots, x_0^m, x_1^1, x_1^2, \ldots, x_1^m, \ldots, x_n^1, x_n^2, \ldots, x_n^m$$

The (n+2)th and (n+3)th elements of each row x_{n+2}^p , x_{n+3}^p , for $p=1,2,\ldots,m$, are required as workspace. These 2m elements may contain arbitrary values as they are set to zero by the routine.

On exit: the m Fourier cosine transforms stored as if in a two-dimensional array of dimension (1:M,0:N+2). Each of the m transforms is stored in a row of the array, overwriting the corresponding original data. If the (n+1) components of the pth Fourier cosine transform are denoted by \hat{x}_k^p , for $k=0,1,\ldots,n$ and $p=1,2,\ldots,m$, then the m(n+3) elements of the array X contain the values

$$\hat{x}_0^1, \hat{x}_0^2, \dots, \hat{x}_0^m, \hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \dots, \hat{x}_n^1, \hat{x}_n^2, \dots, \hat{x}_n^m, 0, 0, \dots, 0$$
 (2m times).

4: WORK(M*N+2*N+15) — real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

5: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

IFAIL = 2

On entry, N < 1.

IFAIL = 3

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their Fourier cosine transforms (as computed by C06RBF). It then calls the routine again and prints the results which may be compared with the original sequence.

9.1 Program Text

```
CO6RBF Example Program Text.
    Mark 19 Release. NAG Copyright 1999.
    .. Parameters ..
    INTEGER
                     NIN, NOUT
    PARAMETER
                     (NIN=5, NOUT=6)
    INTEGER
                     MMAX, NMAX
    PARAMETER
                     (MMAX=5,NMAX=20)
    .. Local Scalars ..
    INTEGER
                     I, IFAIL, J, M, N
    .. Local Arrays ..
    real
                     WORK(MMAX*NMAX+2*NMAX+15), X((NMAX+3)*MMAX)
    .. External Subroutines ..
    EXTERNAL
                     CO6RBF
    .. Executable Statements ..
    WRITE (NOUT,*) 'CO6RBF Example Program Results'
    Skip heading in data file
    READ (NIN,*)
 20 CONTINUE
    READ (NIN, *, END=120) M, N
    IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
       DO 40 J = 1, M
          READ (NIN,*) (X(I*M+J),I=0,N)
 40
       CONTINUE
       WRITE (NOUT, *)
       WRITE (NOUT,*) 'Original data values'
       WRITE (NOUT,*)
       DO 60 J = 1, M
          WRITE (NOUT,99999) (X(I*M+J),I=0,N)
 60
       CONTINUE
       IFAIL = 0
       -- Compute transform
       CALL COGRBF(M,N,X,WORK,IFAIL)
       WRITE (NOUT,*)
       WRITE (NOUT,*) 'Discrete Fourier cosine transforms'
       WRITE (NOUT,*)
       DO 80 J = 1, M
          WRITE (NOUT,99999) (X(I*M+J),I=0,N)
80
       CONTINUE
       -- Compute inverse transform
       CALL COGRBF(M,N,X,WORK,IFAIL)
       WRITE (NOUT, *)
       WRITE (NOUT,*) 'Original data as restored by inverse transform'
       WRITE (NOUT,*)
      DO 100 J = 1, M
          WRITE (NOUT,99999) (X(I*M+J),I=0,N)
100
       CONTINUE
```

[NP3390/19] C06RBF.3

```
GO TO 20
ELSE
WRITE (NOUT,*) 'Invalid value of M or N'
END IF
120 CONTINUE
STOP

*
99999 FORMAT (6X,7F10.4)
END
```

9.2 Program Data

```
C06RBF Example Program Data
3 6: Number of sequences, M, (number of values in each sequence)-1, N
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562: X, sequence 1
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936: X, sequence 2
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057: X, sequence 3
```

9.3 Program Results

CO6RBF Example Program Results

Original data values

	0.3854 0.5417 0.9172	0.6772 0.2983 0.0644	0.1138 0.1181 0.6037	0.6751 0.7255 0.6430	0.6362 0.8638 0.0428	0.1424 0.8723 0.4815	0.9562 0.4936 0.2057
Discrete	Fourier	cosine tra	ansforms				
	1.6833	-0.0482	0.0176	0.1368	0.3240	-0.5830	-0.0427
	1.9605	-0.4884	-0.0655	0.4444	0.0964	0.0856	-0.2289
	1.3838	0.1588	-0.0761	-0.1184	0.3512	0.5759	0.0110
Original	. data as	restored	by inverse	transform			

0.9562 0.1424 0.6362 0.6772 0.1138 0.6751 0.3854 0.4936 0.8638 0.8723 0.2983 0.1181 0.7255 0.5417 0.2057 0.6037 0.6430 0.0428 0.4815 0.0644 0.9172

C06RBF.4 (last) [NP3390/19]

C06RCF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06RCF computes the discrete quarter-wave Fourier sine transforms of m sequences of real data values.

2 Specification

SUBROUTINE COGRCF(DIRECT, M, N, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

M, N, IFAIL

real

X(M*(N+2)), WORK(M*N+2*N+15)

3 Description

Given m sequences of n real data values x_j^p , for j = 1, 2, ..., n and p = 1, 2, ..., m, this routine simultaneously calculates the quarter-wave Fourier sine transforms of all the sequences defined by

$$\hat{x}_{k}^{p} = \frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n-1} x_{j}^{p} \times \sin \left(j(2k-1) \frac{\pi}{2n} \right) + \frac{1}{2} (-1)^{k-1} x_{n}^{p} \right), \quad \text{if DIRECT} = \text{'F'},$$

or its inverse

$$x_k^p = \frac{2}{\sqrt{n}} \sum_{i=1}^n \hat{x}_j^p \times \sin\left((2j-1)k\frac{\pi}{2n}\right), \quad \text{if DIRECT} = 'B',$$

for k = 1, 2, ..., n and p = 1, 2, ..., m.

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the solution is specified at the left boundary, and the derivative of the solution is specified at the right boundary (Swarztrauber [2]).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

[NP3390/19] C06RCF.1

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

3: N — INTEGER

Input

On entry: the number of real values in each sequence, n.

Constraint: $N \geq 1$.

4: X(M*(N+2)) — **real** array

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,1:N+2); each of the m sequences is stored in a **row** of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=1,2,\ldots,n$ and $p=1,2,\ldots,m$, then the first mn elements of the array X must contain the values

$$x_1^1, x_1^2, \ldots, x_1^m, x_2^1, x_2^2, \ldots, x_2^m, \ldots, x_n^1, x_n^2, \ldots, x_n^m$$

The (n+1)th and (n+2)th elements of each row x_{n+1}^p , x_{n+2}^p , for $p=1,2,\ldots,m$, are required as workspace. These 2m elements may contain arbitrary values as they are set to zero by the routine.

On exit: the m quarter-wave sine transforms stored as if in a two-dimensional array of dimension (1:M,1:N+2). Each of the m transforms is stored in a row of the array, overwriting the corresponding original sequence. If the n components of the pth quarter-wave sine transform are denoted by \hat{x}_k^p , for $k=1,2,\ldots,n$ and $p=1,2,\ldots,m$, then the m(n+2) elements of the array X contain the values

$$\hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \hat{x}_2^1, \hat{x}_2^2, \dots, \hat{x}_2^m, \dots, \hat{x}_n^1, \hat{x}_n^2, \dots, \hat{x}_n^m, 0, 0, \dots, 0$$
 (2m times).

5: WORK(M*N+2*N+15) — real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

```
IFAIL = 2 On entry, N < 1. IFAIL = 3 On entry, DIRECT is not equal to one of 'F' or 'B'. IFAIL = 4
```

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their quarter-wave sine transforms as computed by C06RCF with DIRECT = 'F'. It then calls the routine again with DIRECT = 'B' and prints the results which may be compared with the original data.

9.1 Program Text

```
CO6RCF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
                     NIN, NOUT
   INTEGER
   PARAMETER
                     (NIN=5, NOUT=6)
   INTEGER
                     MMAX, NMAX
                     (MMAX=5, NMAX=20)
   PARAMETER
   .. Local Scalars ..
                     I, IFAIL, J, M, N
   INTEGER
   .. Local Arrays ..
                    WORK(MMAX*NMAX+2*NMAX+15), X((NMAX+2)*MMAX)
   .. External Subroutines ...
                     CO6RCF
   EXTERNAL
   .. Executable Statements ..
   WRITE (NOUT, *) 'COGRCF Example Program Results'
   Skip heading in data file
   READ (NIN, *)
20 CONTINUE
   READ (NIN, *, END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN, \pm) (X(I\pmM+J), I=0, N-1)
      CONTINUE
40
      WRITE (NOUT, *)
      WRITE (NOUT, *) 'Original data values'
      WRITE (NOUT, *)
```

[NP3390/19] C06RCF.3

DO 60 J = 1, M

```
WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
            CONTINUE
       60
            IFAIL = 0
            -- Compute transform
             CALL COGRCF('Forward', M, N, X, WORK, IFAIL)
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Discrete quarter-wave Fourier sine transforms'
             WRITE (NOUT,*)
             DO 80 J = 1, M
                WRITE (NOUT,99999) (X(I*M+J),I=0,N-1)
       80
             CONTINUE
             -- Compute inverse transform
             CALL COGRCF('Backward', M, N, X, WORK, IFAIL)
             WRITE (NOUT,*)
             WRITE (NOUT,*) 'Original data as restored by inverse transform'
             WRITE (NOUT, *)
             DO 100 J = 1, M
                WRITE (NOUT, 99999) (X(I*M+J), I=0, N-1)
      100
             CONTINUE
             GO TO 20
          ELSE
             WRITE (NOUT,*) 'Invalid value of M or N'
          END IF
      120 CONTINUE
          STOP
    99999 FORMAT (6X,7F10.4)
          END
9.2 Program Data
    COGRCF Example Program Data
    3 6 : Number of sequences, M, and number of values in each sequence, N
     0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 : X, sequence 1
     0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 : X, sequence 2
     0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : X, sequence 3
9.3 Program Results
     COGRCF Example Program Results
     Original data values
                                           0.6751 0.6362
                                                              0.1424
                        0.6772
                                 0.1138
              0.3854
                                           0.7255 0.8638
                                                              0.8723
                                 0.1181
              0.5417 0.2983
                                           0.6430 0.0428
                                                              0.4815
                                 0.6037
                        0.0644
              0.9172
     Discrete quarter-wave Fourier sine transforms
                                                    -0.2869
                                                             -0.0815
              0.7304 0.2078 0.1150
                                           0.2577
                                           0.2883 -0.0026 -0.0635
              0.9274 -0.1152
                                 0.2532
                                                             -0.0507
              0.6268 0.3547 0.0760
                                           0.3078
                                                     0.4987
```

Original data as restored by inverse transform

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

[NP3390/19] C06RCF.5 (last)

C06RDF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06RDF computes the discrete quarter-wave Fourier cosine transforms of m sequences of real data values.

2 Specification

SUBROUTINE COGRDF(DIRECT, M, N, X, WORK, IFAIL)

CHARACTER*1

DIRECT

INTEGER

M, N, IFAIL

real

X(M*(N+2)), WORK(M*N+2*N+15)

3 Description

Given m sequences of n real data values x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, this routine simultaneously calculates the quarter-wave Fourier cosine transforms of all the sequences defined by

$$\hat{x}_k^p = \frac{1}{\sqrt{n}} \left(\frac{1}{2} x_0^p + \sum_{j=1}^{n-1} x_j^p \times \cos \left(j(2k-1) \frac{\pi}{2n} \right) \right), \quad \text{if DIRECT} = \text{'F'},$$

or its inverse

$$x_k^p = \frac{2}{\sqrt{n}} \sum_{j=0}^{n-1} \hat{x}_j^p \times \cos\left((2j-1)k\frac{\pi}{2n}\right), \quad \text{if DIRECT} = 'B',$$

for k = 0, 1, ..., n - 1 and p = 1, 2, ..., m.

(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)

A call of the routine with DIRECT = 'F' followed by a call with DIRECT = 'B' will restore the original data.

The transform calculated by this routine can be used to solve Poisson's equation when the derivative of the solution is specified at the left boundary, and the solution is specified at the right boundary (Swarztrauber [2]).

The routine uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the Stockham self-sorting algorithm, described in Temperton [4], together with pre- and post-processing stages described in Swarztrauber [3]. Special coding is provided for the factors 2, 3, 4 and 5.

4 References

- [1] Brigham E O (1973) The Fast Fourier Transform Prentice-Hall
- [2] Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19 (3) 490-501
- [3] Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) Academic Press 51-83
- [4] Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

[NP3390/19] C06RDF.1

5 Parameters

1: DIRECT — CHARACTER*1

Input

On entry: if the Forward transform as defined in Section 3 is to be computed, then DIRECT must be set equal to 'F'. If the Backward transform is to be computed then DIRECT must be set equal to 'B'.

Constraint: DIRECT = 'F' or 'B'.

2: M — INTEGER

Input

On entry: the number of sequences to be transformed, m.

Constraint: $M \geq 1$.

3: N — INTEGER

Input

On entry: the number of real values in each sequence, n.

Constraint: $N \geq 1$.

4: $X(M*(N+2)) - real \operatorname{array}$

Input/Output

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N+1); each of the m sequences is stored in a row of the array. In other words, if the data values of the pth sequence to be transformed are denoted by x_j^p , for $j=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, then the first mn elements of the array X must contain the values

$$x_0^1, x_0^2, \ldots, x_0^m, x_1^1, x_1^2, \ldots, x_1^m, \ldots, x_{n-1}^1, x_{n-1}^2, \ldots, x_{n-1}^m$$

The (n+1)th and (n+2)th elements of each row x_n^p , x_{n+1}^p , for $p=1,2,\ldots,m$, are required as workspace. These 2m elements may contain arbitrary values as they are set to zero by the routine.

On exit: the m quarter-wave cosine transforms stored as if in a two-dimensional array of dimension (1:M,0:N+1). Each of the m transforms is stored in a row of the array, overwriting the corresponding original sequence. If the n components of the pth quarter-wave cosine transform are denoted by \hat{x}_k^p , for $k=0,1,\ldots,n-1$ and $p=1,2,\ldots,m$, then the m(n+2) elements of the array X contain the values

$$\hat{x}_0^1, \hat{x}_0^2, \dots, \hat{x}_0^m, \ \hat{x}_1^1, \hat{x}_1^2, \dots, \hat{x}_1^m, \dots, \ \hat{x}_{n-1}^1, \hat{x}_{n-1}^2, \dots, \hat{x}_{n-1}^m, 0, 0, \dots, 0 \ (2m \ \text{times}).$$

5: WORK(M*N+2*N+15) — real array

Workspace

The workspace requirements as documented for this routine may be an overestimate in some implementations. For full details of the workspace required by this routine please refer to the Users' Note for your implementation.

On exit: WORK(1) contains the minimum workspace required for the current values of M and N with this implementation.

6: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, M < 1.

```
IFAIL = 2 On entry, N < 1. IFAIL = 3 On entry, DIRECT is not equal to one of 'F' or 'B'. IFAIL = 4
```

An unexpected error has occurred in an internal call. Check all subroutine calls and array dimensions. Seek expert help.

7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

8 Further Comments

The time taken by the routine is approximately proportional to $nm \times \log n$, but also depends on the factors of n. The routine is fastest if the only prime factors of n are 2, 3 and 5, and is particularly slow if n is a large prime, or has large prime factors.

9 Example

This program reads in sequences of real data values and prints their quarter-wave cosine transforms as computed by C06RDF with DIRECT = 'F'. It then calls the routine again with DIRECT = 'B' and prints the results which may be compared with the original data.

9.1 Program Text

```
CO6RDF Example Program Text.
   Mark 19 Release. NAG Copyright 1999.
   .. Parameters ..
   INTEGER
                    NIN, NOUT
   PARAMETER
                    (NIN=5, NOUT=6)
                    MMAX, NMAX
   INTEGER
   PARAMETER
                    (MMAX=5,NMAX=20)
   .. Local Scalars ..
   INTEGER
                    I, IFAIL, J, M, N
   .. Local Arrays ..
                    WORK(MMAX+NMAX+2+NMAX+15), X((NMAX+2)+MMAX)
   real
   .. External Subroutines ..
   EXTERNAL
                    CO6RDF
   .. Executable Statements ..
   WRITE (NOUT, *) 'CO6RDF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 CONTINUE
   READ (NIN,*,END=120) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN, *) (X(I*M+J), I=0, N-1)
40
      CONTINUE
      WRITE (NOUT, *)
      WRITE (NOUT,*) 'Original data values'
      WRITE (NOUT, *)
```

[NP3390/19] C06RDF.3

```
DO 60 J = 1, M
           WRITE (NOUT,99999) (X(I*M+J),I=0,N-1)
        CONTINUE
  60
        IFAIL = 0
        -- Compute transform
        CALL COGRDF('Forward',M,N,X,WORK,IFAIL)
        WRITE (NOUT,*)
        WRITE (NOUT,*)
           'Discrete quarter-wave Fourier cosine transforms'
        WRITE (NOUT,*)
        DO 80 J = 1, M
           WRITE (NOUT,99999) (X(I*M+J),I=0,N-1)
        CONTINUE
  80
         -- Compute inverse transform
         CALL COGRDF('Backward', M, N, X, WORK, IFAIL)
         WRITE (NOUT, *)
         WRITE (NOUT,*) 'Original data as restored by inverse transform'
         WRITE (NOUT,*)
         DO 100 J = 1, M
            WRITE (NOUT,99999) (X(I*M+J),I=0,N-1)
         CONTINUE
 100
         GO TO 20
     ELSE
         WRITE (NOUT,*) 'Invalid value of M or N'
      END IF
 120 CONTINUE
      STOP
99999 FORMAT (6X,7F10.4)
      END
```

9.2 Program Data

```
C06RDF Example Program Data
3 6: Number of sequences, M, and number of values in each sequence, N
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424: X, sequence 1
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723: X, sequence 2
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815: X, sequence 3
```

9.3 Program Results

COGRDF Example Program Results

Original data values

```
0.6362 0.1424
                        0.6751
        0.6772
                0.1138
0.3854
                                        0.8723
                        0.7255
                                0.8638
        0.2983
                0.1181
0.5417
                0.6037
                        0.6430
                                0.0428
                                        0.4815
0.9172
        0.0644
```

Discrete quarter-wave Fourier cosine transforms

```
0.7257 -0.2216 0.1011 0.2355 -0.1406 -0.2282
0.7479 -0.6172 0.4112 0.0791 0.1331 -0.0906
```

	0.6713	-0.1363	-0.0064	-0.0285	0.4758	0.1475	
Original	data as	restored b	y inverse	transform		.,	
	0.3854	0.6772	0.1138	0.6751	0.6362	0.1424	
	0.5417	0.2983	0.1181	0.7255	0.8638	0.8723	
	0.9172	0.0644	0.6037	0.6430	0.0428	0.4815	•

[NP3390/19] C06RDF.5((last)

